# Chapter 3 The *I*-Measure

© Raymond W. Yeung 2010

Department of Information Engineering The Chinese University of Hong Kong



### Substitution of Symbols

$$\begin{array}{cccc} H/I & \leftrightarrow & \mu^* \\ , & \leftrightarrow & \cup \\ ; & \leftrightarrow & \cap \\ | & \leftrightarrow & - \end{array}$$

- $\mu^*$  is some signed measure on  $\mathcal{F}_n$ .
- Examples:

#### 1.

$$\mu^* (\tilde{X}_1 - \tilde{X}_2) = H(X_1 | X_2)$$
  

$$\mu^* (\tilde{X}_2 - \tilde{X}_1) = H(X_2 | X_1),$$
  

$$\mu^* (\tilde{X}_1 \cap \tilde{X}_2) = I(X_1; X_2)$$

2. Inclusion-Exclusion formulation in set-theory

$$\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)$$

corresponds to

$$H(X_1, X_2) = H(X_1) + H(X_2) - I(X_1; X_2)$$

in information theory.

### 3.1 Preliminaries

**Definition 3.1** The field  $\mathcal{F}_n$  generated by sets  $\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n$  is the collection of sets which can be obtained by any sequence of usual set operations (union, intersection, complement, and difference) on  $\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n$ .

**Definition 3.2** The atoms of  $\mathcal{F}_n$  are sets of the form  $\bigcap_{i=1}^n Y_i$ , where  $Y_i$  is either  $\tilde{X}_i$  or  $\tilde{X}_i^c$ , the complement of  $\tilde{X}_i$ .

#### Example 3.3

- The sets  $\tilde{X}_1$  and  $\tilde{X}_2$  generate the field  $\mathcal{F}_2$ .
- There are 4 atoms in  $\mathcal{F}_2$ .
- There are a total of 16 sets in  $\mathcal{F}_2$

**Definition 3.4** A real function  $\mu$  defined on  $\mathcal{F}_n$  is called a signed measure if it is set-additive, i.e., for disjoint A and B in  $\mathcal{F}_n$ ,

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

**Remark**  $\mu(\emptyset) = 0.$ 

### Example 3.5



• A signed measure  $\mu$  on  $\mathcal{F}_2$  is completely specified by the values on the atoms

 $\mu(\tilde{X}_1 \cap \tilde{X}_2), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2), \ \mu(\tilde{X}_1 \cap \tilde{X}_2^c), \ \mu(\tilde{X}_1^c \cap \tilde{X}_2^c))$ 

• The value of  $\mu$  on other sets in  $\mathcal{F}_2$  are obtained by set-additivity.

# Section 3.3 Construction of the *I*-Measure $\mu^*$

- Let  $\tilde{X}$  be a set corresponding to a r.v. X.
- $\mathcal{N}_n = \{1, 2, \cdots, n\}.$
- Universal set

$$\Omega = \bigcup_{i \in \mathcal{N}_n} \tilde{X}_i.$$

• Empty atom of  $\mathcal{F}_n$ 

$$A_0 = \bigcap_{i \in \mathcal{N}_n} \tilde{X}_i^c$$

- $\mathcal{A}$  is the set of other atoms of  $\mathcal{F}_n$ , called non-empty atoms.  $|\mathcal{A}| = 2^n 1$ .
- A signed measure  $\mu$  on  $\mathcal{F}_n$  is completely specified by the values of  $\mu$  on the nonempty atoms of  $\mathcal{F}_n$ .

**Notations** For nonempty subset G of  $\mathcal{N}_n$ :

- $X_G = (X_i, i \in G)$
- $\tilde{X}_G = \cup_{i \in G} \tilde{X}_i$

Theorem 3.6 Let

$$\mathcal{B} = \left\{ \tilde{X}_G : G \text{ is a nonempty subset of } \mathcal{N}_n \right\}.$$

Then a signed measure  $\mu$  on  $\mathcal{F}_n$  is completely specified by  $\{\mu(B), B \in \mathcal{B}\}$ , which can be any set of real numbers.

