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Preamble

• In a physical communication system, the input and output of a channel
often take continuous real values.

• A waveform channel is one which takes transmission in continuous time.
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11.1 Discrete-Time Channels
Definition 11.1 Let f(y|x) be a conditional pdf defined for all x, where

−
∫

SY (x)
f(y|x) log f(y|x)dy <∞

for all x. A discrete-time continuous channel f(y|x) is a system with input
random variable X and output random variable Y such that Y is related to X
through f(y|x) (cf. Definition 10.22).

Remark The integral in Definition 11.1 is precisely the conditional differential
entropy h(Y |X = x), which is required to be finite.

Definition 11.2 Let α : # × # → #, and Z be a real random variable, called
the noise variable . A discrete-time continuous channel (α, Z) is a system with
a real input and a real output. For any input random variable X, the noise
random variable Z is independent of X, and the output random variable Y is
given by

Y = α(X, Z).
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Definition 11.3 Two continuous channels f(y|x) and (α, Z) are equivalent if
for every input distribution F (x),

Pr{α(X, Z) ≤ y, X ≤ x} =
∫ x

−∞

∫ y

−∞
fY |X(v|u)dv dFX(u)

for all x and y.

Remarks

1. Definition 11.2 is more general than Definition 11.1 because the former
does not require the existence of f(y|x).

2. We confine our discussion to channels defined by Definition 11.1.
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Definition 11.4 (CMC I) A continuous memoryless channel (CMC) f(y|x) is
a sequence of replicates of a generic continuous channel f(y|x). These continuous
channels are indexed by a discrete-time index i, where i ≥ 1, with the ith channel
being available for transmission at time i. Transmission through a channel is
assumed to be instantaneous. Let Xi and Yi be respectively the input and the
output of the CMC at time i, and let Ti− denote all the random variables that
are generated in the system before Xi. The Markov chain Ti− → Xi → Yi holds,
and

Pr{Yi ≤ y, Xi ≤ x} =
∫ x

−∞

∫ y

−∞
fY |X(v|u)dv dFXi(u).

Definition 11.5 (CMC II) A continuous memoryless channel (α, Z) is a
sequence of replicates of a generic continuous channel (α, Z). These continuous
channels are indexed by a discrete-time index i, where i ≥ 1, with the ith
channel being available for transmission at time i. Transmission through a
channel is assumed to be instantaneous. Let Xi and Yi be respectively the
input and the output of the CMC at time i, and let Ti− denote all the random
variables that are generated in the system before Xi. The noise variable Zi

for the transmission at time i is a copy of the generic noise variable Z, and is
independent of (Xi, Ti−). The output of the CMC at time i is given by

Yi = α(Xi, Zi).
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Definition 11.6 Let κ be a real function. An average input constraint (κ, P )
for a CMC is the requirement that for any codeword (x1, x2, · · · , xn) transmitted
over the channel,

1
n

n∑

i=1

κ(xi) ≤ P

Definition 11.7 The capacity of a continuous memoryless channel f(y|x) with
input constraint (κ, P ) is defined as

C(P ) = sup
F (x):Eκ(X)≤P

I(X;Y )
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Theorem 11.8 C(P ) is non-decreasing, concave, and left-continuous.

Proof

1. Non-decreasing – Immediate.

2. Concave – A consequence of the the concavity of mutual information with
respect to the input distribution.

3. Left-continuous – A consequence of concavity.

Remarks

1. C(P ) is also right-continous (a consequence of concavity) but requires a
separate proof.

2. This property of C(P ) is not used in this chapter.
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11.2 The Channel Coding Theorem
Definition 11.9 An (n, M) code for a continuous memoryless channel with
input constraint (κ, P ) is defined by an encoding function

e : {1, 2, · · · , M}→" n

and a decoding function

g : "n → {1, 2, · · · , M}.

The set {1, 2, · · · , M}, denoted by W, is called the message set. The sequences
e(1), e(2), · · · , e(M) in "n are called codewords, and the set of codewords is
called the codebook. Moreover,

1
n

n∑

i=1

κ(xi(w)) ≤ P for 1 ≤ w ≤M,

where e(w) = (x1(w), x2(w), · · · , xn(w)), i.e., each codeword satisfies the input
power constraint.
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Assumptions and Notations

• W is randomly chosen from the message set W, so H(W ) = log M .

