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Preamble

e In a physical communication system, the input and output of a channel
often take continuous real values.

o A waveform channel is one which takes transmission in continuous time.
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| 1.1 Discrete-Time Channels

Definition 11.1 Let f(y|z) be a conditional pdf defined for all x, where
- [ St ton fale)dy < o

for all . A discrete-time continuous channel f(y|x) is a system with input

random variable X and output random variable Y such that Y is related to X
through f(y|x) (cf. Definition 10.22).

Remark The integral in Definition 11.1 is precisely the conditional differential
entropy h(Y|X = x), which is required to be finite.

Definition 11.2 Let o : R x & — K, and Z be a real random variable, called
the noise variable . A discrete-time continuous channel («, Z) is a system with
a real input and a real output. For any input random variable X, the noise
random variable Z is independent of X, and the output random variable Y is
given by

Y =a(X, Z).
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Definition 11.3 Two continuous channels f(y|z) and («, Z) are equivalent if
for every input distribution F'(x),

z oy
Pria(X, 7)<y, X <z} = / / fyx (v|u)dvdFx (u)
for all x and y.

Remarks

1. Definition 11.2 is more general than Definition 11.1 because the former
does not require the existence of f(y|x).

2. We confine our discussion to channels defined by Definition 11.1.
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Definition 11.4 (CMC I) A continuous memoryless channel (CMC) f(y|z) is
a sequence of replicates of a generic continuous channel f(y|x). These continuous
channels are indexed by a discrete-time index ¢, where ¢ > 1, with the ¢th channel
being available for transmission at time 7. Transmission through a channel is
assumed to be instantaneous. Let X; and Y, be respectively the input and the
output of the CMC at time 7, and let 7;_ denote all the random variables that
are generated in the system before X,;. The Markov chain 7, — X; — Y} holds,
and

z oy
Pr{Y; <y, X; <z} = / / fyx (lu)dv dFx, (u).

Definition 11.5 (CMC II) A continuous memoryless channel (o, 2) is a
sequence of replicates of a generic continuous channel («, Z). These continuous
channels are indexed by a discrete-time index ¢, where ¢+ > 1, with the ¢th
channel being available for transmission at time :. Transmission through a
channel is assumed to be instantaneous. Let X; and Y, be respectively the
input and the output of the CMC at time ¢, and let 7;_ denote all the random
variables that are generated in the system before X;. The noise variable Z;
for the transmission at time ¢ is a copy of the generic noise variable Z, and is
independent of (X;,7T;_). The output of the CMC at time ¢ is given by

Y;; — Oé(XZ', Zz)
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Definition 11.6 Let x be a real function. An average input constraint (x, P)
for a CMC is the requirement that for any codeword (x1, x2,- - , x, ) transmitted
over the channel,

1 n
— )< P
n;m(x)_

Definition 11.7 The capacity of a continuous memoryless channel f(y|x) with
input constraint (k, P) is defined as

C(P) = sup I(X;Y)
F(x):Ex(X)P
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Theorem 11.8 C'(P) is non-decreasing, concave, and left-continuous.

Proof
1. Non-decreasing — Immediate.

2. Concave — A consequence of the the concavity of mutual information with
respect to the input distribution.

3. Left-continuous — A consequence of concavity.

Remarks

1. C'(P) is also right-continous (a consequence of concavity) but requires a
separate proof.

2. This property of C'(P) is not used in this chapter.
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| 1.2 The Channel Coding Theorem

Definition 11.9 An (n, M) code for a continuous memoryless channel with
input constraint (x, P) is defined by an encoding function

e:{1,2,--- , M} —-R"
and a decoding function
g:R"—A{1,2,--- M}.

