
IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 1

Mining Order-Preserving Submatrices from Data
with Repeated Measurements

Kevin Y. Yip, Ben Kao, Xinjie Zhu, Chun Kit Chui, Sau Dan Lee and David W. Cheung

Abstract—Order-preserving submatrices (OPSM’s) have been shown useful in capturing concurrent patterns in data when the relative
magnitudes of data items are more important than their exact values. For instance, in analyzing gene expression profiles obtained
from microarray experiments, the relative magnitudes are important both because they represent the change of gene activities across
the experiments, and because there is typically a high level of noise in data that makes the exact values untrustable. To cope with
data noise, repeated experiments are often conducted to collect multiple measurements. We propose and study a more robust version
of OPSM, where each data item is represented by a set of values obtained from replicated experiments. We call the new problem
OPSM-RM (OPSM with repeated measurements). We define OPSM-RM based on a number of practical requirements. We discuss the
computational challenges of OPSM-RM and propose a generic mining algorithm. We further propose a series of techniques to speed
up two time-dominating components of the algorithm. We show the effectiveness and efficiency of our methods through a series of
experiments conducted on real microarray data.

Index Terms—H.2.8.d Data mining, H.2.8.a Bioinformatics, H.2.8.i Mining methods and algorithms

F

1 INTRODUCTION

Order-Preserving Submatrix (OPSM) is a data pattern
particularly useful for discovering trends in noisy data.
The OPSM problem applies to a matrix of numerical
data values. The objective is to discover a subset of
attributes (columns) over which a subset of tuples (rows)
exhibit similar rises and falls in the tuples’ values. For
example, when analyzing gene expression data from
microarray experiments, genes (rows) with concurrent
changes of mRNA expression levels across different time
points (columns) may share the same cell-cycle related
properties [2]. Due to the high level of noise in typical
microarray data, it is usually more meaningful to com-
pare the relative expression levels of different genes at
different time points rather than their absolute values.
Genes that exhibit simultaneous rises and falls of their
expression values across different time points or experi-
ments reveal interesting patterns and knowledge. As an
example, Figure 1 shows the expression levels (y-axis)
of two different sets of genes under four experimental
conditions (x-axis) in the two graphs. The two sets of

• K. Y. Yip is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong and the Department of
Molecular Biophysics and Biochemistry, Yale University, New Haven,
Connecticut, USA.
E-mail: kevinyip@cse.cuhk.edu.hk

• B. Kao, X. Zhu, C. K. Chui, S. D. Lee and D. W. Cheung are with the
Department of Computer Science, University of Hong Kong, Hong Kong.
E-mail: {kao, xjzhu, ckchui, sdlee, dcheung}@cs.hku.hk

A preliminary version of this paper was published in the Eighth IEEE
International Conference on Data Mining (ICDM’08) [1]. The main additions
in this extended version are: (1) An efficient data structure for candidate
verification (Section 3.2.2); (2) A tighter version of HTBound (Section 6); (3)
Completely new sets of experiments that involve the new data structure, which
scale much better to larger datasets (Section 7.2); and (4) New experiments
that show the mined OPSM’s are potentially more biologically significant
when repeated measurements are considered in the OPSM model (Section 7.1).

genes belong to different functional categories. From
the figure we see that genes of the same group exhibit
similar expression patterns even though their absolute
expression values under the same experiment vary.

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

gal1RG1 gal2RG1 gal3RG1 gal4RG1
Experiment (column)

E
xp

re
ss

io
n

le
ve

l

YDR073W
YDR088C
YDR240C
YDR473C

0

0.2

0.4

0.6

0.8

1

1.2

gal1RG1 gal2RG1 gal3RG1 gal4RG1
Experiment (column)

E
xp

re
ss

io
n

le
ve

l

YHR092C
YHR094C
YHR096C
YJL214W

Fig. 1. Concurrent expression patterns of two sets of
genes from different functional categories

The original OPSM problem was first proposed by
Ben-Dor et al. [3]:

Definition 1: Given an n × m matrix (dataset) D, an
order-preserving submatrix (OPSM) is a pair (R,P),
where R is a subset of the n rows (represented by a
set of row ids) and P is a permutation of a subset of
the m columns (represented by a sequence of column
ids) such that for each row in R, the data values are
monotonically increasing with respect to P , i.e., DiPj <
DiPj′ ,∀i ∈ R, 1 ≤ j < j′ ≤ |P |, where Drc denotes the
value at row r and column c of D.

For example, Table 1 shows a dataset with 4 rows and
4 columns. The values of rows 2, 3 and 4 rise from a to
b, so ({2, 3, 4}, 〈a, b〉) is an OPSM. For simplicity, in this
study we assume that all values in a row are unique.