• X = (X1, X2, · · · , Xn); Y = (Y1, Y2, · · · , Yn)

• Thus X = e(W ).

• Let Ŵ = g(Y) be the estimate on the message W by the decoder.
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Error Probabilities

Definition 11.10 For all 1 ≤ w ≤M , let

λw = Pr{Ŵ "= w|W = w} =
∫

{y∈Yn:g(y) "=w}
fY|X(y|e(w))dy

be the conditional probability of error given that the message is w.

Definition 11.11 The maximal probability of error of an (n, M) code is defined
as

λmax = max
w

λw.

Definition 11.12 The average probability of error of an (n, M) code is defined
as

Pe = Pr{Ŵ "= W}.

Saturday, 4 December 2010



Definition 11.13 A rate R is (asymptotically) achievable for a continuous
memoryless channel if for any ε > 0, there exists for sufficiently large n an
(n, M) code such that

1
n

log M > R− ε

and
λmax < ε

Theorem 11.14 A rate R is achievable for a continuous memoryless channel
if and only if R ≤ C, the capacity of the channel.

Saturday, 4 December 2010



11.3.1 The Converse

• First establish the Markov chain W → X→ Y → Ŵ .

• W, Ŵ – discrete

• X – real but discrete

• Y – real and continuous

Lemma 11.15 (Data Processing Theorem)

I(W ; Ŵ ) ≤ I(X;Y)
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Converse Proof
• Let R be an achievable rate, i.e., for any ε > 0, there exists for sufficiently

large n and (n, M) code such that

1
n

log M > R− ε and λmax < ε.

• Consider

log M = H(W )
= H(W |Ŵ ) + I(W ; Ŵ )
≤ H(W |Ŵ ) + I(X;Y)
= H(W |Ŵ ) + h(Y)− h(Y|X)

≤ H(W |Ŵ ) +
n∑

i=1

h(Yi)− h(Y|X)

= H(W |Ŵ ) +
n∑

i=1

h(Yi)−
n∑

i=1

h(Yi|Xi)

= H(W |Ŵ ) +
n∑

i=1

I(Xi;Yi)
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• Let V be a mixing random variable distributed uniformly on {1, 2, · · · , n}
which is independent of Xi, 1 ≤ i ≤ n.

• Let X = XV and Y be the output of the channel with X being the input.

• Then

Eκ(X) = EE[κ(X)|V ]

=
n∑

i=1

Pr{V = i}E[κ(X)|V = i]

=
n∑

i=1

Pr{V = i}E[κ(Xi)|V = i]

=
n∑

i=1

1
n

Eκ(Xi)

= E

[
1
n

n∑

i=1

κ(Xi)

]

≤ P
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• By the concavity of mutual information with respect to the input distri-
bution,

1
n

n∑

i=1

I(Xi;Yi) ≤ I(X;Y ) ≤ C

• The second inequality above follows because X satisfies Eκ(X) ≤ P as
shown.

• It follows that
log M ≤ H(W |Ŵ ) + nC

• The proof is completed by invoking Fano’s inequality.
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11.3.2 Achievability

Remarks

1. In the formula
C(P ) = sup

F (x):Eκ(X)≤P
I(X;Y )

X may not have a pdf, so it is difficult to consider sequences typical w.r.t.
F (x).

2. Need a new notion of joint typicality.

3. Recall that for any input distribution F (x), f(y) exists as long as f(y|x)
exists. Hence

I(X;Y ) = E

[
log

f(y|x)
f(y)

]
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Mutual Typicality
Definition 11.16 The mutually typical set Ψn

[XY ]δ with respect to F (x, y) is
the set of (x,y) ∈ Xn × Yn such that

∣∣∣∣
1
n

log
f(y|x)
f(y)

− I(X;Y )
∣∣∣∣ ≤ δ,

where

f(y|x) =
n∏

i=1

f(yi|xi)

and

f(y) =
n∏

i=1

f(yi),

and δ is an arbitrarily small positive number. A pair of sequences (x,y) is called
mutually δ-typical if it is in Ψn

