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Real Random Variables

• A real r.v. X with cumulative distribution function (CDF) FX(x) =
Pr{X ≤ x} is

– discrete if FX(x) increases only at a countable number of values of
x;

– continuous if FX(x) is continuous, or equivalently, Pr{X = x} = 0
for every value of x;

– mixed if it is neither discrete nor continuous.

• SX is the set of all x such that FX(x) > FX(x− ε) for all ε > 0.

•
Eg(X) =

∫

SX

g(x)dFX(x),

where the right hand side is a Lebesgue-Stieltjes integration which covers
all cases (i.e., discrete, continuous, and mixed) for the CDF FX(x).



Real Random Variables

• A nonnegative function fX(x) is called a probability density function (pdf)
of X if

FX(x) =
∫ x

−∞
fX(u)du

for all x.

• If X has a pdf, then X is continuous, but not vice versa.



Jointly Distributed Random Variables
• Let X and Y be two real random variables with joint CDF FXY (x, y) =

Pr{X ≤ x, Y ≤ y}.

• Marginal CDF of X: FX(x) = FXY (x,∞)

• A nonnegative function fXY (x, y) is called a joint pdf of X and Y if

FXY (x, y) =
∫ x

−∞

∫ y

−∞
fXY (u, v) dvdu

• Conditional pdf of Y given {X = x}:

fY |X(y|x) =
fXY (x, y)

fX(x)

• Conditional CDF of Y given {X = x}:

FY |X(y|x) =
∫ y

−∞
fY |X(v|x)dv



Variance and Covariance
• Variance of X:

varX = E(X − EX)2 = EX2 − (EX)2

• Covariance between X and Y :

cov(X, Y ) = E(X − EX)(Y − EY ) = E(XY )− (EX)(EY )

• Remarks:

1. var(X + Y ) = varX + varY + 2cov(X,Y )
2. If X ⊥ Y , then cov(X, Y ) = 0, or X and Y are uncorrelated. How-

ever, the converse is not true.
3. If X1, X2, · · · , Xn are mutually independent, then

var

(
n∑

i=1

Xi

)
=

n∑

i=1

varXi



Random Vectors

• Let X = [X1 X2 · · · Xn]!.

• Covariance matrix:

KX = E(X− EX)(X− EX)! = [cov(Xi, Xj)]

• Correlation matrix: K̃X = EXX! = [EXiXj ]

• Relations between KX and K̃X:

KX = K̃X − (EX)(EX)!

KX = K̃X−EX

• These are vector generalizations of

varX = EX2 − (EX)2

varX = E(X − EX)2



Gaussian Distribution

• N (µ, σ2) – Gaussian distribution with mean µ and variance σ2:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , −∞ < x <∞

• N (µ, K) – multivariate Gaussian distribution with mean µ and covariance
matrix K, i.e., the joint pdf of the distribution is given by

f(x) =
1

(√
2π

)n |K|1/2
e−

1
2 (x−µ)"K−1(x−µ), x ∈ %n

where K is a symmetric positive definite matrix.



10.1 Preliminaries

Definition 10.1 A square matrix K is symmetric if K! = K.

Definition 10.2 An n× n matrix K is positive definite if

x!Kx > 0

for all nonzero column n-vector x, and is positive semidefinite if

x!Kx ≥ 0

for all column n-vector x.

Proposition 10.3 A covariance matrix is both symmetric and positive semidef-
inite.



Diagonalization
• A symmetric matrix K can be diagonalized as

K = QΛQ!

where Λ is a diagonal matrix and Q (also Q!) is an orthogonal matrix,
i.e.,

Q−1 = Q!

• |Q| = |Q!| = 1.

• Let λi = ith diagonal element of Λ and qi = ith column of Q

• KQ = (QΛQ!)Q = QΛ(Q!Q) = QΛ, or

Kqi = λiqi

• That is, qi is an eigenvector of K with eigenvalue λi.



Proposition 10.4 The eigenvalues of a positive semidefinite matrix are non-
negative.

