Chapter 5 Weak Typicality

© Raymond W. Yeung 2012

Department of Information Engineering The Chinese University of Hong Kong

The Notion of Typical Sequences

- *•* Toss a fair coin *n* times.
- If the outcome is "head" approximately half of the time, the sequence of outcomes is "normal", or "typical".
- How to measure the typicality of a sequence w.r.t. to a generic distribution of an i.i.d. process?
- *•* Two common such measures in information theory: weak typicality and strong typicality.
- *•* The main theorems are weak and strong *Asymptotic Equipartition Properties* (AEP), which are consequences of WLLN.

5.1 The Weak AEP

Setup

- $\{X_k, k \geq 1\}, X_k \text{ i.i.d. } \sim p(x).$
- *X* denotes generic r.v. with entropy $H(X) < \infty$.

•
$$
\mathbf{X} = (X_1, X_2, \cdots, X_n)
$$
. Then

$$
p(\mathbf{X}) = p(X_1)p(X_2)\cdots p(X_n).
$$

• X may be countably infinite.

Theorem 5.1 (Weak AEP I)

$$
-\frac{1}{n}\log p(\mathbf{X}) \to H(X)
$$

in probability as $n \to \infty$, i.e., for any $\epsilon > 0$, for *n* sufficiently large,

$$
\Pr\left\{ \left| -\frac{1}{n}\log p(\mathbf{X}) - H(X) \right| \le \epsilon \right\} > 1 - \epsilon.
$$

Note: $X_n \to X$ in probability means that

$$
\lim_{n \to \infty} \Pr\{|X_n - X| \ge \epsilon\} = 0
$$

for all $\epsilon > 0$.

Definition 5.2 The weakly typical set $W_{[X]_\epsilon}^n$ with respect to $p(x)$ is the set of sequences $\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathcal{X}^n$ such that

$$
\left| -\frac{1}{n} \log p(\mathbf{x}) - H(X) \right| \le \epsilon,
$$

or equivalently,

$$
H(X) - \epsilon \le -\frac{1}{n}\log p(\mathbf{x}) \le H(X) + \epsilon,
$$

where ϵ is an arbitrarily small positive real number. The sequences in $W_{[X]\epsilon}^n$ are called weakly ϵ -typical sequences.

Empirical Entropy

$$
-\frac{1}{n}\log p(\mathbf{x}) = -\frac{1}{n}\sum_{k=1}^{n}\log p(x_k)
$$

is called the *empirical entropy* of the sequence x.

•

• The empirical entropy of a weakly typical sequence is close to the true entropy $H(X)$.

Theorem 5.2 (Weak AEP II) The following hold for any $\epsilon > 0$: 1) If $\mathbf{x} \in W_{[X]\epsilon}^n$, then

$$
2^{-n(H(X)+\epsilon)} \le p(\mathbf{x}) \le 2^{-n(H(X)-\epsilon)}.
$$

 $2)$ For *n* sufficiently large,

$$
\Pr{\mathbf{X} \in W_{[X]\epsilon}^n} > 1 - \epsilon.
$$

3) For *n* sufficiently large,

$$
(1 - \epsilon)2^{n(H(X) - \epsilon)} \le |W_{[X]\epsilon}^n| \le 2^{n(H(X) + \epsilon)}.
$$

WAEP says that for large *n*,

- the probability of occurrence of the sequence drawn is close to $2^{-nH(X)}$ with very high probability;
- the total number of weakly typical sequences is approximately equal to $2^{nH(X)}$.

WAEP DOES NOT say that

- most of the sequences in \mathcal{X}^n are weakly typical;
- the most likely sequence is weakly typical.

When *n* is large, one can almost think of the sequence X as being obtained by choosing a sequence from the weakly typical set according to the uniform distribution.

5.2 The Source Coding Theorem

A block code: $\mathcal{X}^n \to \mathcal{I}$

- $\mathcal{I} = \{1, 2, \cdots, M\}$
- blocklength $= n$
- coding rate $= n^{-1} \log M$

•
$$
P_e = \Pr{\mathbf{X} \notin \mathcal{A}}
$$
.

Direct Part & Converse

- Direct part: For arbitrarily small P_e , there exists a block code whose coding rate is arbitrarily close to $H(X)$ when *n* is sufficiently large.
- *•* Converse: For any block code with block length *n* and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with *n*, then $P_e \to 1$ as $n \to \infty$.

Direct Part

- Fix $\epsilon > 0$ and take $\mathcal{A} = W_{[X]\epsilon}^n$ and hence $M = |\mathcal{A}|$.
- For sufficiently large n , by WAEP,

$$
(1-\epsilon)2^{n(H(X)-\epsilon)} \le M = |\mathcal{A}| = |W_{[X]\epsilon}^n| \le 2^{n(H(X)+\epsilon)}.
$$

• Coding rate satisfies

$$
\frac{1}{n}\log(1-\epsilon) + H(X) - \epsilon \le \frac{1}{n}\log M \le H(X) + \epsilon.
$$

• By WAEP,

$$
P_e = \Pr{\mathbf{X} \notin \mathcal{A}} = \Pr{\mathbf{X} \notin W_{[X]\epsilon}^n} < \epsilon.
$$

• Letting $\epsilon \to 0$, the coding rate tends to $H(X)$, while P_e tends to 0.

Converse

- Consider any block code with rate less than $H(X) \zeta$, where $\zeta > 0$ does not change with *n*. Then total number of codewords $\leq 2^{n(H(X)-\zeta)}$.
- Use some indices to cover $\mathbf{x} \in W_{[X]\epsilon}^n$, and others to cover $\mathbf{x} \notin W_{[X]\epsilon}^n$.
- *•* Total probability of typical sequences covered is upper bounded by

$$
2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.
$$

• Total probability covered is upper bounded by

$$
2^{-n(\zeta-\epsilon)} + \Pr\{\mathbf{X} \not\in W_{[X]\epsilon}^n\} < 2^{-n(\zeta-\epsilon)} + \epsilon.
$$

- Then $P_e > 1 (2^{-n(\zeta \epsilon)} + \epsilon)$ holds for any $\epsilon > 0$ and *n* sufficiently large.
- Take $\epsilon < \zeta$. Then $P_e > 1 2\epsilon$ for *n* sufficiently large.
- Finally, let $\epsilon \to 0$.