We say that a row supports a permutation if its values
increase monotonically with respect to the permutation.
In the above example, rows 2, 3 and 4 support the
permutation 〈a, b〉, but row 1 does not. For a fixed

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 2

TABLE 1
A dataset without repeated measurements

a b c d
row 1 49 38 115 82
row 2 67 96 124 48
row 3 65 67 132 95
row 4 81 115 133 62

dataset, the rows that support a permutation can be
unambiguously identified. In the following discussion,
we will refer to an OPSM simply by its permutation,
which will also be called a pattern.

An OPSM is said to be frequent if the number of
supporting rows is not less than a support threshold,
ρ [4]. Given a dataset, the basic OPSM mining problem
is to identify all frequent OPSM’s. In the gene expression
context, these OPSM’s correspond to groups of genes
that have similar activity patterns, which may suggest
shared regulatory mechanisms and/or protein functions.

In microarray experiments, each value in the dataset
is a physical measurement subject to different kinds of
errors. A drawback of the basic OPSM mining problem is
that it is sensitive to noisy data. In our previous example,
if the value of column a is slightly increased in row 3,
say from 65 to 69, then row 3 will no longer support the
pattern 〈a, b〉, but will support 〈b, a〉 instead.

To combat errors, experiments are often repeated
and multiple measured values (called replicates) are
recorded. The replicates allow a better estimate of the ac-
tual physical quantity. Indeed, as the cost of microarray
experiments has been dropping, research groups have
been obtaining replicates to strike for higher data quality.
For example, in some of the microarray datasets we
use in our study, each experiment is repeated 3 times
to produce 3 measurements of each data point. Studies
have clearly shown the importance of having multiple
replicates in improving data quality [5].

Different replicates, however, may support different
OPSM’s. For example, Table 2 shows a dataset with two
more replicates added per experiment. From this dataset,
we see that it is no longer clear whether row 3 supports
the 〈a, b〉 pattern. For instance, while the replicates a1, b1

support the pattern, the replicates a1, b2 do not.

TABLE 2
A dataset with repeated measurements

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

row 1 49 55 80 38 51 81 115 101 79 82 110 50
row 2 67 54 130 96 85 82 124 92 94 48 37 32
row 3 65 49 62 67 39 28 132 119 83 95 89 64
row 4 81 83 105 115 110 87 133 108 105 62 52 51

Our example illustrates that the original OPSM def-
inition is not robust against noisy data. It also fails to
take advantage of the additional information provided
by replicates. There is thus a need to revise the definition
of OPSM to handle repeated measurements. Such a
definition should satisfy the following requirements:

1) If a pattern is supported by all combinations of
the replicates of a row, the row should contribute
a high support to the pattern. For example, for
row 3, the values of column b are clearly smaller
than those of column c. All 3 × 3 = 9 replicate
combinations of b and c values (b1, c1), (b1, c2), ...,
(b3, c3) support the 〈b, c〉 pattern. Row 3 should
thus strongly support 〈b, c〉.

2) If the value of a replicate largely deviates from
other replicates, it is probably due to error. The
replicate should not severely affect the support of
a given pattern. For example, we see that row 2
generally supports the pattern 〈a, c〉 if we ignore a3,
which is abnormally large (130) when compared to
a1 (67) and a2 (54), and is thus likely an error. The
support of 〈a, c〉 contributed by row 2 should only
be mildly reduced due to the presence of a3.

3) If the replicates largely disagree on their support
of a pattern, the overall support should reflect the
uncertainty. For example, in row 4, the values of
b and c are mingled. Thus, row 4 should neither
strongly support 〈b, c〉 nor 〈c, b〉.

The first two requirements can be satisfied by summa-
rizing the replicates by robust statistics such as medians,
and mining the resulting dataset using the original defi-
nition of OPSM. However, the third requirement cannot
be satisfied by any single summarizing statistic. This is
because under the original definition, a row can only
either fully support or fully not support a pattern, and
thus the information of uncertainty is lost. To tackle this
problem, we propose a new definition of OPSM and the
corresponding mining problem based on the concept of
fractional support:

Definition 2: The fractional support si(P) of a pattern
P contributed by a row i is the number of replicate
combinations of row i that support the pattern, divided
by the total number of replicate combinations of the
columns in P .

For example, for row 1, the pattern 〈a, b, d〉 is
supported by 8 replicate combinations: 〈a1, b2, d1〉,
〈a1, b2, d2〉, 〈a1, b3, d1〉, 〈a1, b3, d2〉, 〈a2, b3, d1〉, 〈a2, b3, d2〉,
〈a3, b3, d1〉, and 〈a3, b3, d2〉 out of 33 = 27 possible com-
binations. The fractional support s1(〈a, b, d〉) is therefore
8/27. We use sni(P) and sdi(P) to denote the numer-
ator and the denominator of si(P), respectively. In our
example, sn1(〈a, b, d〉) = 8 and sd1(〈a, b, d〉) = 27.