Proof

1. Consider eigenvector q != 0 and corresponding eigenvalue λ of K, i.e.,

Kq = λq

2. Since K is positive semidefinite,

0 ≤ q!Kq = q!(λq) = λ(q!q)

3. λ ≥ 0 because q!q = ‖q‖2 > 0.

Remark Since a covariance matrix is both symmetric and positive semidefinite,
it is diagonalizable and its eigenvalues are nonnegative.



Proposition 10.5 Let Y = AX. Then

KY = AKXA!

and
K̃Y = AK̃XA!.

Proposition 10.6 (Decorrelation) Let Y = Q!X, where KX = Q!ΛQ.
Then KY = Λ, i.e.,

1. the random variables in Y are uncorrelated

2. varYi = λi for all i

Corollary 10.7 Any random vector X can be written as a linear transformation
of an uncorrelated vector. Specifically, X = QY, where KX = Q!ΛQ.



Proposition 10.8 Let X and Z be independent and Y = X + Z. Then

KY = KX + KZ

Proposition 10.9 (Preservation of Energy) Let Y = QX, where Q is an
orthogonal matrix. Then

E
n∑

i=1

Y 2
i = E

n∑

i=1

X2
i



10.2 Definition

Definition 10.10 The differential entropy h(X) of a continuous random vari-
able X with pdf f(x) is defined as

h(X) = −
∫

S
f(x) log f(x)dx = −E log f(X)

Remarks

1. Differential entropy is not a measure of the average amount of information
contained in a continuous r.v.

2. A continuous random variable generally contains an infinite amount of
information.



Example 10.11 Let X be uniformly distributed on [0, 1). Then we can write

X = .X1X2X3 · · · ,

the dyadic expansion of X, where X1, X2, X3, · · · is a sequence of fair bits. Then

H(X) = H(X1, X2, X3, · · · )

=
∞∑

i=1

H(Xi)

=
∞∑

i=1

1

= ∞



Relation with Discrete Entropy

• Consider a continuous r.v. X with a continuous pdf f(x).

• Define a discrete r.v. X̂∆ by

X̂∆ = i if X ∈ [i∆, (i + 1)∆)

• Since f(x) is continuous,

pi = Pr{X̂∆ = i} ≈ f(xi)∆

where xi ∈ [i∆, (i + 1)∆).



• Then

H(X̂∆) = −
∑

i

pi log pi

≈ −
∑

i

f(xi)∆ log(f(xi)∆)

= −
∑

i

∆f(xi) log f(xi)−
∑

i

f(xi)∆ log ∆

= −
∑

i

∆f(xi) log f(xi)− log ∆

≈ h(X)− log ∆

when ∆ is small.



Example 10.12 Let X be uniformly distributed on [0, a). Then

h(X) = −
∫ a

0

1
a

log
1
a
dx = log a

Remark h(X) < 0 if a < 1, so h(·) cannot be a measure of information.

Example 10.13 (Gaussian Distribution) Let X ∼ N (0, σ2). Then

h(X) =
1
2

log(2πeσ2)



Properties of Differential Entropy
Theorem 10.14 (Translation)

h(X + c) = h(X)

Theorem 10.15 (Scaling) For a != 0,

h(aX) = h(X) + log |a|.

Remark on Scaling The differential entropy is

• increased by log |a| if |a| > 1

• decreased by − log |a| if |a| < 1

• unchanged if a = −1

• related to the “spread” of the pdf



10.3 Joint Differential Entropy, 
Conditional (Differential) Entropy, and 

Mutual Information

Definition 10.17 The joint differential entropy h(X) of a random vector X
with joint pdf f(x) is defined as

h(X) = −
∫

S
f(x) log f(x)dx = −E log f(X)

Corollary If X1, X2, · · · , Xn are mutually independent, then

h(X) =
n∑

i=1

h(Xi)

Theorem 10.18 (Translation) h(X + c) = h(X).

Theorem 10.19 (Scaling) h(AX) = h(X) + log |det(A)|.



Theorem 10.20 (Multivariate Gaussian Distribution) Let X ∼ N (µ, K).
Then

h(X) =
1
2

log [(2πe)n|K|] .



