Chapter 3 The *I*-Measure

© Raymond W. Yeung 2010

Department of Information Engineering The Chinese University of Hong Kong

Substitution of Symbols

$$
H/I \leftrightarrow \mu^* \n, \leftrightarrow \cup \n; \leftrightarrow \cap \n| \leftrightarrow -
$$

- μ^* is some signed measure on \mathcal{F}_n .
- *•* Examples:

1.

$$
\mu^*(\tilde{X}_1 - \tilde{X}_2) = H(X_1|X_2) \n\mu^*(\tilde{X}_2 - \tilde{X}_1) = H(X_2|X_1), \n\mu^*(\tilde{X}_1 \cap \tilde{X}_2) = I(X_1; X_2)
$$

2. Inclusion-Exclusion formulation in set-theory

$$
\mu^*(\tilde{X}_1 \cup \tilde{X}_2) = \mu^*(\tilde{X}_1) + \mu^*(\tilde{X}_2) - \mu^*(\tilde{X}_1 \cap \tilde{X}_2)
$$

corresponds to

$$
H(X_1, X_2) = H(X_1) + H(X_2) - I(X_1; X_2)
$$

in information theory.

3.1 Preliminaries

Definition 3.1 The field \mathcal{F}_n generated by sets $\tilde{X}_1, \tilde{X}_2, \cdots, \tilde{X}_n$ is the collection of sets which can be obtained by any sequence of usual set operations (union, intersection, complement, and difference) on $\tilde{X}_1, \tilde{X}_2, \cdots, \tilde{X}_n$.

Definition 3.2 The atoms of \mathcal{F}_n are sets of the form $\bigcap_{i=1}^n Y_i$, where Y_i is either \tilde{X}_i or \tilde{X}_i^c , the complement of \tilde{X}_i .

Example 3.3

- The sets \tilde{X}_1 and \tilde{X}_2 generate the field \mathcal{F}_2 .
- There are 4 atoms in \mathcal{F}_2 .
- There are a total of 16 sets in \mathcal{F}_2

Definition 3.4 A real function μ defined on \mathcal{F}_n is called a signed measure if it is set-additive, i.e., for disjoint *A* and *B* in \mathcal{F}_n ,

$$
\mu(A \cup B) = \mu(A) + \mu(B).
$$

Remark $\mu(\emptyset) = 0$.

Example 3.5

• A signed measure μ on \mathcal{F}_2 is completely specified by the values on the atoms

 $\mu(\tilde{X}_1 \cap \tilde{X}_2)$, $\mu(\tilde{X}_1^c \cap \tilde{X}_2)$, $\mu(\tilde{X}_1^c \cap \tilde{X}_2^c)$, $\mu(\tilde{X}_1^c \cap \tilde{X}_2^c)$

• The value of μ on other sets in \mathcal{F}_2 are obtained by set-additivity.

Section 3.3 Construction of the *I*-Measure μ*

- Let \tilde{X} be a set corresponding to a r.v. X .
- $\mathcal{N}_n = \{1, 2, \cdots, n\}.$
- *•* Universal set

$$
\Omega = \bigcup_{i \in \mathcal{N}_n} \tilde{X}_i.
$$

• Empty atom of \mathcal{F}_n

$$
A_0 = \bigcap_{i \in \mathcal{N}_n} \tilde{X}_i^c
$$

- *A* is the set of other atoms of \mathcal{F}_n , called non-empty atoms. $|\mathcal{A}| = 2^n 1$.
- A signed measure μ on \mathcal{F}_n is completely specified by the values of μ on the nonempty atoms of \mathcal{F}_n .

Notations For nonempty subset *G* of \mathcal{N}_n :

- $X_G = (X_i, i \in G)$
- $\tilde{X}_G = \bigcup_{i \in G} \tilde{X}_i$

Theorem 3.6 Let

$$
\mathcal{B} = \left\{ \tilde{X}_G : G \text{ is a nonempty subset of } \mathcal{N}_n \right\}.
$$

Then a signed measure μ on \mathcal{F}_n is completely specified by $\{\mu(B), B \in \mathcal{B}\}\$, which can be any set of real numbers.