If we use fractional support to indicate how much
a row supports an OPSM, all the three requirements
we stated above are satisfied. Firstly, if all replicate
combinations of a row support a certain pattern, the
fractional support contributed will be one, the maximum
fractional support. Secondly, if one replicate of a column
j deviates from the others, the replicate can at most
change the fractional support by 1

r(j) , where r(j) is the
number of replicates of column j. This has small effects
when the number of replicates r(j) is large. Finally, if
only a fraction of the replicate combinations supports
a pattern, the resulting fractional support will be fuzzy

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 3

(away from 0 and 1), which reflects the uncertainty.
Based on the definition of fractional support, the

support of a pattern P is defined as the sum of the
fractional supports of P contributed by all the rows:
s(P) =

∑
i si(P). A pattern P is frequent if its support

is not less than a given support threshold ρ. Our new
OPSM mining problem OPSM-RM (OPSM with repeated
measurements) is to identify all frequent patterns in a
data matrix with replicates:

Definition 3: Given a dataset, the OPSM-RM problem
asks for the set of all OPSMs each of which having a total
fractional support from all rows not less than a given
support threshold.

From the definition of fractional support, we can
observe the combinatorial nature of the OPSM-RM prob-
lem — the number of replicate combinations grows
exponentially with respect to the pattern length. The
objective of this work is to derive efficient algorithms for
mining OPSM-RM. By proving a number of interesting
properties and theorems, we propose pruning techniques
that can significantly reduce mining time.

2 RELATED WORK
The conventional order-preserving submatrix (OPSM)
mining problem was motivated and introduced by Ben-
Dor et al. [3] to analyze gene expression data without
repeated measurements. They proved that the problem
is NP hard. A greedy heuristic mining algorithm was
proposed, which does not guarantee the return of all
OPSM’s or the best OPSM’s.

Since then, mining efficiency has been the main re-
search issue. Cheung et al. [4] proved the monotonic and
transitive properties of OPSM’s. Based on the proper-
ties, a candidate set generation-and-test framework was
proposed to mine all OPSM’s. It makes use of a new
data structure, the head-tail trees, for efficient candidate
generation. The study by Gao et al. [6] concerned the
high computational cost of mining OPSM’s from massive
data. They defined the twig clusters, which are OPSM’s
with large numbers of columns and naturally low sup-
ports. They proposed a KiWi framework to efficiently
mine the twig clusters. In the study by Bleuler and
Zitzler [7], the problem of mining OPSM’s over multiple
time points was considered. There are different exper-
imental conditions in each time point, and a pattern
is required to be consistent over the time points. An
evolutionary algorithm was proposed to explore the
search space. None of the above studies, however, handle
data with repeated measurements.

The OP-clustering approach by Liu and Wang [8]
generalizes the OPSM model by grouping attributes into
equivalent classes. A depth-first search algorithm was
proposed for mining all error-tolerated clusters. The
model attempts to handle error in single expression
values rather than exploiting extra information obtained
from repeated measurements.

More generally, OPSM is related to the problems of
pattern-based subspace clustering [9], biclustering [10],

[11] and sequence mining [12], [13], all of which look
for patterns in specific subspaces/subsequences. Com-
parisons of the different methods have been reported by
other groups previously [14], [15].

3 BASIC ALGORITHM

In this section we discuss a straightforward algorithm
for solving the OPSM-RM problem. We use an alterna-
tive representation of datasets that is more convenient
for our discussion [6]. For each row of a dataset, we
sort all the values in ascending order, and record the
resulting column names as a data sequence. For example,
row 1 in Table 2 is represented by the data sequence
〈b, a, d, b, a, c, a, b, d, c, d, c〉. The advantage of such a rep-
resentation is that given a row i and a pattern P , the
count sni(P) is equivalent to the number of subse-
quences in the data sequence that match P . For example,
sn1(〈a, b, d〉) = 8 because there are 8 subsequences in
〈b, a, d, b, a, c, a, b, d, c, d, c〉 that match the pattern 〈a, b, d〉.
In the following discussion, when we mention a row, we
refer to the row’s sorted data sequence.