The Model of a “Channel” with 
Discrete Output

p(y|x)X Y

• X: general

• Y: discrete

Definition 10.21 The random variable Y is related to the random variable X
through a conditional distribution p(y|x) defined for all x means



The Model of a “Channel” with 
Continuous Output

X Y

Definition 10.22 The random variable Y is related to the random variable X
through a conditional pdf f(y|x) defined for all x means

f(y|x)

• X: general

• Y: continuous



Definition 10.23 Let X and Y be jointly distributed random variables where
Y is continuous and is related to X through a conditional pdf f(y|x) defined
for all x. The conditional differential entropy of Y given {X = x} is defined as

h(Y |X = x) = −
∫

SY (x)
f(y|x) log f(y|x)dy

and the conditional differential entropy of Y given X is defined as

h(Y |X) = −
∫

SX

h(Y |X = x)dF (x) = −E log f(Y |X)

Conditional Differential Entropy



Proposition 10.24 Let X and Y be jointly distributed random variables where
Y is continuous and is related to X through a conditional pdf f(y|x) defined
for all x. Then f(y) exists and is given by

f(y) =
∫

f(y|x)dF (x)

Proof

1.
FY (y) = FXY (∞, y) =

∫ ∫ y

−∞
fY |X(v|x) dv dF (x)

2. Since ∫ ∫ y

−∞
fY |X(v|x) dv dF (x) = FY (y) ≤ 1

fY |X(v|x) is absolutely integrable.

3. By Fubini’s theorem, the order of integration in FY (y) can be exchanged,
and so

FY (y) =
∫ y

−∞

[∫
fY |X(v|x)dF (x)

]
dv

proving the proposition.



Proposition 10.24 says that if Y is related to X through a conditional pdf f(y|x),
then the pdf of Y exists regardless of the distribution of X. The next proposition
is its vector generalization.

Proposition 10.25 Let X and Y be jointly distributed random vectors where
Y is continuous and is related to X through a conditional pdf f(y|x) defined
for all x. Then f(y) exists and is given by

f(y) =
∫

f(y|x)dF (x)



Mutual Information

Definition 10.26 Let X and Y be jointly distributed random variables where
Y is continuous and is related to X through a conditional pdf f(y|x) defined
for all x.

1. The mutual information between X and Y is defined as

I(X;Y ) =
∫

SX

∫

SY (x)
f(y|x) log

f(y|x)
f(y)

dy dF (x)

= E log
f(Y |X)
f(Y )

2. When both X and Y are continuous and f(x, y) exists,

I(X;Y ) = E log
f(Y |X)
f(Y )

= E log
f(X, Y )

f(X)f(Y )



Remarks

• With Proposition 10.26, the mutual information is defined when one r.v.
is general and the other is continuous.

• In Ch. 2, the mutual information is defined when both r.v.’s are discrete.

• Thus the mutual information is defined when each of the r.v.’s can be
either discrete or continuous.



Conditional Mutual Information

Proposition 10.27 Let X, Y , and T be jointly distributed random variables
where Y is continuous and is related to (X,T ) through a conditional pdf f(y|x, t)
defined for all x and t. The mutual information between X and Y given T is
defined as

I(X;Y |T ) =
∫

ST

I(X;Y |T = t)dF (t) = E log
f(Y |X, T )
f(Y |T )

where

I(X;Y |T = t) =
∫

SX(t)

∫

SY (x,t)
f(y|x, t) log

f(y|x, t)
f(y|t) dy dF (x|t)



Interpretation of I(X;Y)

• Assume f(x, y) exists and is continuous.

• For all integer i and j, define the intervals

Ai
x = [ i∆, (i + 1)∆) and Aj

y = [ j∆, (j + 1)∆)

and the rectangle
Ai,j

xy = Ai
x ×Aj

y

• Define discrete r.v.’s
{

X̂∆ = i if X ∈ Ai
x

Ŷ∆ = j if Y ∈ Aj
y

• X̂∆ and Ŷ∆ are quantizations of X and Y , resp.