Proof of Theorem 3.6

- $|A| = |B| = 2^n 1$
- **u** column *k*-vector of $\mu(A), A \in \mathcal{A}$
- **h** column *k*-vector of $\mu(B), B \in \mathcal{B}$
- Obviously can write $\mathbf{h} = C_n \mathbf{u}$, where C_n is a *unique* $k \times k$ matrix.
- On the other hand, for each $A \in \mathcal{A}$, $\mu(A)$ can be expressed as a linear combination of $\mu(B), B \in \mathcal{B}$ by applying

 $\mu(A \cap B - C) = \mu(A - C) + \mu(B - C) - \mu(A \cup B - C)$ $\mu(A - B) = \mu(A \cup B) - \mu(B).$

(see Appendix 3.A) That is, $\mathbf{u} = D_n \mathbf{h}$.

• Then $\mathbf{u} = (D_n C_n)\mathbf{u}$, showing that $D_n = (C_n)^{-1}$ is unique.

Two Lemmas

Lemma 3.7

$$
\mu(A \cap B - C) = \mu(A \cup C) + \mu(B \cup C) - \mu(A \cup B \cup C) - \mu(C).
$$

Lemma 3.8

$$
I(X; Y|Z) = H(X, Z) + H(Y, Z) - H(X, Y, Z) - H(Z).
$$

• Construct the *I*-Measure μ^* on \mathcal{F}_n using by defining

$$
\mu^*(\tilde{X}_G)=H(X_G)
$$

for all nonempty subsets G of \mathcal{N}_n .

• µ[∗] is meaningful if it is consistent with all Shannon's information measures via the substitution of symbols, i.e., the following must hold for all (not necessarily disjoint) subsets G, G', G'' of \mathcal{N}_n where G and G' are nonempty:

$$
\mu^*(\tilde{X}_G \cap \tilde{X}_{G'} - \tilde{X}_{G''}) = I(X_G; X_{G'} | X_{G''})
$$

$$
\bullet \ \underline{G''} = \emptyset
$$

$$
\mu^*(\tilde{X}_G \cap \tilde{X}_{G'}) = I(X_G; X_{G'})
$$

 $G = G'$

$$
\mu^*(\tilde{X}_G-\tilde{X}_{G^{\prime\prime}})=H(X_G|X_{G^{\prime\prime}})
$$

 $G = G'$ and $G'' = \emptyset$ $\mu^*(\tilde{X}_G) = H(X_G)$ **Theorem 3.9** μ^* is the unique signed measure on \mathcal{F}_n which is consistent with all Shannon's information measures.

Implications

- *•* Can formally regard Shannon's information measures for *n* r.v.'s as the unique signed measure μ^* defined on \mathcal{F}_n .
- *•* Can employ set-theoretic tools to manipulate expressions of Shannon's information measures.

Proof of Theorem 3.9

$$
\mu^*(\tilde{X}_G \cap \tilde{X}_{G'} - \tilde{X}_{G''})
$$
\n
$$
= \mu^*(\tilde{X}_{G \cup G''}) + \mu^*(\tilde{X}_{G' \cup G''}) - \mu^*(\tilde{X}_{G \cup G' \cup G''}) - \mu^*(\tilde{X}_{G''})
$$
\n
$$
= H(X_{G \cup G''}) + H(X_{G' \cup G''}) - H(X_{G \cup G' \cup G''}) - H(X_{G''})
$$
\n
$$
= I(X_G; X_{G'} | X_{G''}),
$$

• In order that μ^* is consistent with all Shannon's information measures,

$$
\mu^*(\tilde{X}_G)=H(X_G)
$$

for all nonempty subsets G of \mathcal{N}_n .

•

• Thus μ^* is the unique signed measure on \mathcal{F}_n which is consistent with all Shannon's information measures.

3.4 μ* can be Negative

- μ^* is nonnegative for $n = 2$.
- For $n = 3$, $\mu^*(\tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3) = I(X_1; X_2; X_3)$ can be negative.

Example 3.10

- $X_1, X_2 \text{i.i.d. binary r.v.'s uniform on $\{0, 1\}$$
- $X_3 = X_1 + X_2 \text{ mod } 2$
- Easy to check:

 $-H(X_i) = 1$, for all *i*

 $-X_1, X_2, X_3$ are pairwise independent, so that

 $H(X_i, X_j) = 2$ and $I(X_i; X_j) = 0$, for all $i \neq j$

– Under these constraints, $I(X_1; X_2; X_3) = -1$.