[XY ]δ.
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Proof

1.
1
n

log
f(Y|X)
f(Y)

=
1
n

log
n∏

i=1

f(Yi|Xi)
f(Yi)

=
1
n

n∑

i=1

log
f(Yi|Xi)

f(Yi)

2. By WLLN,

1
n

n∑

i=1

log
f(Yi|Xi)

f(Yi)
→ E log

f(Y |X)
f(Y )

= I(X;Y )

in probability.
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Lemma 11.18 Let (X′,Y′) be n i.i.d. copies of a pair of generic random
variables (X ′, Y ′), where X ′ and Y ′ are independent and have the same marginal
distributions as X and Y , respectively. Then

Pr{(X′,Y′) ∈ Ψn
[XY ]δ} ≤ 2−n(I(X;Y )−δ).

Proof

•
∣∣∣∣
1
n

log
f(y|x)
f(y)

− I(X;Y )
∣∣∣∣ ≤ δ ⇒ 1

n
log

f(y|x)
f(y)

≥ I(X;Y )− δ

⇒ f(y|x) ≥ f(y)2n(I(X;Y )−δ)
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• Then

1 ≥ Pr{(X,Y) ∈ Ψn
[XY ]δ)}

=
∫ ∫

Ψn
[XY ]δ

f(y|x)dF (x) dy

≥ 2n(I(X;Y )−δ)

∫ ∫

Ψn
[XY ]δ

f(y)dF (x) dy

= 2n(I(X;Y )−δ)Pr{(X′,Y′) ∈ Ψn
[XY ]δ}

• Hence
Pr{(X′,Y′) ∈ Ψn

[XY ]δ} ≤ 2−n(I(X;Y )−δ)
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Random Coding Scheme
• Since C(P ) is left-continuous, there exists γ > 0 such that

C(P − γ) > C(P )− ε

6

• By the definition of C(P − γ), there exists an input random variable X
such that

Eκ(X) ≤ P − γ and I(X;Y ) ≥ C(P − γ)− ε

6

• Choose for a sufficiently large n an even integer M satisfying

I(X;Y )− ε

6
<

1
n

log M < I(X;Y )− ε

8

• Then
1
n

log M > I(X;Y )− ε

6
≥ C(P − γ)− ε

3
> C(P )− ε

2
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The random coding scheme:

1. Construct the codebook C of an (n, M) code randomly by generating M
codewords in !n independently and identically according to F (x)n. De-
note these codewords by X̃(1), X̃(2), · · · , X̃(M).

2. Reveal the codebook C to both the encoder and the decoder.

3. A message W is chosen from W uniformly.

4. The sequence X = X̃(W ) is transmitted through the channel.

5. The channel outputs a sequence Y according to

Pr{Yi ≤ yi, 1 ≤ i ≤ n|X(W ) = x} =
n∏

i=1

∫ yi

−∞
f(y|xi)dy.

6. The sequence Y is decoded to the message w if (X(w),Y) ∈ Ψn
[XY ]δ and

there does not exist w′ $= w such that (X(w′),Y) ∈ Ψn
[XY ]δ. Otherwise,

Y is decoded to a constant message in W. Denote by Ŵ the message to
which Y is decoded.
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Performance Analysis
• Let X̃(w) = (X̃1(w), X̃2(w), · · · , X̃n(w)).

• Define the error event Err = Ee ∪ Ed, where

Ee =

{
1
n

n∑

i=1

κ(X̃i(W )) > P

}
and Ed = {Ŵ "= W}

•

Pr{Err} = Pr{Err|W = 1}
≤ Pr{Ee|W = 1} + Pr{Ed|W = 1}

• Choose δ to be small to make

Pr{Ed|W = 1} ≤ ε

4

for sufficiently large n.
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• By WLLN, for sufficiently large n,

Pr{Ee|W = 1} = Pr

{
1
n

n∑

i=1

κ(X̃i(1)) > P

∣∣∣∣∣ W = 1

}

= Pr

{
1
n

n∑

i=1

κ(X̃i(1)) > P

}

= Pr

{
1
n

n∑

i=1

κ(X̃i(1)) > (P − γ) + γ

}

≤ Pr

{
1
n

n∑

i=1

κ(X̃i(1)) > Eκ(X) + γ

}

≤ ε

4

• So,
Pr{Err} ≤ ε

2
which implies for some codebook C∗,

Pr{Err|C∗} ≤ ε

2
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• Rank the codewords in C∗ in ascending order according to Pr{Err|C∗, W =
w}.