The set {1,2,---, M}, denoted by W, is called the message set. The sequences
e(1),e(2),---,e(M) in R™ are called codewords, and the set of codewords is
called the codebook. Moreover,

—Z/@xz )< P forl<w< M,

where e(w) = (x1(w), x2(w), -, z,(w)), i.e., each codeword satisfies the input
power constraint.
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Assumptions and Notations

e IV is randomly chosen from the message set W, so H(W') = log M.
o X = (X17X27"' 7Xn)7 Y = (Y17Y27”' 7Yn)
o Thus X =e(W).

o Let W = g(Y) be the estimate on the message W by the decoder.
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Error Probabilities

Definition 11.10 For all 1 < w < M, let

Aw = PT{W #wW =w} = fyix(yle(w))dy
{yeym:g(y)#Aw}

be the conditional probability of error given that the message is w.

Definition 11.11 The maximal probability of error of an (n, M) code is defined
as

w

Definition 11.12 The average probability of error of an (n, M) code is defined
as

P, =Pr{W £ W}
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Definition 11.13 A rate R is (asymptotically) achievable for a continuous

memoryless channel if for any € > 0, there exists for sufficiently large n an

(n, M) code such that

1
—logM > R — €
n

and
)\maa: < €

Theorem 11.14 A rate R is achievable for a continuous memoryless channel
if and only if R < (', the capacity of the channel.
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| 1.3.]1 The Converse

o First establish the Markov chain W — X — Y — W.
o W, W — discrete
e X — real but discrete

e Y — real and continuous

Lemma 11.15 (Data Processing Theorem)

I(W; W) < I(X;Y)
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Converse Proof

e Let R be an achievable rate, i.e., for any ¢ > 0, there exists for sufficiently
large n and (n, M) code such that

1
n

e (Consider

loeM = H(W)
= H(W|W)+I(W;W)
< HW|W)+I(X;Y)
= HWI|W)+h(Y) — h(Y|X)
< HW|W)+ f: h(Y:) — h(Y|X)
= HW|W)+) h(Yi) =) h(¥;|X;)
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e Let V be a mixing random variable distributed uniformly on {1,2,--- ,n}
which is independent of X;, 1 <1 <n.

e Let X = Xy and Y be the output of the channel with X being the input.

e Then

Er(X) = FEEkRX)|V]

_ z}wvz@m%mw:ﬂ
— ZPr{V = it E[(X;)|V =1

_ ﬁé%EMXQ
=1

oy _
= B|=S k(X

n;ff( )
P

VAN
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e By the concavity of mutual information with respect to the input distri-

bution,
n

IS rxv) <1xv) < ¢
n
1=1

e The second inequality above follows because X satisfies Ex(X) < P as
shown.

e It follows that )
logM < HW|W) +nC

e The proof is completed by invoking Fano’s inequality.
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| 1.3.2 Achievability

Remarks

1. In the formula

C(P) = sup I(X;Y)
F(x):Ex(X)<P

X may not have a pdf, so it is difficult to consider sequences typical w.r.t.

2. Need a new notion of joint typicality.

3. Recall that for any input distribution F(z), f(y) exists as long as f(y|x)
exists. Hence

oo
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Mutual Typicality

Definition 11.16 The mutually typical set \If"[”XY] s With respect to F'(z,y) is
the set of (x,y) € X" x Y™ such that

1. flylx) . |
nlog y) I(X;Y)]| <6,
where .
flylx) = Hf(yz-I:vi)
i=1
and

fly) = H f (i),

and ¢ is an arbitrarily small positive number. A pair of sequences (x,y) is called
mutually o-typical if it is in \I!FXY] 5-
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Proof

1.
1
— log
n

2. By WLLN,

in probability.

fYIX)

f(Y)

n

1

n

X)) 1

- [
10%1]1 )

()

1 fYilXs) f(Y]X)
E;log V) > F log

f(Y)

= I(X;Y)
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Lemma 11.18 Let (X', Y’) be n ii.d. copies of a pair of generic random
variables (X’,Y”), where X’ and Y’ are independent and have the same marginal
distributions as X and Y, respectively. Then