Theorem 1: Let P1 and P2 be two patterns such that P1

is a subsequence of P2. For any row i, si(P2) ≤ si(P1).
Proof: It is sufficient to show that the theorem is true

for patterns whose lengths differ by 1, i.e., |P2| = |P1|+1.
We can repeat the argument to prove the theorem for
patterns of arbitrary lengths. Let j be the column that
is in P2 but not in P1, and r(j) be the number of
replicates in column j. Each subsequence of row i that
matches P1 can potentially be extended to match P2 by
inserting a column j replicate. Since there are only r(j)
such replicates, at most r(j) such extensions are possible.
Hence, sni(P2) ≤ r(j) · sni(P1). On the other hand,
the total number of possible replicate combinations is
multiplied by a factor of r(j), i.e., sdi(P2) = r(j)·sdi(P1).
Therefore si(P2) = sni(P2)

sdi(P2)
≤ r(j)·sni(P1)

r(j)·sdi(P1)
= si(P1).

The above monotonic property implies the following
Apriori property:

Corollary 1: Let P1 and P2 be two patterns such that
P1 is a subsequence of P2. P2 is frequent only if P1 is
frequent.

Proof: If P1 is infrequent, s(P1) < ρ. By Theorem 1,
si(P2) ≤ si(P1) for all row i. So, s(P2) =

∑
i si(P2) ≤∑

i si(P1) = s(P1) < ρ. Pattern P2 is therefore infrequent.

The Apriori property ensures that an OPSM can be
frequent only if all its subsequences (i.e., sub-patterns)
are frequent. This suggests an iterative mining algorithm
as shown in Figure 2.

As in frequent itemset mining [16], the algorithm
iteratively generates the set Candk of length-k candidate
patterns, and verifies their supports. Patterns that pass
the support threshold are added to the set Freqk, which
are then used to generate candidates of the next iteration.

We remark that in the original OPSM problem (with-
out data replicates), all candidates are by definition fre-
quent and thus support verification is not needed. This

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 4

Algorithm OPSM-RM
INPUT: raw data matrix D, support threshold ρ
OUTPUT: the set of all frequent patterns
1: Transform D into sequence dataset D′

2: Cand2 := {all possible patterns of length 2}
3: k = 2
4: Freqk := verify(Candk, D′, ρ)
5: while Freqk 6= ∅ do
6: k := k + 1
7: Candk := generate(Freqk−1)
8: Freqk := verify(Candk, D′, ρ)
9: end while
10: return Freq2 ∪ ... ∪ Freqk

Fig. 2. An Apriori algorithm for OPSM-RM

is due to the transitivity property: if a row supports both
patterns 〈a, b, c〉 and 〈b, c, d〉, the value at column a must
be smaller than that at column d, and so it must also
support 〈a, b, c, d〉. However, when there are replicates,
the fractional support of a pattern can be smaller than
those of all its sub-patterns. For example, the sequence
〈b, a, d, b, a, c, a, b, d, c, d, c〉 has a fractional support of 4/9
for 〈a, b〉, 8/9 for 〈b, c〉 and 8/9 for 〈a, c〉, but the support
for 〈a, b, c〉 is only 9/27 = 3/9, which is smaller than
its supports of all three length-2 sub-patterns. Support
verification is thus necessary for OPSM-RM.

The efficiency of the algorithm depends on the two
core functions, generate and verify. For example, signif-
icant speed-up can be achieved if effective pruning tech-
niques are applied so that generate produces a smaller
set of candidate patterns. In the following we describe
the basic algorithms for implementing the generate and
verify functions.

3.1 Generate
A convenient way to generate length-k candidates from
length-(k-1) frequent patterns is to use the head-tail trees.
We briefly describe the data structure here. Readers are
referred to [4] for details. For each length-(k-1) frequent
pattern P , two length-(k-2) sub-patterns are derived, a
head pattern P1 and a tail pattern P2. P1 is obtained from
P by removing the last symbol of P while P2 is obtained
by removing the first symbol. For example, if P = 〈a, b, c〉
then P1 = 〈a, b〉 and P2 = 〈b, c〉. All the head patterns
derived from all the length-(k-1) frequent patterns are
collected and are stored as strings in a compressed data
structure. For each head pattern P1, a reference to all the
frequent patterns from which P1 is derived is also stored.
In our implementation, we use a prefix tree [17] to store
the head patterns. We call it the head tree. Similarly, tail
patterns are collected and are stored in another prefix
tree called the tail tree.

To generate length-k candidates, the two trees are
traversed in parallel to identify frequent patterns with
common sub-strings. For example, if both P1 = 〈a, b, c〉

and P2 = 〈b, c, d〉 are frequent patterns, then the common
sub-string 〈b, c〉 will appear in both the head tree (due to
P2) and the tail tree (due to P1). References to P1 and P2

are retrieved. The two patterns are then joined to derive
the candidate 〈a, b, c, d〉.