• After discarding the worst half of the codewords in C∗, if a codeword X̃(w)
remains in C∗, then

Pr{Err|C∗, W = w} ≤ ε

• However, it is not clear whether X̃(w) satisfies both λw ≤ ε and the input
power constraint.

• Since Err = Ee ∪ Ed, we have

λw = Pr{Ed|C∗, W = w} ≤ ε

and
Pr{Ee|C∗, W = w} ≤ ε

• Observe that conditioning on {C∗, W = w}, the codeword X̃(w) is deter-
ministic, so either Pr{Ee|C∗, W = w} = 0 or 1. Therefore, Pr{Ee|C∗, W =
w} = 0.
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11.4 Memoryless Gaussian Channel
The Gaussian channel is the most commonly used model for a noisy channel
with real input and output, because:

1. the Gaussian channel is highly analytically tractable

2. the Gaussian noise can be regarded as the worst kind of additive noise
subject to a constraint on the noise power.

Definition 11.19 (Gaussian Channel) A Gaussian channel with noise en-
ergy N is a continuous channel with the following two equivalent specifications:

1. f(y|x) = 1√
2πN

e−
(y−x)2

2N .

2. Z ∼ N (0, N) and α(X, Z) = X + Z.

Definition 11.20 (Memoryless Gaussian Channel) A memoryless Gaus-
sian channel with noise power N and input power constraint P is a memoryless
continuous channel with the generic continuous channel being the Gaussian
channel with noise energy N . The input power constraint P refers to the input
constraint (κ, P ) with κ(x) = x2.
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Theorem 11.21 (Capacity of a Memoryless Gaussian Channel) The
capacity of a memoryless Gaussian channel with noise power N and input power
constraint P is

1
2

log
(

1 +
P

N

)
.

The capacity is achieved by the input distribution N (0, P ).

Remarks

• The capacity of a memoryless Gaussian channel depends only on P/N ,
called the signal-to-noise ratio.

• The capacity is strictly positive no matter how small P/N is.

• The capacity is infinite if there is no input power constraint.

Lemma 11.22 Let Y = X + Z. Then h(Y |X) = h(Z|X) provided that
fZ|X(z|x) exists for all x ∈ SX .
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Proof of Lemma 11.22

• fY |X(y|x) = fZ|X(y − x|x) exists.

• Then h(Y |X = x) is defined, and

h(Y |X) =
∫

h(Y |X = x)dFX(x)

=
∫

h(X + Z|X = x)dFX(x)

=
∫

h(x + Z|X = x)dFX(x)

=
∫

h(Z|X = x)dFX(x)

= h(Z|X)
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Proof of Theorem 11.21

• Let F (x) be the CDF of the input random variable X such that EX2 ≤ P ,
where X is not necessarily continuous.

• Since Z ∼ N (0, N), f(y|x) and hence f(y) exists.

• By Lemma 11.22,

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(Z|X) = h(Y )− h(Z)

• Since Z is independent of X and Z is zero-mean,

EY 2 = E(X + Z)2 = EX2 + EZ2 ≤ P + N

• By Theorem 10.43,

h(Y ) ≤ 1
2

log[2πe(P + N)]

with equality if Y ∼ N (0, P + N). This is achieved with X ∼ N (0, P ).

• Hence,

C = h(Y )− h(Z) =
1
2

log[2πe(P + N)]− 1
2

log(2πeN) =
1
2

log
(

1 +
P

N

)
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11.5 Parallel Gaussian Channels
 

 

 

X1 

Z1 

Y1+ 

. . . 

X2 

Z2 

Y2+ 

Xk 

Zk 

Yk+ 
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• Zi ∼ N (0, Ni) and Zi, 1 ≤ i ≤ k are independent.

• Total input power constraint: E
∑k

i=1 X2
i ≤ P .