Pr{(X,Y’) € Uyy)s} <2 ")),

Proof

1 f(YIX)_I(ng) <5 = 1logf(3f|><)

no° f(y) n f(y)
= f(yx) > f(y)2rUX¥)=9)

> I(X;Y) =6
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e Then

1 > Pr{(X,Y) € ¥Wys)}

- // F(y|x)dF (x) dy
on(I(X;Y)— 5)//n (x) dy

[V

e Hence
Pr{(X',Y') € Uy s} < 27IX)=0)
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Random Coding Scheme

e Since C'(P) is left-continuous, there exists v > 0 such that

€

CP—v)>C(P) - ¢

e By the definition of C(P — ), there exists an input random variable X
such that

Erx(X)<P—~ and KXJUZCULJﬂ—g

e Choose for a sufficiently large n an even integer M satistying

1
HXJ3—§<EMQW<MXJ3—§

e Then
>O(P—7)—E>C(P)—§

1 €
—logM > I(X;Y)— =
nog ( ) ) 6— 3
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The random coding scheme:

L.

Construct the codebook C of an (n, M) code randomly by generating M
codewords in " independently and identically according to F(z)"™. De-

note these codewords by X (1), X(2),--- , X(M).

. Reveal the codebook C to both the encoder and the decoder.
. A message W is chosen from WV uniformly.
. The sequence X = X(W) is transmitted through the channel.

. The channel outputs a sequence Y according to

n Yi
Pr(Y; < g1 <0 < nlXOW) =x} =[] [ Flulei)d.

. The sequence Y is decoded to the message w if (X(w), Y) € Uy and

there does not exist w’ # w such that (X(w),Y) € iy ;. Otherwise,

Y is decoded to a constant message in VY. Denote by W the message to
which Y is decoded.
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Performance Analysis

~

o Let X(w) = (X (w), Xo(w),- -+, Xn(w)).

e Define the error event Err = E. U E4, where

Ee{%im(Xz(W))>P} and FEgq={W £ W}

Pr{Err}

Pr{Err|W =1}
< Pr{E.|W =1} + Pr{Eg|W =1}

e Choose 0 to be small to make

Pr{Ed\W — 1} S

NN

for sufficiently large n.
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e By WLLN, for sufficiently large n,

e So,

Pr{E.|W =1}

IN

VAN

Pri = w(Xi(1)) > P

Pr ¢ — Z/{(Xz(l)) > P

Pri— > w(Xi(1) > (P —7)+7

Pr< — ZH(Xi(l)) > Er(X) + v

=1 m

Pr{Err} < %

which implies for some codebook C*,

Pr{Err|C*} <

€
2
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e Rank the codewords in C* in ascending order according to Pr{Err|C*, W =

w}.

o After discarding the worst half of the codewords in C*, if a codeword X (w)
remains in C*, then
Pr{Err|C*, W =w} < ¢

o However, it is not clear whether X (w) satisfies both A, < € and the input
power constraint.

e Since Err = E. U E,4, we have
A = Pr{Ey4|C*, W =w} < ¢

and
Pr{E.|[C*,W =w} <€

e Observe that conditioning on {C*, W = w}, the codeword X (w) is deter-
ministic, so either Pr{F.|C*, W = w} = 0 or 1. Therefore, Pr{E.|C*, W =
w} = 0.
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| 1.4 Memoryless Gaussian Channel

The Gaussian channel is the most commonly used model for a noisy channel
with real input and output, because:

1. the Gaussian channel is highly analytically tractable

2. the Gaussian noise can be regarded as the worst kind of additive noise
subject to a constraint on the noise power.

Definition 11.19 (Gaussian Channel) A Gaussian channel with noise en-
ergy IN is a continuous channel with the following two equivalent specifications:

(y—x)2

L. f(ylz) = \/QlﬁiNe_ 2N

2. Z ~N(O,N)and a(X,Z) = X + Z.

Definition 11.20 (Memoryless Gaussian Channel) A memoryless Gaus-
sian channel with noise power N and input power constraint P is a memoryless
continuous channel with the generic continuous channel being the Gaussian
channel with noise energy N. The input power constraint P refers to the input

constraint (k, P) with x(x) = 22.
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Theorem 11.21 (Capacity of a Memoryless Gaussian Channel) The
capacity of a memoryless Gaussian channel with noise power N and input power

constraint P 1s
! | 1+ P
— lo — .
9 6 N

The capacity is achieved by the input distribution A(0, P).