Notice that since the pattern 〈a, b, c, d〉 is frequent only
if all four length-3 sub-patterns of it are frequent, one
may also check if 〈a, b, d〉 and 〈a, c, d〉 are frequent before
adding 〈a, b, c, d〉 to the candidate set. This can be done
by following the corresponding paths of their heads in
the head tree and check if they are linked from the leaf
nodes. Although this checking can potentially further
reduce the number of candidates, the number of patterns
to check is enormous when k is large, and the saving
may not be worth the cost. This additional checking is
thus not performed in our implementation.

3.2 Verify
To verify whether a candidate pattern is frequent, we
need to compute its total fractional support. Directly
computing the support from the database D would
require a lot of database scans and thus take a long time.
The computational overhead can be broken down into
two parts: the time to locate and access the relevant rows
for each pattern, and the time to compute the fractional
support of each row.

In Section 3.2.1, we briefly describe a straight-forward
verification procedure that uses a prefix tree. While the
use of the tree helps avoid excessive access of irrelevant
patterns, it is not very efficient in computing fractional
support from individual rows. In Section 3.2.2, we pro-
pose a data structure called counting array that can
greatly speed up the computation of fractional support.
Finally, in Section 3.2.3, we describe a data compression
scheme that can further improve the efficiency of the
verification process.

3.2.1 Prefix-tree
Candidate patterns obtained from generate are stored as
strings in a prefix tree. To count the candidates’ supports,
we scan the dataset. For each row i, we traverse the
candidate tree and locate all candidate patterns that are
subsequences of the data sequence of row i. For each
such candidate pattern P , we increment its support s(P)
by si(P). Since the process traverses only the portion of
the tree that contains subsequences of row i, it is more
efficient than a brute-force database scan. However, since
each column label could appear multiple times in row i
due to the replicates, support counting requires a lot of
back-tracking during tree traversal, which is not efficient.
To avoid back-tracking completely, we propose a data
structure called counting array for computing the exact
support efficiently.

3.2.2 Counting array
Our goal is to compute the fractional support of a pattern
P by row i, s(P) = sni(P)

sdi(P) . Since the denominator

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 5

sdi(P) =
∏|P |

j=1 r(P [j]) is simply the product of the
number of replicates of the involved columns, the only
difficulty is the computation of the numerator sni(P).

For each suffix P ′ of P , we construct a counting array
to store (1) the positions of the first label in P ′ in the
sequence of row i, and (2) the number of occurrences
of P ′ starting from that position. We illustrate it by an
example. Suppose the sequence for row i is

1 2 3 4 5 6 7 8 9 10 11 12
Si = 〈 b, c, a, a, a, b, d, c, d, b, c, d 〉

(label positions are shown for ease of reference), P =
〈a, b, c, d〉, and we want to calculate sni(P). We first con-
sider the first (i.e., shortest) suffix of P , d. The counting
array is:

d : 7(3), 9(2), 12(1)

The array contains three entries. The first one indicates
that the first d occurs at position 7, and there are in total 3
occurrences of d in i from position 7 onwards. Similarly,
the second and third d’s occur at positions 9 and 12,
respectively, and there are in total 2 and 1 occurrences
from the two positions onwards.

Next, we consider the second suffix of P , cd. The
counting array is:

cd : 2(6), 8(3), 11(1)

Again, the three entries indicate that there are three
c’s in the sequence, at positions 2, 8 and 11, respectively.
Also, from these three positions onwards, there are 6, 3
and 1 occurrences of cd.

The counting arrays for the remaining two suffixes,
bcd and abcd(= P) are:

bcd : 1(10), 6(4), 10(1)

abcd : 3(12), 4(8), 5(4)

With the counting array for abcd, sni(P) is simply the
value in parentheses of its first entry, i.e., 12. This is
because the value states the number of times P occurs
in the sequence from the position at which the first a
occurs onwards — precisely the definition of sni(P).

The reason that we need the counting arrays for all
suffixes is that each array can be constructed easily from
the previous one. For example, to construct the array for
abcd, we start from the last entry and work backwards.
Suppose we already know that the last occurrence of
a in the sequence is at position 5 (which can be easily
pre-determined and cached before starting the mining
process by a single scan of the sequence), we want to
know how many abcd’s are there from this position
onwards. This is equivalent to asking how many bcd’s
are there after the position. From the second entry of the
array for bcd, we know the answer is 4. Next, we work
on the second entry of the abcd array. The question is
how many occurrences of abcd are there from position
4 onwards. This is equivalent to asking the number of
occurrences of bcd after position 4 (which will be prefixed

by this a to become the whole abcd pattern), plus the
number of occurrences of abcd after position 4. In other
words, it is the sum of the second entry of the bcd array,
and the third entry of the abcd array, which is equal to
4 + 4 = 8. Finally, we work on the first entry of the abcd
array. Using the previous logic, the entry is equal to the
second entry of the bcd array, plus the second entry of
the abcd array, which is equal to 4 + 8 = 12.