• For all i and j, let (xi, yj) ∈ Ai
x ×Aj

y.



i∆ (i + 1)∆

(j + 1)∆

j∆

Ai,j
xy

︸︷︷︸
Ai

x

Aj
y{



• Then

I(X̂∆; Ŷ∆)

=
∑

i

∑

j

Pr{(X̂∆, Ŷ∆) = (i, j)} log
Pr{(X̂∆, Ŷ∆) = (i, j)}

Pr{X̂∆ = i}Pr{Ŷ∆ = j}

≈
∑

i

∑

j

f(xi, yj)∆2 log
f(xi, yj)∆2

(f(xi)∆)(f(yj)∆)

=
∑

i

∑

j

f(xi, yj)∆2 log
f(xi, yj)

f(xi)f(yj)

≈
∫ ∫

f(x, y) log
f(x, y)

f(x)f(y)
dxdy

= I(X;Y )

• Therefore, I(X;Y ) can be interpreted as the limit of I(X̂∆; Ŷ∆) as ∆→ 0.

• This interpretation continues to be valid for general distribution for X
and Y .



Definition 10.28 Let Y be a continuous random variable and X be a discrete
random variable, where Y is related to X through a conditional pdf f(y|x). The
conditional entropy of X given Y is defined as

H(X|Y ) = H(X)− I(X;Y )

Proposition 10.29 For two random variables X and Y ,

1. h(Y ) = h(Y |X) + I(X;Y ) if Y is continuous

2. H(Y ) = H(Y |X) + I(X;Y ) if Y is discrete.

Proposition 10.30 (Chain Rule)

h(X1, X2, · · · , Xn) =
n∑

i=1

h(Xi|X1, · · · , Xi−1)



Theorem 10.31
I(X;Y ) ≥ 0,

with equality if and only if X is independent of Y .

Corollary 10.32
I(X;Y |T ) ≥ 0,

with equality if and only if X is independent of Y conditioning on T .

Corollary 10.33 (Conditioning Does Not Increase Differential En-
tropy)

h(X|Y ) ≤ h(X)

with equality if and only if X and Y are independent.

Remarks For continuous r.v.’s,

1. h(X), h(X|Y ) ≥ 0 DO NOT generally hold;

2. I(X;Y ), I(X;Y |Z) ≥ 0 always hold.



10.4 AEP for Continuous Random 
Variables 

Theorem 10.35 (AEP I for Continuous Random Variables)

− 1
n

log f(X)→ h(X)

in probability as n→∞, i.e., for any ε > 0, for n sufficiently large,

Pr
{∣∣∣∣−

1
n

log f(X)− h(X)
∣∣∣∣ < ε

}
> 1− ε.

Proof WWLN.



Definition 10.36 The typical set Wn
[X]ε with respect to f(x) is the set of

sequences x = (x1, x2, · · · , xn) ∈ Xn such that
∣∣∣∣−

1
n

log f(x)− h(X)
∣∣∣∣ < ε

or equivalently,

h(X)− ε < − 1
n

log f(x) < h(X) + ε

where ε is an arbitrarily small positive real number. The sequences in Wn
[X]ε are

called ε-typical sequences.

Empirical Differential Entropy:

− 1
n

log f(x) = − 1
n

n∑

k=1

log f(xk)

The empirical differential entropy of a typical sequence is close to the true
differential entropy h(X).



Definition 10.37 The volume of a set A in !n is defined as

Vol(A) =
∫

A
dx

Theorem 10.38 The following hold for any ε > 0:

1) If x ∈ Wn
[X]ε, then

2−n(h(X)+ε) < f(x) < 2−n(h(X)−ε)

2) For n sufficiently large,

Pr{X ∈ Wn
[X]ε} > 1− ε

3) For n sufficiently large,

(1− ε)2n(h(X)−ε) < Vol(Wn
[X]ε) < 2n(h(X)+ε)



Remarks

1. The volume of the typical set is approximately equal to 2nh(X) when n is
large.

2. The fact that h(X) can be negative does not incur any difficulty because
2nh(X) is always positive.

3. If the differential entropy is large, then the volume of the typical set is
large.



10.5 Informational Divergence

Definition 10.39 Let f and g be two pdf’s defined on !n with supports Sf

and Sg, respectively. The informational divergence between f and g is defined
as

D(f‖g) =
∫

Sf

f(x) log
f(x)
g(x)

dx = Ef log
f(X)
g(X)

,

where Ef denotes expectation with respect to f .