Remarks

e The capacity of a memoryless Gaussian channel depends only on P/N,
called the signal-to-noise ratio.

e The capacity is strictly positive no matter how small P/N is.

e The capacity is infinite if there is no input power constraint.

Lemma 11.22 Let Y = X 4+ Z. Then h(Y|X) = h(Z|X) provided that
fz1x(z|r) exists for all z € Sx.
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Proof of Lemma 11.22

e fyix(ylr) = fz1x(y — z|r) exists.

e Then h(Y|X = z) is defined, and

h(Y|X)

/ WYX = 2)dFy (z)
_ /h(X L Z|X = 2)dFy (z)
= /h(w + Z|X = x)dFx(x)

_ / h(Z|X = 2)dFy (2)
_ h(Z|X)
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Proof of Theorem 11.21

o Let F(x) be the CDF of the input random variable X such that EX? < P,
where X is not necessarily continuous.

e Since Z ~ N(0,N), f(y|z) and hence f(y) exists.
e By Lemma 11.22,

I(X;Y) = h(Y) — h(Y|X) = h(Y) — h(Z|X) = h(Y) — h(Z)

e Since 7 is independent of X and Z is zero-mean,

EY?=E(X+2)?=EX*+EZ*<P+N
e By Theorem 10.43,
1
h(Y) < 5 log|2me(P 4+ N))

with equality if Y ~ N (0, P + N). This is achieved with X ~ N(0, P).

e Hence,

O — h(Y) _ h(Z) — %1og[27re(P + N)] — %log(ZweN) - %log (1 * %)
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| 1.5 Parallel Gaussian Channels
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o Z; ~N(0,N;) and Z;, 1 <i < k are independent.

e Total input power constraint: E Zle X2 < P.

C(P) = sup I(X;Y)
F(x):EY, X2<P

e Intuitively,

C(P) = ] 1 + —
P)= o 520 (14 50)

where X; ~ N (0, P;) and X1, X5 -+, X are mutually independent.
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Formal Justification:

I(X;Y) = h(Y)—h(Z)
< S hv) -2 S h(z)
1_1k 1=1 1 )
< 5 logl2ne(EY?)] - 3 ) log(2me;)

k k
1 1
= 5 E log(EY;?) — 5 E log N;
1l o
_ 2 2 .
= 5 E_l log(FX  + EZ7) — 5 E_l log N;

k k
1 1
— 5 i:E 1 log(Pz -+ Nz) — 5 i:E 1 log Nz

k
1 P;
= - log (14—
2i:1 O%( +Ni)
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Maximization of ) .log(F; + N;)

e Constraints: ) . P; < P and P, >0

e > . P, < Pcanbereplaced by ) . P, = P because log(P;+1N;) is increasing
n Pz

e Ignore the constraints P; > 0 for the time being. Use Lagrange multiplier

to obtaln
P’i — UV — Nz

where the constant v is chosen such that

e This solution, which has a water-filling interpretation, would be a valid
solution if v > N, so that P; > 0 for all «.
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Capacity of Parallel Gaussian Channels

By means of Proposition 11.23 (an application of the Karush-Kuhn-Tucker
(KKT) condition), we obtain that in the general,

where { P, 1 <1 < k} is the optimal input power allocation among the channels
given by
Pr=(w—N)¥, 1<i<k

(

with v satisfying
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Water-Filling
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| 1.6 Correlated Gaussian Channels

e Same model as for parallel Gaussian channels except that Z ~ N (0, Kz).
o FZ, =0 for all z.
e The total input power constraint continues to be F Zle X2 < P.

