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An Example

X 1 X 2 H (         ) , 

X 1 X 2 H (         ) 
X 1 X 2 H (         ) 

X 2 X 1 I (         ) ; 

X 1 H (    ) 
2 X H (      ) 



Substitution of Symbols

H/I ↔ µ∗

, ↔ ∪
; ↔ ∩
| ↔ −

• µ∗ is some signed measure on Fn.

• Examples:

1.

µ∗(X̃1 − X̃2) = H(X1|X2)
µ∗(X̃2 − X̃1) = H(X2|X1),
µ∗(X̃1 ∩ X̃2) = I(X1;X2)



2. Inclusion-Exclusion formulation in set-theory

µ∗(X̃1 ∪ X̃2) = µ∗(X̃1) + µ∗(X̃2)− µ∗(X̃1 ∩ X̃2)

corresponds to

H(X1, X2) = H(X1) + H(X2)− I(X1;X2)

in information theory.



3.1 Preliminaries

Definition 3.1 The field Fn generated by sets X̃1, X̃2, · · · , X̃n is the collection
of sets which can be obtained by any sequence of usual set operations (union,
intersection, complement, and difference) on X̃1, X̃2, · · · , X̃n.

Definition 3.2 The atoms of Fn are sets of the form ∩n
i=1Yi, where Yi is either

X̃i or X̃c
i , the complement of X̃i.

Example 3.3

• The sets X̃1 and X̃2 generate the field F2.

• There are 4 atoms in F2.

• There are a total of 16 sets in F2



Definition 3.4 A real function µ defined on Fn is called a signed measure if
it is set-additive, i.e., for disjoint A and B in Fn,

µ(A ∪B) = µ(A) + µ(B).

Remark µ(∅) = 0.



Example 3.5

X 1 

X 2 

• A signed measure µ on F2 is completely specified by the values on the
atoms

µ(X̃1 ∩ X̃2), µ(X̃c
1 ∩ X̃2), µ(X̃1 ∩ X̃c

2), µ(X̃c
1 ∩ X̃c

2)

• The value of µ on other sets in F2 are obtained by set-additivity.



Section 3.3 
Construction of the I-Measure μ*

• Let X̃ be a set corresponding to a r.v. X.

• Nn = {1, 2, · · · , n}.

• Universal set
Ω =

⋃

i∈Nn

X̃i.

• Empty atom of Fn

A0 =
⋂

i∈Nn

X̃c
i

• A is the set of other atoms of Fn, called non-empty atoms. |A| = 2n − 1.

• A signed measure µ on Fn is completely specified by the values of µ on
the nonempty atoms of Fn.



Notations For nonempty subset G of Nn:

• XG = (Xi, i ∈ G)

• X̃G = ∪i∈GX̃i

Theorem 3.6 Let

B =
{

X̃G : G is a nonempty subset of Nn

}
.

Then a signed measure µ on Fn is completely specified by {µ(B), B ∈ B}, which
can be any set of real numbers.



Proof of Theorem 3.6

• |A| = |B| = 2n − 1

• u – column k-vector of µ(A), A ∈ A

• h – column k-vector of µ(B), B ∈ B

• Obviously can write h = Cnu, where Cn is a unique k × k matrix.

• On the other hand, for each A ∈ A, µ(A) can be expressed as a linear
combination of µ(B), B ∈ B by applying

µ(A ∩B − C) = µ(A− C) + µ(B − C)− µ(A ∪B − C)
µ(A−B) = µ(A ∪B)− µ(B).

(see Appendix 3.A) That is, u = Dnh.

• Then u = (DnCn)u, showing that Dn = (Cn)−1 is unique.



Two Lemmas

Lemma 3.7

µ(A ∩B − C) = µ(A ∪ C) + µ(B ∪ C)− µ(A ∪B ∪ C)− µ(C).

Lemma 3.8

I(X;Y |Z) = H(X, Z) + H(Y, Z)−H(X, Y, Z)−H(Z).



• Construct the I-Measure µ∗ on Fn using by defining

µ∗(X̃G) = H(XG)

for all nonempty subsets G of Nn.

• µ∗ is meaningful if it is consistent with all Shannon’s information mea-
sures via the substitution of symbols, i.e., the following must hold for
all (not necessarily disjoint) subsets G, G′, G′′ of Nn where G and G′ are
nonempty:

µ∗(X̃G ∩ X̃G′ − X̃G′′) = I(XG;XG′ |XG′′)

• G′′ = ∅
µ∗(X̃G ∩ X̃G′) = I(XG;XG′)

G = G′

µ∗(X̃G − X̃G′′) = H(XG|XG′′)

G = G′ and G′′ = ∅
µ∗(X̃G) = H(XG)



Theorem 3.9 µ∗ is the unique signed measure on Fn which is consistent with
all Shannon’s information measures.

Implications

• Can formally regard Shannon’s information measures for n r.v.’s as the
unique signed measure µ∗ defined on Fn.

• Can employ set-theoretic tools to manipulate expressions of Shannon’s
information measures.