Remark If D(f‖g) < ∞, then

Sf \ Sg = {x : f(x) > 0 and g(x) = 0}

has zero Lebesgue measure, i.e., Sf is essentially a subset of Sg.



Theorem 10.40 (Divergence Inequality) Let f and g be two pdf’s defined
on !n. Then

D(f‖g) ≥ 0,

with equality if and only if f = g a.e.



10.6 Maximum Differential Entropy 
Distributions

The maximization problem:

Maximize h(f) over all pdf f defined on a subset S of !n, subject
to ∫

Sf

ri(x)f(x)dx = ai for 1 ≤ i ≤ m (1)

where Sf ⊂ S and ri(x) is defined for all x ∈ S.



Theorem 10.41 Let
f∗(x) = e−λ0−

Pm
i=1 λiri(x)

for all x ∈ S, where λ0, λ1, · · · , λm are chosen such that the constraints in (1)
are satisfied. Then f∗ maximizes h(f) over all pdf f defined on S, subject to
the constraints in (1).

Corollary 10.42 Let f∗ be a pdf defined on S with

f∗(x) = e−λ0−
Pm

i=1 λiri(x)

for all x ∈ S. Then f∗ maximizes h(f) over all pdf f defined on S, subject to
the constraints

∫

Sf

ri(x)f(x)dx =
∫

S
ri(x)f∗(x)dx for 1 ≤ i ≤ m



Theorem 10.43 Let X be a continuous random variable with EX2 = κ. Then

h(X) ≤ 1
2

log(2πeκ),

with equality if and only if X ∼ N (0, κ).

Proof

1. Maximize h(f) subject to the constraint
∫

x2f(x)dx = EX2 = κ.

2. Then by Theorem 10.41, f∗(x) = ae−bx2
, which is the Gaussian distribu-

tion with zero mean.

3. In order to satisfy the second moment constraint, the only choices are

a =
1√
2πκ

and b =
1
2κ



An Application of Corollary 10.42

Consider the pdf of N (0, σ2):

f∗(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

1. Write
f(x) = e−λ0e−λ1x2

2. Then f∗ maximizes h(f) over all f subject to
∫

x2f(x)dx =
∫

x2f∗(x)dx = EX2 = σ2



Theorem 10.44 Let X be a continuous random variable with mean µ and
variance σ2. Then

h(X) ≤ 1
2

log(2πeσ2)

with equality if and only if X ∼ N (µ, σ2).

Proof

1. Let X ′ = X − µ.

2. Then EX ′ = 0 and E(X ′)2 = E(X − µ)2 = varX = σ2.

3. By Theorems 10.14 and 10.43,

h(X) = h(X ′) ≤ 1
2

log(2πeσ2)

4. Equality holds if and only if X ′ ∼ N (0, σ2), or X ∼ N (µ, σ2).



Remark Theorem 10.43 says that with the constraint EX2 = κ, the differential
entropy is maximized by the distribution N (0, κ). If we impose the additional
constraint that EX = 0, then varX = EX2 = κ. By Theorem 10.44, the
differential entropy is still maximized by N (0, κ).



Differential Entropy and Spread

1. From Theorem 10.44, we have

h(X) ≤ 1
2

log(2πeσ2) = log σ +
1
2

log(2πe)

2. h(X) is at most equal to the logarithm of the standard deviation plus a
constant.

3. h(X)→∞ as σ → 0.



Theorem 10.45 Let X be a vector of n continuous random variables with
correlation matrix K̃. Then

h(X) ≤ 1
2

log
[
(2πe)n|K̃|

]

with equality if and only if X ∼ N (0, K̃).

Theorem 10.46 Let X be a vector of n continuous random variables with
mean µ and covariance matrix K. Then

h(X) ≤ 1
2

log [(2πe)n|K|]

with equality if and only if X ∼ N (µ, K).