e The problem can be reduced to the problem of parallel Gaussian channels
by decorrelating the noise vector.
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Decorrelation of the Noise Vector

e Let Kz be diagonalizable as QAQ "' and consider

Y =X+12%

e Then
Q'Y=0Q'X+Q'Z

e et X' =Q'X, Y =0Q'Y,and Z' = Q' Z to obtain
Y =X +7

o Kzv = A, Zl ~N(0,);), and Z!, 1 <i < k are mutually independent.
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e X =0QX and Y =Q'Y as prescribed.

e 7' is the equivalent noise vector, making it a system of parallel Gaussian
channels.

e The only difference between this system and the original system are the
linear transformations @ and Q' before and after the original system.

e By Proposition 10.9, the total input power constraint for the original sys-
tem translates to the total input power constraint

for this system.

e Let the capacity of this system be C’ and the capacity of the original
system be C. Obviously, C' > C".

Saturday, 4 December 2010



T
X" _ Q

e Let the capacity of the above system be C”.

e Then, C >C">(C".

Y"

e But since the above system is equivalent to the original system, C" = C.

e Therefore, C' = C, or the equivalent system of parallel Gaussian channels
is the same as the original system of correlated Gaussian channels.

e Hence, the capacity of the original system is given by

k
1 ar
_E:I 1 L &
2@,:1 og( —I_)\i)

where a; 1s the optimal power allocated to the ¢th channel in the equivalent
system, and its value can be obtained by water-filling.
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| 1.7 The Bandlimited White
Gaussian Channel

Z(t)

H(f)
A

X(t) @ > ' > Y(t)

e Both input and output are in continuous time.

e /(t) is a zero-mean white Gaussian noise process with Sz (f) = %, called
an additive white Gaussian noise (AWGN).

Saturday, 4 December 2010



Signal Analysis Preliminaries

Definition 11.24 The Fourier transform of a signal ¢(t) is defined as
6= [ gweran

The signal g(t) can be recovered from G(f) as
o) = [ G,

and ¢g(t) is called the inverse Fourier transform of G(f). The functions g(¢) and
G(f) are said to form a transform pair, denoted by

g(t) = G(f).

The variables t and f are referred to as time and frequency, respectively.
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Energy Signal:

/ " lg(t)Pdt < oo

— OO

e the Fourier transform of an energy signal exists.

Definition 11.25 Let g1(¢) and g2(t) be a pair of energy signals. The cross-
correlation function for g;(t) and g»(t) is defined as

Ru(r) = [ T (0 ga(t — )t

— OO

Proposition 11.26 For a pair of energy signals g1 (¢) and gs(?)

Rio(1) = G1(f)G5(f),

where G5(f) denotes the complex conjugate of Ga(f).
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Definition 11.27 For a wide-sense stationary process {X (t), —oo < t < 00},
the autocorrelation function is defined as

Rx(1)=FE|X(t+ 7)X(t)]

which does not depend on ¢, and the power spectral density is defined as
Sx(f) = / Rx (1)e /2™ dr

l.e.,

Rx (1) = Sx(f)

Remark A process X(t) is wide-sense stationary if £FX (¢) does not depend on
t and F|X(t+ 7)X(t)] depends only on 7.
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Let {(X(t),Y(t)),—00 <t < oo} be a bivariate wide-sense stationary process.
Their cross-correlation functions are defined as

Rxy(T)=FE|X({t+ 7)Y (t)]

and
Ryx (1) =FE[Y(t+7)X(t)]

which do not depend on ¢. The cross-spectral densities are defined as

Sxy(f) — / ny(T)e_jZWdeT
and -
Syx(f) = / Ry x (T)e_j27rdeT
l.e.,
Rxy (1) = Sxy(f)
and

Ryx (1) = Syx(f)
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An Equivalent Model

Z(t)

Z(t)