Proof of Theorem 3.9

•

µ∗(X̃G ∩ X̃G′ − X̃G′′)
= µ∗(X̃G∪G′′) + µ∗(X̃G′∪G′′)− µ∗(X̃G∪G′∪G′′)− µ∗(X̃G′′)
= H(XG∪G′′) + H(XG′∪G′′)−H(XG∪G′∪G′′)−H(XG′′)
= I(XG;XG′ |XG′′),

• In order that µ∗ is consistent with all Shannon’s information measures,

µ∗(X̃G) = H(XG)

for all nonempty subsets G of Nn.

• Thus µ∗ is the unique signed measure on Fn which is consistent with all
Shannon’s information measures.



3.4 μ* can be Negative
• µ∗ is nonnegative for n = 2.

• For n = 3, µ∗(X̃1 ∩ X̃2 ∩ X̃3) = I(X1;X2;X3) can be negative.

Example 3.10

• X1, X2 – i.i.d. binary r.v.’s uniform on {0, 1}

• X3 = X1 + X2 mod 2

• Easy to check:

– H(Xi) = 1, for all i

– X1, X2, X3 are pairwise independent, so that

H(Xi, Xj) = 2 and I(Xi;Xj) = 0, for all i "= j

– Under these constraints, I(X1;X2;X3) = −1.



3.5 Information Diagrams

X 1 

X 1 X 2 H (          ) 

X 1 H (    ) 

X 2 

X 3 

X 1 I (          ) ; X 3 

; ; X 1 I (                ) X 3 X 2 

; X 1 I X 3 X 2 (                ) 

, X 3 X 2 X 1 H (                ) 



0 

0 0 

1 1 

1 

1 

X 1 

X 2 

X 
3 

The information diagram for Example 3.10



X 
1 

X 
2 

X 
3 

X 
4 



Theorem 3.11 If there is no constraint on X1, X2, · · · , Xn, then µ∗ can take
any set of nonnegative values on the nonempty atoms of Fn.

Proof

• Let YA, A ∈ A be mutually independent r.v.’s.

• Define Xi, i = 1, 2, · · · , n by

Xi = (YA : A ∈ A and A ⊂ X̃i).

• Claim: X1, X2, · · · , Xn so constructed induce the I-Measure µ∗ such that

µ∗(A) = H(YA), for all A ∈ A.

which are arbitrary nonnegative numbers.



• Consider

H(XG) = H(Xi, i ∈ G)
= H((YA : A ∈ A and A ⊂ X̃i), i ∈ G)
= H(YA : A ∈ A and A ⊂ X̃G)

=
∑

A∈A:A⊂X̃G

H(YA)

• On the other hand,

H(XG) = µ∗(X̃G) =
∑

A∈A:A⊂X̃G

µ∗(A)

• Thus ∑

A∈A:A⊂X̃G

H(YA) =
∑

A∈A:A⊂X̃G

µ∗(A)

• One solution is
µ∗(A) = H(YA), for all A ∈ A.

• By the uniqueness of µ∗, this is the only solution.



Information Diagrams for 
Markov Chains

• If X1 → X2 → · · · → Xn form a Markov chain, then the structure of µ∗

is much simpler and hence the information diagram can be simplified.

• For n = 3, X1 → X2 → X3 iff I(X1;X3|X2) = 0. So the atom X̃1∩X̃3−X̃2

can be suppressed.

• The values of µ∗ on the remaining atoms correspond to Shannon’s infor-
mation measures and hence are nonnegative. In particular,

µ∗(X̃1; X̃2; X̃3) = µ∗(X̃1; X̃3) = I(X1;X3)

• Thus, µ∗ is a measure.



X 
3 

X 
1 

X 
2 



• For n = 4, µ∗ vanishes on the following atoms:

X̃1 ∩ X̃c
2 ∩ X̃3 ∩ X̃c

4

X̃1 ∩ X̃c
2 ∩ X̃3 ∩ X̃4

X̃1 ∩ X̃c
2 ∩ X̃c

3 ∩ X̃4

X̃1 ∩ X̃2 ∩ X̃c
3 ∩ X̃4

X̃c
1 ∩ X̃2 ∩ X̃c

3 ∩ X̃4

• The information diagram can be displayed in two dimensions.

• The values of µ∗ on the remaining atoms correspond to Shannon’s infor-
mation measures and hence are nonnegative. Thus, µ∗ is a measure.



X 
1 

X 
4 

X 
3 

X 
2 



... 

X 
1 

X 
2 

X 
n -1 

X 
n 

• For a general n, the information diagram can be displayed in two dimen-
sions because certain atoms can be suppressed.

• The values of µ∗ on the remaining atoms correspond to Shannon’s infor-
mation measures and hence are nonnegative. Thus, µ∗ is a measure.

• See Ch. 12 for a detailed discussion in the context of Markov random field.



3.6 Examples of Applications

• To obtain information identities is WYSIWYG.

• To obtain information inequalities:

– If µ∗ is nonnegative, if A ⊂ B, then

µ∗(A) ≤ µ∗(B)

because
µ∗(A) ≤ µ∗(A) + µ∗(B −A) = µ∗(B)

– If µ∗ is a signed measure, need to invoke the basic inequalities.