•
C(P ) = sup

F (x):E
P

i X2
i≤P

I(X;Y)

• Intuitively,

C(P ) = max
P1,P2,··· ,Pk:

P
i Pi=P

1
2

k∑

i=1

log
(

1 +
Pi

Ni

)

where Xi ∼ N (0, Pi) and X1, X2 · · · , Xk are mutually independent.
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Formal Justification:

I(X;Y) = h(Y)− h(Z)

≤
k∑

i=1

h(Yi)−
1
2

k∑

i=1

h(Zi)

≤ 1
2

k∑

i=1

log[2πe(EY 2
i )]− 1

2

k∑

i=1

log(2πeNi)

=
1
2

k∑

i=1

log(EY 2
i )− 1

2

k∑

i=1

log Ni

=
1
2

k∑

i=1

log(EX2
i + EZ2

i )− 1
2

k∑

i=1

log Ni

=
1
2

k∑

i=1

log(Pi + Ni)−
1
2

k∑

i=1

log Ni

=
1
2

k∑

i=1

log
(

1 +
Pi

Ni

)
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Maximization of
∑

i log(Pi + Ni)

• Constraints:
∑

i Pi ≤ P and Pi ≥ 0

•
∑

i Pi ≤ P can be replaced by
∑

i Pi = P because log(Pi+Ni) is increasing
in Pi.

• Ignore the constraints Pi ≥ 0 for the time being. Use Lagrange multiplier
to obtain

Pi = ν −Ni

where the constant ν is chosen such that

k∑

i=1

Pi =
k∑

i=1

(ν −Ni) = P

• This solution, which has a water-filling interpretation, would be a valid
solution if ν ≥ Ni so that Pi ≥ 0 for all i.
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Capacity of Parallel Gaussian Channels

By means of Proposition 11.23 (an application of the Karush-Kuhn-Tucker
(KKT) condition), we obtain that in the general,

C(P ) =
1
2

k∑

i=1

log
(

1 +
P ∗

i

Ni

)

where {P ∗
i , 1 ≤ i ≤ k} is the optimal input power allocation among the channels

given by
P ∗

i = (ν −Ni)+, 1 ≤ i ≤ k

with ν satisfying
k∑

i=1

(ν −Ni)+ = P
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Water-Filling
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11.6 Correlated Gaussian Channels

• Same model as for parallel Gaussian channels except that Z ∼ N (0, KZ).

• EZi = 0 for all i.

• The total input power constraint continues to be E
∑k

i=1 X2
i ≤ P .

• The problem can be reduced to the problem of parallel Gaussian channels
by decorrelating the noise vector.
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Decorrelation of the Noise Vector

• Let KZ be diagonalizable as QΛQ! and consider

Y = X + Z

• Then
Q!Y = Q!X + Q!Z

• Let X′ = Q!X, Y′ = Q!Y, and Z′ = Q!Z to obtain

Y′ = X′ + Z′

• KZ′ = Λ, Z ′
i ∼ N (0, λi), and Z ′

i, 1 ≤ i ≤ k are mutually independent.
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X

Z 

Y

+ Q Q Y’!  X’!
 !

• X = QX′ and Y′ = Q"Y as prescribed.

• Z′ is the equivalent noise vector, making it a system of parallel Gaussian
channels.

• The only difference between this system and the original system are the
linear transformations Q and Q" before and after the original system.

• By Proposition 10.9, the total input power constraint for the original sys-
tem translates to the total input power constraint

E
k∑

i=1

(X ′
i)

2 ≤ P

for this system.

• Let the capacity of this system be C ′ and the capacity of the original
system be C. Obviously, C ≥ C ′.
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X

Z 

Y

+ 
Y’!X’!

Q  X’’! Y’’!Q  Q  
! !Q  

• Let the capacity of the above system be C ′′.

• Then, C ≥ C ′ ≥ C ′′.

• But since the above system is equivalent to the original system, C ′′ = C.

• Therefore, C ′ = C, or the equivalent system of parallel Gaussian channels
is the same as the original system of correlated Gaussian channels.

• Hence, the capacity of the original system is given by

1
2

k∑

i=1

log
(

1 +
a∗

i

λi

)

where a∗
i is the optimal power allocated to the ith channel in the equivalent

system, and its value can be obtained by water-filling.
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11.7 The Bandlimited White 
Gaussian Channel

+X(t) Y(t)

Z(t)

H(f)

1

W-W

• Both input and output are in continuous time.