In general, the value of each entry of an array can be
computed by summing a proper entry in the previous
array and the next entry of the current array. The proper
entry in the previous array is the first one with a position
after the current position. Algorithmically, a pointer can
be used to keep track of this proper entry. Let CA(P) be
the counting array for pattern P , where for each entry
k, CA(P)[k].pos is the occurrence position of the k-th
P [1] in the sequence and CA(P)[k].count is the number
of occurrences of P from that position onwards, then
CA(P) is constructed using the following algorithm:

Function Verify
INPUT:

CA(P) with all CA(P)[i].pos filled but not CA(P)[i].count
Completely filled CA(P ′) where P ′ is the tail of P

OUTPUT:
Completely filled CA(P)

1: ptr := |CA(P ′)|
2: for k = |CA(P)| downto 1
3: while ptr > 0 and CA(P)[k].pos > CA(P ′)[ptr].pos
4: ptr := ptr − 1
5: end while
6: CA(P)[k].count := CA(P ′)[ptr + 1].count
7: if k 6= |CA(P)| // No next entry for the last entry
8: CA(P)[k].count := CA(P)[k].count+

CA(P)[k + 1].count
9: end if
10: end for
11: return CA(P)

Fig. 3. Computing fractional support of row i for pattern
P using the counting arrays

Assuming that all label positions are cached, the algo-
rithm has a time complexity of O(r(P [1])), and does not
require scanning the dataset. Although in our illustration
the counting arrays of all suffixes are involved, only
the one for the tail P ′ (which was computed in the
previous iteration when P ′ was the candidate pattern) is
needed in action when computing the fractional support
of P . Therefore the space requirement is O(r(P ′[1])) (the
length of the array) for each candidate pattern P .

3.2.3 Data compression

Support counting can be made even more effi-
cient by pre-compressing data sequences using run-
length encoding. Given a data sequence of a row,

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 6

consecutive occurrences of the same column sym-
bol are replaced by one single symbol and an
occurrence count. For example, the data sequence
〈d, d, d, a, a, b, b, c, c, b, c, a〉 of row 2 in Table 2 is com-
pressed to 〈d(3), a(2), b(2), c(2), b(1), c(1), a(1)〉. The ad-
vantage of compressing data sequences is that the com-
pressed sequences are shorter (in our example, 7 sym-
bols) than the originals (12 symbols). The shorter data
sequences allow more efficient subsequence matching
in support counting. For example, the pattern 〈d, c, a〉
matches the above compressed data sequences two times
(instead of 9 times against the uncompressed sequence):
〈d(3), ., ., c(2), ., ., a(1)〉 and 〈d(3), ., ., ., ., c(1), a(1)〉. To de-
termine sni(P), we multiply the occurrences for each
match and sum the results. In the above example, we
have sn2(〈d, c, a〉) = 3 · 2 · 1 + 3 · 1 · 1 = 9.

4 MINBOUND

From Theorem 1 we know that the support of a pattern
contributed by a row cannot exceed the corresponding
supports of its sub-patterns. We can make use of this
observation to help deduce an upper bound to the
support of a candidate pattern. If this upper bound is less
than the support threshold ρ, the candidate pattern can
be pruned before support verification. Fewer candidates
result in a smaller workload in the verification step, and
thus a more efficient mining algorithm.

In this section we first discuss a simple bounding
technique called MinBound. In the coming sections we
develop a tighter bound by using a more advanced
bounding technique.

Recall that in candidate generation, a candidate pat-
tern P is generated by joining two sub-patterns, the head
P1 and the tail P2. For example, the candidate 〈a, b, c, d〉
is obtained by joining 〈a, b, c〉 and 〈b, c, d〉. Note that
both P1 and P2 must be frequent and therefore their
fractional supports given by each row of the dataset
should have already been previously computed. We can
then determine an upper bound of s(P) by

s(P) =
n∑

i=1

si(P) ≤
n∑

i=1

min{si(P1), si(P2)}.

For example, for row 1 in Table 2, s1(〈a, b, c〉) = 9/27
and s1(〈b, c, d〉) = 7/27. Therefore an upper bound of
s1(〈a, b, c, d〉) is min{9/27, 7/27} = 7/27. Note that the
exact value of s1(〈a, b, c, d〉) is 6/81 = 2/27.