Example 3.12 (Concavity of Entropy) Let X1 ∼ p1(x) and X2 ∼ p2(x).
Let

X ∼ p(x) = λp1(x) + λ̄p2(x),

where 0 ≤ λ ≤ 1 and λ̄ = 1− λ. Show that

H(X) ≥ λH(X1) + λ̄H(X2).

X 

Z  = 1 

Z  = 2 

X 
1 

X 
2 



Example 3.13 (Convexity of Mutual Information) Let

(X, Y ) ∼ p(x, y) = p(x)p(y|x).

Show that for fixed p(x), I(X;Y ) is a convex functional of p(y|x).

Y X 

Z  =  1 

Z  =  2 

p 
2 (       ) y x 

p 
1 (       ) y x 

Setup: I(X;Z) = 0.



Example 3.14 (Concavity of Mutual Information) Let

(X, Y ) ∼ p(x, y) = p(x)p(y|x).

Show that for fixed p(y|x), I(X;Y ) is a concave functional of p(x).

X 
Y p ( y | x ) 

Z =1 

p 
1 
( x ) 

Z =2 

p 
2 
( x ) 

Setup: Z → X → Y .



Shannon’s Perfect Secrecy Theorem

• X – plaintext
Y – ciphertext
Z – key

• Perfect Secrecy: I(X;Y ) = 0

• Decipherability: H(X|Y,Z) = 0

• These requirement implies H(Z) ≥ H(X), i.e., the length of the key is at
least the same as the length of the plaintext. Lower bound achievable by
“one-time pad”.

• Shannon (1949) gave a combinatorial proof.

• Can readily be proved by an information diagram.



Example 3.15 (Imperfect Secrecy Theorem) Let X be the plain text, Y
be the cipher text, and Z be the key in a secret key cryptosystem. Since X can
be recovered from Y and Z, we have

H(X|Y,Z) = 0.

Show that this constraint implies

I(X;Y ) ≥ H(X)−H(Z).

Remark Do not need to make these assumptions about the scheme:

• H(Y |X, Z) = 0

• I(X;Z) = 0



Example 3.17 (Data Processing Theorem) If X → Y → Z → T , then

• I(X;T ) ≤ I(Y ;Z)

• in fact

I(Y ;Z) = I(X;T ) + I(X;Z|T ) + I(Y ;T |X) + I(Y ;Z|X, T )



Example 3.18 If X → Y → Z → T → U , then

H(Y ) + H(T ) = I(Z;X, Y, T, U) + I(X,Y ;T, U) + H(Y |Z) + H(T |Z)

• Very difficult to discover without an information diagram.

• Instrumental in proving an outer bound for the multiple description prob-
lem.



Highlight of Ch. 12
• The I-Measure completely characterizes a class of Markov structures called

full conditional independence.

• Markov random field is a special case.

• Markov chain is a special case of Markov random field.

• Analysis of these Markov structures becomes completely set-theoretic.

Example 12.22

Π1 :
{

(X1, X2) ⊥ (X3, X4)
(X1, X3) ⊥ (X2, X4)

⇒ Π2 :
{

(X1, X2, X3) ⊥ X4

(X1, X2, X4) ⊥ X3

• Each (conditional) independency forces µ∗ to vanish on the atoms in the
corresponding set.

• E.g., (X1, X2) ⊥ (X3, X4) ⇔ µ∗ vanishes on the atoms in (X̃1 ∪ X̃2) ∩
(X̃3 ∪ X̃4).



Analysis of Example 12.12

µ∗ vanishes on atoms with a dot.

X 
1 

X 
2 

X 
3 

X 
4 

X 
1 

X 
2 

X 
3 

X 
4 

Π1 Π2⇒



Proving Information Inequalities

• Information inequalities that are implied by the basic inequalities are
called Shannon-type inequalities.

• They can be proved by means of a linear program called ITIP (Information
Theoretic Inequality Prover), developed on Matlab at CUHK (1996):

http://user-www.ie.cuhk.edu.hk/∼ITIP/

• A version running on C called Xitip was developed at EPFL (2007):

http://xitip.epfl.ch/

• See Ch. 13 and 14 for discussion.



ITIP Examples

1. >> ITIP(’H(XYZ) <= H(X) + H(Y) + H(Z)’)
True

2. >> ITIP(’I(X;Z) = 0’,’I(X;Z|Y) = 0’,’I(X;Y) = 0’)
True

3. >> ITIP(’X/Y/Z/T’, ’X/Y/Z’, ’Y/Z/T’)
Not provable by ITIP

4. >> ITIP(’I(Z;U) - I(Z;U|X) - I(Z;U|Y) <=
0.5 I(X;Y) + 0.25 I(X;ZU) + 0.25 I(Y;ZU)’)
Not provable by ITIP

• #4 is a so-called non-Shannon-type inequalities which is valid but not
implied by the basic inequalities. See Ch. 15 for discussion.