3.5 Information Diagrams

The information diagram for Example 3.10

Theorem 3.11 If there is no constraint on X_1, X_2, \cdots, X_n , then μ^* can take any set of nonnegative values on the nonempty atoms of \mathcal{F}_n .

Proof

• Let $Y_A, A \in \mathcal{A}$ be mutually independent r.v.'s.

• Define
$$
X_i
$$
, $i = 1, 2, \dots, n$ by

$$
X_i = (Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i).
$$

• Claim:
$$
X_1, X_2, \dots, X_n
$$
 so constructed induce the *I*-Measure μ^* such that

$$
\mu^*(A) = H(Y_A), \text{ for all } A \in \mathcal{A}.
$$

which are arbitrary nonnegative numbers.

• Consider

$$
H(X_G) = H(X_i, i \in G)
$$

= $H((Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_i), i \in G)$
= $H(Y_A : A \in \mathcal{A} \text{ and } A \subset \tilde{X}_G)$
= $\sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} H(Y_A)$

• On the other hand,

$$
H(X_G) = \mu^*(\tilde{X}_G) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A)
$$

• Thus

$$
\sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} H(Y_A) = \sum_{A \in \mathcal{A}: A \subset \tilde{X}_G} \mu^*(A)
$$

• One solution is

$$
\mu^*(A) = H(Y_A), \text{ for all } A \in \mathcal{A}.
$$

• By the uniqueness of μ^* , this is the only solution.

Information Diagrams for Markov Chains

- If $X_1 \to X_2 \to \cdots \to X_n$ form a Markov chain, then the structure of μ^* is much simpler and hence the information diagram can be simplified.
- For $n = 3, X_1 \to X_2 \to X_3$ iff $I(X_1; X_3 | X_2) = 0$. So the atom $\tilde{X}_1 \cap \tilde{X}_3 \tilde{X}_2$ can be suppressed.
- The values of μ^* on the remaining atoms correspond to Shannon's information measures and hence are nonnegative. In particular,

$$
\mu^*(\tilde{X}_1; \tilde{X}_2; \tilde{X}_3) = \mu^*(\tilde{X}_1; \tilde{X}_3) = I(X_1; X_3)
$$

• Thus, *µ*[∗] is a measure.

• For $n = 4$, μ^* vanishes on the following atoms:

 $\tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3 \cap \tilde{X}_4^c$ $\tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3 \cap \tilde{X}_4$ $\tilde{X}_1 \cap \tilde{X}_2^c \cap \tilde{X}_3^c \cap \tilde{X}_4$ $\tilde{X}_1 \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4$ $\tilde{X}_1^c \cap \tilde{X}_2 \cap \tilde{X}_3^c \cap \tilde{X}_4$

- *•* The information diagram can be displayed in two dimensions.
- The values of μ^* on the remaining atoms correspond to Shannon's information measures and hence are nonnegative. Thus, μ^* is a measure.

- *•* For a general *n*, the information diagram can be displayed in two dimensions because certain atoms can be suppressed.
- The values of μ^* on the remaining atoms correspond to Shannon's information measures and hence are nonnegative. Thus, μ^* is a measure.
- See Ch. 12 for a detailed discussion in the context of Markov random field.

3.6 Examples of Applications

- *•* To obtain information identities is WYSIWYG.
- *•* To obtain information inequalities:

– If *µ*[∗] is nonnegative, if *A* ⊂ *B*, then

 $\mu^*(A) \leq \mu^*(B)$

because

$$
\mu^*(A) \le \mu^*(A) + \mu^*(B - A) = \mu^*(B)
$$

– If μ^* is a signed measure, need to invoke the basic inequalities.

Example 3.12 (Concavity of Entropy) Let $X_1 \sim p_1(x)$ and $X_2 \sim p_2(x)$. Let

$$
X \sim p(x) = \lambda p_1(x) + \bar{\lambda} p_2(x),
$$

where $0 \leq \lambda \leq 1$ and $\bar{\lambda} = 1 - \lambda$. Show that

$$
H(X) \ge \lambda H(X_1) + \overline{\lambda}H(X_2).
$$

Example 3.13 (Convexity of Mutual Information) Let

 $(X, Y) \sim p(x, y) = p(x)p(y|x).$

Show that for fixed $p(x)$, $I(X; Y)$ is a convex functional of $p(y|x)$.