• Z(t) is a zero-mean white Gaussian noise process with SZ(f) = N0
2 , called

an additive white Gaussian noise (AWGN).
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Signal Analysis Preliminaries

Definition 11.24 The Fourier transform of a signal g(t) is defined as

G(f) =
∫ ∞

−∞
g(t)e−j2πftdt.

The signal g(t) can be recovered from G(f) as

g(t) =
∫ ∞

−∞
G(f)ej2πftdf,

and g(t) is called the inverse Fourier transform of G(f). The functions g(t) and
G(f) are said to form a transform pair, denoted by

g(t) ! G(f).

The variables t and f are referred to as time and frequency, respectively.
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Energy Signal:

• ∫ ∞

−∞
|g(t)|2dt <∞

• the Fourier transform of an energy signal exists.

Definition 11.25 Let g1(t) and g2(t) be a pair of energy signals. The cross-
correlation function for g1(t) and g2(t) is defined as

R12(τ) =
∫ ∞

−∞
g1(t)g2(t− τ)dt

Proposition 11.26 For a pair of energy signals g1(t) and g2(t)

R12(τ) ! G1(f)G∗2(f),

where G∗2(f) denotes the complex conjugate of G2(f).
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Definition 11.27 For a wide-sense stationary process {X(t),−∞ < t < ∞},
the autocorrelation function is defined as

RX(τ) = E[X(t + τ)X(t)]

which does not depend on t, and the power spectral density is defined as

SX(f) =
∫ ∞

−∞
RX(τ)e−j2πfτdτ

i.e.,
RX(τ) ! SX(f)

Remark A process X(t) is wide-sense stationary if EX(t) does not depend on
t and E[X(t + τ)X(t)] depends only on τ .
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Let {(X(t), Y (t)),−∞ < t < ∞} be a bivariate wide-sense stationary process.
Their cross-correlation functions are defined as

RXY (τ) = E[X(t + τ)Y (t)]

and
RY X(τ) = E[Y (t + τ)X(t)]

which do not depend on t. The cross-spectral densities are defined as

SXY (f) =
∫ ∞

−∞
RXY (τ)e−j2πfτdτ

and
SY X(f) =

∫ ∞

−∞
RY X(τ)e−j2πfτdτ

i.e.,
RXY (τ) ! SXY (f)

and
RY X(τ) ! SY X(f)
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An Equivalent Model

Z(t)

X(t) + Y(t)
X’(t)

Z’(t)
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• Y ′(t) = X ′(t) + Z ′(t)

• X ′(t) and Z ′(t) are filtered versions of X(t) and Z(t), respectively.

• Both X ′(t) and Z ′(t) are bandlimited to [0, W ].

• Regard X ′(t) as the channel input and Z ′(t) as the additive noise process.

• Impose a power constraint on X ′(t).
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Theorem 11.29 (Sampling Theorem) Let g(t) be a signal with Fourier
transform G(f) that vanishes for f !∈ [−W, W ]. Then

g(t) =
∞∑

i=−∞
g

(
i

2W

)
sinc(2Wt− i)

for −∞ < t <∞, where

sinc(t) =
sin(πt)

πt

called the sinc function, is defined to be 1 at t = 0 by continuity.

Remarks

• sinc(t) = 0 for every integer i != 0.

• sinc(2Wt − i) = sinc
(
2W

(
t− i

2W

))
= 1 for t = i

2W and vanishes for
t = j

2W for every integer j != i.
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• Let
gi =

1√
2W

g

(
i

2W

)

and
ψi(t) =

√
2W sinc(2Wt− i)

• Then

g(t) =
∞∑

i=−∞
giψi(t)

Proposition 11.30 ψi(t), −∞ < i <∞ form an orthonormal basis for signals
which are bandlimited to [0, W ].
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Heuristic Treatment of the 
Bandlimited Channel

• Assume the input process X ′(t) has a Fourier transform, so that

X ′(t) =
∞∑

i=−∞
X ′

iψi(t)

• There is a one-to-one correspondence between {X ′(t)} and {Xi}.