5 COMPUTING SUPPORTS BY HEAD-TAIL AR-
RAYS

The upper bounds derived by MinBound are not very
tight in general. In this section we introduce head-tail
arrays, a data structure that allows the calculation of the
exact support of candidate patterns. Although powerful,
head-tail arrays are very memory demanding and are
thus impractical. Fortunately, the arrays can also be used
to derive fairly tight bounds for the support, in which

case the memory requirements can be substantially re-
duced by maintaining only certain statistics. The details
will be given in Section 6.

Recall that a length-k candidate pattern P is generated
by two length-(k-1) frequent sub-patterns P1 and P2,
which correspond to the head (i.e., P1 = P [1..k-1]) and
tail (i.e., P2 = P [2..k]) of P . Given a row i, our goal is
to compute the fractional support si(P) based on certain
support count information we have previously obtained
about P1 and P2 with respect to row i. To illustrate,
let us use row 1 in Table 2 and P = 〈a, b, c, d〉 as a
running example. Suppose the data sequence of row 1
is as follows:

1 2 3 4 5 6 7 8 9 10 11 12
S1 = 〈 b, a, d, b, a, c, a, b, d, c, d, c 〉

Also, we have P1 = 〈a, b, c〉 and P2 = 〈b, c, d〉. The frac-
tional support si(P) can be computed by constructing
the following two auxiliary arrays.

The head array H concerns the head sub-pattern P1. It
contains r(P [1]) entries (recall that r(P [1]) is the number
of replicates of column P [1]). The l-th entry of the head
array records the number of times P [2..k-1] appears after
the l-th occurrence of P [1] in Si. In our example, P [1] = a
and there are r(P [1]) = r(a) = 3 replicates, so the head
array has 3 entries. Also, P [2..k-1] = 〈b, c〉. The 3 entries
of the head array thus record the number of times 〈b, c〉
occurs in S1 after each of the 3 a’s:

H: 5 2 2

The first entry is 5 because after the first a (position
2), there are 5 occurrences of 〈b, c〉 in S1, at positions
(4, 6), (4, 10), (4, 12), (8, 10) and (8, 12). Similarly, the sec-
ond entry is 2 because after the second a (position 5),
there are 2 occurrences of 〈b, c〉, at (8, 10) and (8, 12).

The tail array T concerns the tail sub-pattern P2. It
consists of sni(P [2..k-1]) entries. The l-th entry records
the number of times P [k] appears after the l-th oc-
currence of P [2..k-1] in Si, where the occurrences are
in lexicographic order according to the positions of
the occurrences. In our example, P [2..k-1] = 〈b, c〉 and
there are sn1(〈b, c〉) = 8 occurrences of 〈b, c〉 in S1. In
lexicographic order, the positions of these occurrences
are: (1, 6), (1, 10), (1, 12), (4, 6), (4, 10), (4, 12), (8, 10) and
(8, 12). The tail array thus has 8 entries, one for each
occurrence of 〈b, c〉. For our example, P [k] = d. Each
entry in the tail array thus records the number of d’s
that appear after the corresponding 〈b, c〉 in S1:

T: 2 1 0 2 1 0 1 0

Since the first occurrence of 〈b, c〉 is (1,6) and there are
2 d’s after it (at positions 9 and 11), the first entry of the
tail array is 2. The other entries are determined similarly.

By arranging the occurrences of 〈b, c〉 in lexicographic
order, we ensure that all occurrences of 〈b, c〉 that appear
after a certain position in S1 are associated with the right-
most entries of the tail array. This helps us determine the
number of occurrences of a pattern. For example, let us
determine the number of 〈a, b, c, d〉 in S1 that start with

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 7

the first a (position 2). From the head array, we know
that there are 5 〈b, c〉’s after the first a. Because of the
lexicographic order, these 5 〈b, c〉’s must be associated
with the 5 rightmost entries of the tail array. According
to the tail array, there are 2, 1, 0, 1, and 0 d’s after those 5
〈b, c〉’s respectively. Therefore, there are 2 + 1 + 0 + 1 + 0
= 4 〈b, c, d〉’s after the first a. Similarly, there is 1 〈b, c, d〉
after the second a and 1 after the third a. In total there
are 4 + 1 + 1 = 6 occurrences of 〈a, b, c, d〉 in S1.

We can generalize the above computation for any head
array H and tail array T . We call the resulting sum the
“HT-sum”, which has the following formula:

HT-sum(H,T) =
|H|∑
p=1

H[p]∑
q=1

T [|T | − q + 1]. (1)

As discussed before, since sdi(P), the total number
of replicate combinations, is given by

∏|P |
j=1 r(P [j]), the

fractional support si(P) = sni(P)/sdi(P) can be readily
determined.

In order to avoid redundant summations of the last
entries of the tail array, we can construct a cumulative
tail array with the same length as the tail array and the
l-th entry being the sum of the last entries of the tail
array starting the l-th one. Since it is easier to explain
various properties using the original tail array, we will
keep using it in our coming discussion, but remark that
the cumulative version is more efficient if we are to
compute the exact support using HT-sum.