X() — 0o Y
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o Y(t)=X'(t)+ Z' (1)

e X'(t) and Z'(t) are filtered versions of X (¢) and Z(t), respectively.

e Both X'(¢) and Z'(t) are bandlimited to [0, W].

e Regard X'(¢) as the channel input and Z’(t) as the additive noise process.

e Impose a power constraint on X'(t).
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Theorem 11.29 (Sampling Theorem) Let ¢(t) be a signal with Fourier
transform G(f) that vanishes for f & [-W, W]. Then

g(t) = i g(%) sinc(2Wt — i)

for —oo <t < oo, where
sin(mt)

sinc(t) = ,
-

called the sinc function, is defined to be 1 at ¢ = 0 by continuity.

Remarks
e sinc(t) = 0 for every integer i # 0.

o sinc(2Wt — i) = sinc (2W (¢t — 5i7)) = 1 for ¢t = 5> and vanishes for

t = 51 for every integer j # 1.
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o Let

1 (
9i = —TWg (W)

and
Y (t) = V2Wsine(2Wt — i)
e Then o
g(t) = > givi(t)

Proposition 11.30 v;(t), —oo < ¢ < oo form an orthonormal basis for signals
which are bandlimited to [0, W].
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Heuristic Treatment of the
Bandlimited Channel

e Assume the input process X'(t) has a Fourier transform, so that

e There is a one-to-one correspondence between {X'(¢)} and {X;}.

e Likewise, assume Y’ (t) can be written as

Y(t) = Z Y/ i (t)

1= — 0O

e With these assumptions, the waveform channel can be regarded as a

discrete-time channel defined at ¢t = 537, with the ¢th input and output of

the channel being X and Y;, respectively.

Saturday, 4 December 2010



To complete the model of the discrete-time channel, we need to

1. understand the effect of the noise process Z'(t) on Y (¢) at the sampling
points

2. relate the power constraint on X/ to the power constraint on X'(%).

Proposition 11.31 2’ (ﬁ), —00 < ¢ < oo are 1.i.d. Gaussian random vari-
ables with zero mean and variance NgoW .
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Proof

o 7'(t) is a filtered version of Z(t), so Z'(t) is also a zero-mean Gaussian

process.
o /' (ﬁ), —00 < 1 < 0o are zero-mean Gaussian random variables.
* N,
Sz(f) = { O70 (jt‘}/lzsvijsfe.g o
o
Szi(f) = Rz (1) = NoWsinc(2WT)
o

P vt N _f 0 1 # 0
4 ow ) NoW 1=0

o /' (ﬁ), —00 < 1 < oo are uncorrelated and hence independent because

they are jointly Gaussian.

e Since 7’ (ﬁ) has zero mean, its variance is given by Rz/(0) = NoW.
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e Recall that Y (¢) = X'(¢t) + Z'(¢).

e Letting

1 )
=i ()
2N 2W
we have
Y, = X,Z + Z;

e Since Z' (5%-) are i.i.d. ~ N(0, NoW), Z{ are i.i.d. ~ N(0, 52).

e So the bandlimited white Gaussian channel is equivalent to a memoryless

(Gaussian channel with noise power equal to %
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Relating the Power Constraints

e Let P’ be the average energy (i.e., the second moment) of the X;’s.

e Since 1;(t), —0o < i < 0o are orthonormal, each has unit energy and their
energy adds up.

e Therefore, X'(t) accumulates energy from the samples at a rate equal to
2W P’

e Consider
QWP <P

where P is the average power constraint on the input process X'(t), we
obtain

P
P < —
— 2W
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Capacity of the Bandlimited White
Gaussian Channel

1 P/2W 1
—log<1+ / ):—log<1+

> Ny /2 > ) bits per sample

NoW

e Since there are 21V samples per unit time, the capacity is

W log (1 + ) bits per unit time

NoW

e For the white Gaussian channel bandlimited to |f;, f1]|, where f; is a mul-
tiple of W = f;, — fi, apply the bandpass version of the sampling theorem
to obtain the same capacity formula.
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| .8 The Bandlimited Colored
Gaussian Channel

e Bandlimited to [0, W] with input power constraint P.