• Likewise, assume Y ′(t) can be written as

Y (t) =
∞∑

i=−∞
Y ′

i ψi(t)

• With these assumptions, the waveform channel can be regarded as a
discrete-time channel defined at t = i

2W , with the ith input and output of
the channel being X ′

i and Yi, respectively.
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To complete the model of the discrete-time channel, we need to

1. understand the effect of the noise process Z ′(t) on Y (t) at the sampling
points

2. relate the power constraint on X ′
i to the power constraint on X ′(t).

Proposition 11.31 Z ′ ( i
2W

)
, −∞ < i < ∞ are i.i.d. Gaussian random vari-

ables with zero mean and variance N0W .
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Proof

• Z ′(t) is a filtered version of Z(t), so Z ′(t) is also a zero-mean Gaussian
process.

• Z ′ ( i
2W

)
, −∞ < i <∞ are zero-mean Gaussian random variables.

•
SZ′(f) =

{
N0
2 −W ≤ f ≤W

0 otherwise.

•
SZ′(f) ! RZ′(τ) = N0W sinc(2W τ)

•
RZ′

(
i

2W

)
=

{
0 i $= 0
N0W i = 0

• Z ′ ( i
2W

)
, −∞ < i < ∞ are uncorrelated and hence independent because

they are jointly Gaussian.

• Since Z ′ ( i
2W

)
has zero mean, its variance is given by RZ′(0) = N0W .
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• Recall that Y (t) = X ′(t) + Z ′(t).

• Letting

Z ′
i =

1√
2W

Z ′
(

i

2W

)

we have
Yi = X ′

i + Z ′
i

• Since Z ′ ( i
2W

)
are i.i.d. ∼ N (0, N0W ), Z ′

i are i.i.d. ∼ N (0, N0
2 ).

• So the bandlimited white Gaussian channel is equivalent to a memoryless
Gaussian channel with noise power equal to N0

2 .
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Relating the Power Constraints

• Let P ′ be the average energy (i.e., the second moment) of the Xi’s.

• Since ψi(t),−∞ < i <∞ are orthonormal, each has unit energy and their
energy adds up.

• Therefore, X ′(t) accumulates energy from the samples at a rate equal to
2WP ′.

• Consider
2WP ′ ≤ P

where P is the average power constraint on the input process X ′(t), we
obtain

P ′ ≤ P

2W
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Capacity of the Bandlimited White 
Gaussian Channel

•
1
2

log
(

1 +
P/2W

N0/2

)
=

1
2

log
(

1 +
P

N0W

)
bits per sample

• Since there are 2W samples per unit time, the capacity is

W log
(

1 +
P

N0W

)
bits per unit time

• For the white Gaussian channel bandlimited to [fl, fh], where fl is a mul-
tiple of W = fh− fl, apply the bandpass version of the sampling theorem
to obtain the same capacity formula.
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11.8 The Bandlimited Colored 
Gaussian Channel

• Bandlimited to [0, W ] with input power constraint P .

• Z(t) is a zero-mean additive colored Gaussian noise.

• Divide [0, W ] into k subintervals, each with width ∆k = W
k .

• Assume that the noise power over the ith subinterval is a constant SZ,i.

• The capacity of the ith sub-channel is

∆k log
(

1 +
Pi

2SZ,i∆k

)

• The noise process Z ′
i(t) of the ith sub-channel is obtained by passing Z(t)

through the corresponding ideal bandpass filter.

• It can be shown (see Problem 9) that the noise processes Zi(t), 1 ≤ i ≤ k
are independent.
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• By sampling the channels in time, the k sub-channels can be regarded as
a system of parallel Gaussian channels.

• Thus the channel capacity is equal to the sum of the capacities of the indi-
vidual sub-channels when the power allocation among the k sub-channels
is optimal.

• Let P ∗
i be the optimal power allocation for the ith sub-channel.