### Proof of Theorem 3.6

- $|\mathcal{A}| = |\mathcal{B}| = 2^n 1$
- **u** column *k*-vector of  $\mu(A), A \in \mathcal{A}$
- $\mathbf{h}$  column k-vector of  $\mu(B), B \in \mathcal{B}$
- Obviously can write  $\mathbf{h} = C_n \mathbf{u}$ , where  $C_n$  is a unique  $k \times k$  matrix.
- On the other hand, for each  $A \in \mathcal{A}$ ,  $\mu(A)$  can be expressed as a linear combination of  $\mu(B), B \in \mathcal{B}$  by applying

 $\mu(A \cap B - C) = \mu(A - C) + \mu(B - C) - \mu(A \cup B - C)$  $\mu(A - B) = \mu(A \cup B) - \mu(B).$ 

(see Appendix 3.A) That is,  $\mathbf{u} = D_n \mathbf{h}$ .

• Then  $\mathbf{u} = (D_n C_n)\mathbf{u}$ , showing that  $D_n = (C_n)^{-1}$  is unique.

### Two Lemmas

Lemma 3.7

$$\mu(A \cap B - C) = \mu(A \cup C) + \mu(B \cup C) - \mu(A \cup B \cup C) - \mu(C).$$

#### Lemma 3.8

$$I(X;Y|Z) = H(X,Z) + H(Y,Z) - H(X,Y,Z) - H(Z).$$

• Construct the *I*-Measure  $\mu^*$  on  $\mathcal{F}_n$  using by defining

$$\mu^*(\tilde{X}_G) = H(X_G)$$

for all nonempty subsets G of  $\mathcal{N}_n$ .

•  $\mu^*$  is meaningful if it is consistent with all Shannon's information measures via the substitution of symbols, i.e., the following must hold for all (not necessarily disjoint) subsets G, G', G'' of  $\mathcal{N}_n$  where G and G' are nonempty:

$$\mu^*(\tilde{X}_G \cap \tilde{X}_{G'} - \tilde{X}_{G''}) = I(X_G; X_{G'} | X_{G''})$$

• 
$$\underline{G'' = \emptyset}$$

$$\mu^*(\tilde{X}_G \cap \tilde{X}_{G'}) = I(X_G; X_{G'})$$

 $\underline{G = G'}$ 

$$\mu^*(\tilde{X}_G - \tilde{X}_{G^{\prime\prime}}) = H(X_G | X_{G^{\prime\prime}})$$

 $\underline{G = G' \text{ and } G'' = \emptyset}$   $\mu^*(\tilde{X}_G) = H(X_G)$ 

**Theorem 3.9**  $\mu^*$  is the unique signed measure on  $\mathcal{F}_n$  which is consistent with all Shannon's information measures.

#### Implications

- Can formally regard Shannon's information measures for n r.v.'s as the unique signed measure  $\mu^*$  defined on  $\mathcal{F}_n$ .
- Can employ set-theoretic tools to manipulate expressions of Shannon's information measures.

### Proof of Theorem 3.9

$$\mu^{*}(\tilde{X}_{G} \cap \tilde{X}_{G'} - \tilde{X}_{G''})$$

$$= \mu^{*}(\tilde{X}_{G \cup G''}) + \mu^{*}(\tilde{X}_{G' \cup G''}) - \mu^{*}(\tilde{X}_{G \cup G' \cup G''}) - \mu^{*}(\tilde{X}_{G''})$$

$$= H(X_{G \cup G''}) + H(X_{G' \cup G''}) - H(X_{G \cup G' \cup G''}) - H(X_{G''})$$

$$= I(X_{G}; X_{G'} | X_{G''}),$$

• In order that  $\mu^*$  is consistent with all Shannon's information measures,

$$\mu^*(\tilde{X}_G) = H(X_G)$$

for all nonempty subsets G of  $\mathcal{N}_n$ .

• Thus  $\mu^*$  is the unique signed measure on  $\mathcal{F}_n$  which is consistent with all Shannon's information measures.

### 3.4 $\mu^*$ can be Negative

- $\mu^*$  is nonnegative for n = 2.
- For n = 3,  $\mu^*(\tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3) = I(X_1; X_2; X_3)$  can be negative.