e /(t) is a zero-mean additive colored Gaussian noise.

e Divide [0, W] into k subintervals, each with width Ay = 2.
e Assume that the noise power over the ¢th subinterval is a constant Sz ;.

e The capacity of the ¢th sub-channel is

P.
Aplos 1 "
k Og( * st,ZAJ

e The noise process Z;(t) of the ith sub-channel is obtained by passing Z(t)
through the corresponding ideal bandpass filter.

e It can be shown (see Problem 9) that the noise processes Z;(t), 1 <1 < k
are independent.
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e By sampling the channels in time, the k sub-channels can be regarded as
a system of parallel Gaussian channels.

e Thus the channel capacity is equal to the sum of the capacities of the indi-
vidual sub-channels when the power allocation among the k£ sub-channels
1s optimal.

e Let P* be the optimal power allocation for the ¢th sub-channel.

e The channel capacity is equal to

k P* k P;
Aloe [ 1 i — N "Alog | 14+ 22k
; ¢ Og( +2SZ,7;AR> 2 A Og( +SZ7;>

where By Proposition 11.23,

with
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o As k — o0,

k P

1=1

1174 L +
—s %/_Wlog (1 -+ ( Sj?;{)) ) df bits per unit time

and

k 4%
P"=P — v—>S tdf =
> F /_W< A(f)Hdf = P
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| 1.9 Zero-Mean Noise is the Worst
Additive Noise

e We will show that in terms of the capacity of the system, the zero-mean
(Gaussian noise is the worst additive noise given that the noise vector has
a fixed correlation matrix.

e The diagonal elements of the correlation matrix specity the power of the
individual noise variables.

e The other elements in the matrix give a characterization of the correlation
between the noise variables.
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Two Lemmas

Lemma 11.33 Let X be a zero-mean random vector and
Y =X+7%
where Z is independent of X. Then
Ky = Kx + K7
Remark The scalar case has been proved in the proof of Theorem 11.21.

Lemma 11.34 Let Y* ~ N (0, K) and Y be any random vector with correlation
matrix K. Then

/ Py (7)log fy-(y)dy = [ fy(y)log fy-(y)dy.

Sy

Remark A similar technique has been used in proving Theorems 2.50 and
10.41 (maximum entropy distributions).
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Theorem 11.32 For a fixed zero-mean Gaussian random vector X™, let
Y = X"+ 7Z,

where the joint pdf of Z exists and Z is independent of X*. Under the constraint
that the correlation matrix of Z is equal to K, where K is any symmetric positive
definite matrix, I(X*;Y) is minimized if and only if Z ~ N (0, K).

Proof
[(X*Y*) - I(X*Y)
D B(Y*) = WZ) = h(Y) + h(Z)
— —/fy*(y) long*(Y)dy+/fZ*(Z) log fz~(z)dz

+ / fy(y)log fy(y)dy — | fz(z)log fz(z)dz
Sz
e —/fy(y) log fy«(y)dy + i fz(z)log fz-(z)dz

+ / fy(y)log fx(y)dy — | fz(z)log fz(z)dz
Sz
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Gaussian is the Worst

e Consider a system of correlated Gaussian channels with noise vector 7" ~
N(0,K), and so Kz = K. Call this the zero-mean Gaussian system and
let C* be its capacity.

e Consider another system with exactly the same specification except that
the noise vector Z may neither be zero-mean nor Gaussian. We require
that the joint pdf of Z exists. Call this system as the alternative system
and let C be its capacity.

e Let X* be the zero-mean Gaussian input vector that achieves the capacity
of the zero-mean GGaussian system.

e Let Y™ be the output of the zero-mean Gaussian system with X* as input.
e Let Y be the output of the alternative system with X* as input.

e Then
C>I(X%Y)>I(X%Y")=C"
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