• The channel capacity is equal to

k∑

i=1

∆k log
(

1 +
P ∗

i

2SZ,i∆k

)
=

k∑

i=1

∆k log

(
1 +

P∗
i

2∆k

SZ,i

)

where By Proposition 11.23,

P ∗
i

2∆k
= (ν − SZ,i)+

with
k∑

i=1

P ∗
i = P
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• As k →∞,

k∑

i=1

∆k log

(
1 +

P∗
i

2∆k

SZ,i

)

→ 1
2

∫ W

−W
log

(
1 +

(ν − SZ(f))+

SZ(f)

)
df bits per unit time

and
k∑

i=1

P ∗
i = P →

∫ W

−W
(ν − SZ(f))+df = P
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Water-Filling
 

W -W 0

!

SZ( f ) 

f

 

W -W 0

!

SZ( f ) 

f
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11.9 Zero-Mean Noise is the Worst 
Additive Noise

• We will show that in terms of the capacity of the system, the zero-mean
Gaussian noise is the worst additive noise given that the noise vector has
a fixed correlation matrix.

• The diagonal elements of the correlation matrix specify the power of the
individual noise variables.

• The other elements in the matrix give a characterization of the correlation
between the noise variables.
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Two Lemmas
Lemma 11.33 Let X be a zero-mean random vector and

Y = X + Z

where Z is independent of X. Then

K̃Y = K̃X + K̃Z

Remark The scalar case has been proved in the proof of Theorem 11.21.

Lemma 11.34 Let Y∗ ∼ N (0, K) and Y be any random vector with correlation
matrix K. Then

∫
fY∗(y) log fY∗(y)dy =

∫

SY

fY(y) log fY∗(y)dy.

Remark A similar technique has been used in proving Theorems 2.50 and
10.41 (maximum entropy distributions).
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Theorem 11.32 For a fixed zero-mean Gaussian random vector X∗, let

Y = X∗ + Z,

where the joint pdf of Z exists and Z is independent of X∗. Under the constraint
that the correlation matrix of Z is equal to K, where K is any symmetric positive
definite matrix, I(X∗;Y) is minimized if and only if Z ∼ N (0, K).

Proof

I(X∗;Y∗)− I(X∗;Y)
a)
= h(Y∗)− h(Z∗)− h(Y) + h(Z)

= −
∫

fY∗(y) log fY∗(y)dy +
∫

fZ∗(z) log fZ∗(z)dz

+
∫

fY(y) log fY(y)dy −
∫

SZ

fZ(z) log fZ(z)dz

b)
= −

∫
fY(y) log fY∗(y)dy +

∫

SZ

fZ(z) log fZ∗(z)dz

+
∫

fY(y) log fY(y)dy −
∫

SZ

fZ(z) log fZ(z)dz
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Proof (cont.)

=
∫

log
(

fY(y)
fY∗(y)

)
fY(y)dy +

∫

SZ

log
(

fZ∗(z)
fZ(z)

)
fZ(z)dz

c)
=

∫

SZ

∫
log

(
fY(y)fZ∗(z)
fY∗(y)fZ(z)

)
fYZ(y, z)dydz

d)
≤ log

(∫

SZ

∫
fY(y)fZ∗(z)
fY∗(y)fZ(z)

fYZ(y, z)dydz
)

e)
= log

(∫ [
1

fY∗(y)

∫

SZ

fX∗(y − z)fZ∗(z)dz
]

fY(y)dy
)

f)
≤ log

(∫
fY∗(y)
fY∗(y)

fY(y)dy
)

= 0
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Gaussian is the Worst
• Consider a system of correlated Gaussian channels with noise vector Z∗ ∼
N (0, K), and so K̃Z = K. Call this the zero-mean Gaussian system and
let C∗ be its capacity.

• Consider another system with exactly the same specification except that
the noise vector Z may neither be zero-mean nor Gaussian. We require
that the joint pdf of Z exists. Call this system as the alternative system
and let C be its capacity.

• Let X∗ be the zero-mean Gaussian input vector that achieves the capacity
of the zero-mean Gaussian system.

• Let Y∗ be the output of the zero-mean Gaussian system with X∗ as input.

• Let Y be the output of the alternative system with X∗ as input.

• Then
C ≥ I(X∗;Y) ≥ I(X∗;Y∗) = C∗
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+

+

X∗

X∗

Y∗

Y

Z∗ ∼ N (0, K)

Z : K̃Z = K

Saturday, 4 December 2010