Setup: $I(X; Z) = 0$.

Example 3.14 (Concavity of Mutual Information) Let

$$
(X,Y) \sim p(x,y) = p(x)p(y|x).
$$

Show that for fixed $p(y|x)$, $I(X; Y)$ is a concave functional of $p(x)$.

Setup: $Z \to X \to Y$.

Shannon's Perfect Secrecy Theorem

- *• X* plaintext *Y* – ciphertext $Z - \text{key}$
- Perfect Secrecy: $I(X;Y) = 0$
- Decipherability: $H(X|Y, Z) = 0$
- These requirement implies $H(Z) \ge H(X)$, i.e., the length of the key is at least the same as the length of the plaintext. Lower bound achievable by "one-time pad".
- Shannon (1949) gave a combinatorial proof.
- *•* Can readily be proved by an information diagram.

Example 3.15 (Imperfect Secrecy Theorem) Let *X* be the plain text, *Y* be the cipher text, and *Z* be the key in a secret key cryptosystem. Since *X* can be recovered from *Y* and *Z*, we have

 $H(X|Y,Z)=0.$

Show that this constraint implies

$$
I(X;Y) \ge H(X) - H(Z).
$$

Remark Do not need to make these assumptions about the scheme:

- $H(Y|X,Z) = 0$
- $I(X; Z) = 0$

Example 3.17 (Data Processing Theorem) If $X \to Y \to Z \to T$, then

$$
\bullet \ \ I(X;T) \leq I(Y;Z)
$$

• in fact

 $I(Y; Z) = I(X; T) + I(X; Z|T) + I(Y; T|X) + I(Y; Z|X, T)$

Example 3.18 If $X \to Y \to Z \to T \to U$, then

 $H(Y) + H(T) = I(Z; X, Y, T, U) + I(X, Y; T, U) + H(Y|Z) + H(T|Z)$

- *•* Very difficult to discover without an information diagram.
- *•* Instrumental in proving an outer bound for the multiple description problem.

Highlight of Ch. 12

- *•* The *I*-Measure completely characterizes a class of Markov structures called full conditional independence.
- Markov random field is a special case.
- *•* Markov chain is a special case of Markov random field.
- *•* Analysis of these Markov structures becomes completely set-theoretic.

Example 12.22

$$
\Pi_1 : \left\{ \begin{array}{l} (X_1, X_2) \perp (X_3, X_4) \\ (X_1, X_3) \perp (X_2, X_4) \end{array} \right\} \Rightarrow \Pi_2 : \left\{ \begin{array}{l} (X_1, X_2, X_3) \perp X_4 \\ (X_1, X_2, X_4) \perp X_3 \end{array} \right.
$$

- *•* Each (conditional) independency forces *µ*[∗] to vanish on the atoms in the corresponding set.
- E.g., $(X_1, X_2) \perp (X_3, X_4) \Leftrightarrow \mu^*$ vanishes on the atoms in $(\tilde{X}_1 \cup \tilde{X}_2) \cap$ $(X_3 \cup X_4).$

Analysis of Example 12.12

 μ^* vanishes on atoms with a dot.

Proving Information Inequalities

- Information inequalities that are implied by the basic inequalities are called Shannon-type inequalities.
- They can be proved by means of a linear program called **ITIP** (Information Theoretic Inequality Prover), developed on Matlab at CUHK (1996):

http://user-www.ie.cuhk.edu.hk/∼ITIP/

• A version running on C called Xitip was developed at EPFL (2007):

http://xitip.epfl.ch/

• See Ch. 13 and 14 for discussion.

ITIP Examples

- 1. >> $ITIP('H(XYZ) \leq H(X) + H(Y) + H(Z)')$ True
- 2. >> ITIP('I(X;Z) = 0','I(X;Z|Y) = 0','I(X;Y) = 0') True
- 3. >> ITIP('X/Y/Z/T', 'X/Y/Z', 'Y/Z/T') Not provable by ITIP
- 4. >> ITIP('I(Z;U) I(Z;U|X) I(Z;U|Y) <= 0.5 $I(X;Y)$ + 0.25 $I(X;ZU)$ + 0.25 $I(Y;ZU)$ ') Not provable by ITIP
- $\#4$ is a so-called non-Shannon-type inequalities which is valid but not implied by the basic inequalities. See Ch. 15 for discussion.