#### Example 3.10

- $X_1, X_2$  i.i.d. binary r.v.'s uniform on  $\{0, 1\}$
- $X_3 = X_1 + X_2 \mod 2$
- Easy to check:

 $- H(X_i) = 1$ , for all i

 $-X_1, X_2, X_3$  are pairwise independent, so that

 $H(X_i, X_j) = 2$  and  $I(X_i; X_j) = 0$ , for all  $i \neq j$ 

- Under these constraints,  $I(X_1; X_2; X_3) = -1$ .

### 3.5 Information Diagrams





The information diagram for Example 3.10



**Theorem 3.11** If there is no constraint on  $X_1, X_2, \dots, X_n$ , then  $\mu^*$  can take any set of nonnegative values on the nonempty atoms of  $\mathcal{F}_n$ .

#### Proof

• Let  $Y_A, A \in \mathcal{A}$  be mutually independent r.v.'s.

• Define 
$$X_i, i = 1, 2, \cdots, n$$
 by

$$X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).$$

• Claim: 
$$X_1, X_2, \dots, X_n$$
 so constructed induce the *I*-Measure  $\mu^*$  such that

$$\mu^*(A) = H(Y_A), \text{ for all } A \in \mathcal{A}.$$

which are arbitrary nonnegative numbers.

• Consider

$$H(X_G) = H(X_i, i \in G)$$
  
=  $H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G)$   
=  $H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G)$   
=  $\sum_{A \in \mathcal{A} : A \subset \tilde{X}_G} H(Y_A)$ 

• On the other hand,

$$H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A)$$

• Thus

$$\sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} H(Y_A) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A)$$

• One solution is

$$\mu^*(A) = H(Y_A), \text{ for all } A \in \mathcal{A}.$$

• By the uniqueness of  $\mu^*$ , this is the only solution.

### Information Diagrams for Markov Chains

- If  $X_1 \to X_2 \to \cdots \to X_n$  form a Markov chain, then the structure of  $\mu^*$  is much simpler and hence the information diagram can be simplified.
- For  $n = 3, X_1 \to X_2 \to X_3$  iff  $I(X_1; X_3 | X_2) = 0$ . So the atom  $\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2$  can be suppressed.
- The values of  $\mu^*$  on the remaining atoms correspond to Shannon's information measures and hence are nonnegative. In particular,

$$\mu^*(\tilde{X}_1; \tilde{X}_2; \tilde{X}_3) = \mu^*(\tilde{X}_1; \tilde{X}_3) = I(X_1; X_3)$$

• Thus,  $\mu^*$  is a measure.



• For n = 4,  $\mu^*$  vanishes on the following atoms:

$$\begin{split} \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3 \cap \tilde{X}_4^c \\ \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3 \cap \tilde{X}_4 \\ \tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3^c \cap \tilde{X}_4 \\ \tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4 \\ \tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4 \end{split}$$

- The information diagram can be displayed in two dimensions.
- The values of  $\mu^*$  on the remaining atoms correspond to Shannon's information measures and hence are nonnegative. Thus,  $\mu^*$  is a measure.



- For a general n, the information diagram can be displayed in two dimensions because certain atoms can be suppressed.
- The values of  $\mu^*$  on the remaining atoms correspond to Shannon's information measures and hence are nonnegative. Thus,  $\mu^*$  is a measure.
- See Ch. 12 for a detailed discussion in the context of Markov random field.



### 3.6 Examples of Applications

- To obtain information identities is WYSIWYG.
- To obtain information inequalities:

– If  $\mu^*$  is nonnegative, if  $A \subset B$ , then

 $\mu^*(A) \le \mu^*(B)$ 

because

$$\mu^*(A) \le \mu^*(A) + \mu^*(B - A) = \mu^*(B)$$

– If  $\mu^*$  is a signed measure, need to invoke the basic inequalities.

**Example 3.12 (Concavity of Entropy)** Let  $X_1 \sim p_1(x)$  and  $X_2 \sim p_2(x)$ . Let

$$X \sim p(x) = \lambda p_1(x) + \overline{\lambda} p_2(x),$$

where  $0 \leq \lambda \leq 1$  and  $\overline{\lambda} = 1 - \lambda$ . Show that

$$H(X) \ge \lambda H(X_1) + \overline{\lambda} H(X_2).$$



#### Example 3.13 (Convexity of Mutual Information) Let

 $(X,Y) \sim p(x,y) = p(x)p(y|x).$ 

Show that for fixed p(x), I(X;Y) is a convex functional of p(y|x).



Setup: I(X; Z) = 0.

Example 3.14 (Concavity of Mutual Information) Let

 $(X,Y) \sim p(x,y) = p(x)p(y|x).$ 

Show that for fixed p(y|x), I(X;Y) is a concave functional of p(x).



Setup:  $Z \to X \to Y$ .

### Shannon's Perfect Secrecy Theorem

- X plaintextY - ciphertextZ - key
- Perfect Secrecy: I(X;Y) = 0
- Decipherability: H(X|Y,Z) = 0
- These requirement implies  $H(Z) \ge H(X)$ , i.e., the length of the key is at least the same as the length of the plaintext. Lower bound achievable by "one-time pad".
- Shannon (1949) gave a combinatorial proof.
- Can readily be proved by an information diagram.

**Example 3.15 (Imperfect Secrecy Theorem)** Let X be the plain text, Y be the cipher text, and Z be the key in a secret key cryptosystem. Since X can be recovered from Y and Z, we have

H(X|Y,Z) = 0.

Show that this constraint implies

$$I(X;Y) \ge H(X) - H(Z).$$

**Remark** Do not need to make these assumptions about the scheme:

- H(Y|X,Z) = 0
- I(X;Z) = 0

**Example 3.17 (Data Processing Theorem)** If  $X \to Y \to Z \to T$ , then

• 
$$I(X;T) \le I(Y;Z)$$

• in fact

I(Y;Z) = I(X;T) + I(X;Z|T) + I(Y;T|X) + I(Y;Z|X,T)

**Example 3.18** If  $X \to Y \to Z \to T \to U$ , then

H(Y) + H(T) = I(Z; X, Y, T, U) + I(X, Y; T, U) + H(Y|Z) + H(T|Z)

- Very difficult to discover without an information diagram.
- Instrumental in proving an outer bound for the multiple description problem.

## Highlight of Ch. 12

- The *I*-Measure completely characterizes a class of Markov structures called full conditional independence.
- Markov random field is a special case.
- Markov chain is a special case of Markov random field.
- Analysis of these Markov structures becomes completely set-theoretic.

#### Example 12.22

$$\Pi_1 : \begin{cases} (X_1, X_2) \perp (X_3, X_4) \\ (X_1, X_3) \perp (X_2, X_4) \end{cases} \Rightarrow \Pi_2 : \begin{cases} (X_1, X_2, X_3) \perp X_4 \\ (X_1, X_2, X_4) \perp X_3 \end{cases}$$

- Each (conditional) independency forces  $\mu^*$  to vanish on the atoms in the corresponding set.
- E.g.,  $(X_1, X_2) \perp (X_3, X_4) \Leftrightarrow \mu^*$  vanishes on the atoms in  $(\tilde{X}_1 \cup \tilde{X}_2) \cap (\tilde{X}_3 \cup \tilde{X}_4).$

### Analysis of Example 12.12

 $\mu^*$  vanishes on atoms with a dot.



### Proving Information Inequalities

- Information inequalities that are implied by the basic inequalities are called Shannon-type inequalities.
- They can be proved by means of a linear program called ITIP (Information Theoretic Inequality Prover), developed on Matlab at CUHK (1996):

http://user-www.ie.cuhk.edu.hk/~ITIP/

• A version running on C called Xitip was developed at EPFL (2007):

http://xitip.epfl.ch/

• See Ch. 13 and 14 for discussion.

### **ITIP Examples**

- 1. >> ITIP('H(XYZ) <= H(X) + H(Y) + H(Z)')
  True</pre>
- 2. >> ITIP('I(X;Z) = 0','I(X;Z|Y) = 0','I(X;Y) = 0')
  True
- 3. >> ITIP('X/Y/Z/T', 'X/Y/Z', 'Y/Z/T')
  Not provable by ITIP
- 4. >> ITIP('I(Z;U) I(Z;U|X) I(Z;U|Y) <=
   0.5 I(X;Y) + 0.25 I(X;ZU) + 0.25 I(Y;ZU)')
   Not provable by ITIP</pre>
- #4 is a so-called non-Shannon-type inequalities which is valid but not implied by the basic inequalities. See Ch. 15 for discussion.