6 HTBOUND

In Section 5 we show that given a length-k candidate
pattern P and its generating sub-patterns P1 and P2,
if we have constructed the head array H and the tail
array T , then sni(P) (and thus the fractional support
si(P)) can be computed by HT-sum. However, the tail
array contains sni(P [2..k-1]) entries, which, in the worst
case, is exponential to the pattern’s length. It is thus
impractical to construct or store all the tail arrays. In this
section we show that it is possible to compute an upper
bound of the HT-sum by storing only 3 numbers without
ever constructing the head and tail arrays. We call this
bound the HTBound. Similar to the idea of MinBound,
the HTBound allows us to prune candidate patterns for a
more efficient mining algorithm. We will show at the end
of this section that HTBound is tighter than MinBound.
To better illustrate the concepts, we continue with our
running example considering the data sequence S1, the
length-k candidate pattern P = 〈a, b, c, d〉, its head sub-
pattern P1 = 〈a, b, c〉 and tail sub-pattern P2 = 〈b, c, d〉.

To determine the HTBound of P , we need the fol-
lowing three values, all obtainable in previous iterations
of the mining algorithm. (We show the corresponding
values of our running example in parentheses.)

• sni(P1) (sn1(〈a, b, c〉) = 9). This value has been
obtained in the (k-1)-st iteration. Note that it is also
equal to the sum of the entries in the head array.

• sni(P2) (sn1(〈b, c, d〉) = 7). This value has been
obtained in the (k-1)-st iteration. Note that it is equal
to the sum of the entries in the tail array.

• sni(P [2..k-1]) (sn1(〈b, c〉) = 8). This value has been
obtained in the (k-2)-nd iteration. Note that this
value is equal to the number of entries in the tail
array. Also, no entry in the head array can exceed
this value.

We assume that the number of replicates for each column
is stored as metadata, i.e., we know r(j) for all column j.
In particular, we know r(P [1]) and r(P [k]). Note that the
former equals the number of entries in the head array,
while no entry in the tail array can exceed the latter. In
our example, r(P [1]) = r(a) = 3, so H has 3 entries, and
r(P [k]) = r(d) = 3, so no entry in T exceeds 3.

The above five values thus constrain the sizes, sums
and maxima of H and T . For convenience, we call them
the “constraint counts”. The following property, easily
verifiable by the definition of head array, states another
constraint on H :

Property 1: The entries in the head array H are non-
increasing (from left to right).

Our idea of upper bounding HT-sum(H ,T) is to show
that there exists a pair of arrays H∗ and T ∗ that can
be obtained from H and T through a series of trans-
formations. We will prove that (1) each transformation
will not reduce the HT-sum and hence HT-sum(H,T) ≤
HT-sum(H∗, T ∗); (2) H∗ and T ∗ can be constructed using
solely the constraint counts. Because of (2), H and T need
not be materialized and stored. We will show a closed-
form formula for HT-sum(H∗,T ∗), which serves as an
upper bound of HT-sum(H ,T), in terms of the constraint
counts. The transformations are based on the following
“push” operations:

Definition 4: A push-right operation on an array A
from entry l to entry l′ reduces A[l] by a positive value
v and increases A[l′] by v, where l < l′.

Definition 5: A push-left operation of an array A from
entry l to entry l′ reduces A[l] by one and increases A[l′]
by one, where l′ < l.

Essentially, the push operations push values towards
the right and left of an array, respectively. Here are two
useful properties of the push operations:

Lemma 1: With a fixed head array, each push-right
operation on the tail array T cannot reduce the HT-sum.

Proof: A formal proof is given in our technical re-
port [18]. In summary, in the procedure of computing
the HT-sum (Section 5), for each entry in the head
array, a number of rightmost entries of the tail array are
summed. Since each push-right operation on T transfers
a positive value from an entry to another entry on its
right, the sum cannot be reduced.

Lemma 2: If the tail array is non-increasing, push-left
operations on the head array cannot reduce the HT-sum.

Proof: A formal proof is given in our technical re-
port [18]. Here, we illustrate the proof by an example.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 8

Consider our example head array H = [5, 2, 2]. If we
push-left on H from entry H[3] to H[2] by a value
of 1, we get Ĥ = [5, 3, 1]. In calculating the HT-sum,
the entries H[2] = 2 and H[3] = 2 each requests the
sum of the two rightmost entries in T , i.e., T [t-1] and
T [t] where t = |T |. On the other hand, the entries
Ĥ[2] = 3 and Ĥ[3] = 1 request the sum of the three
rightmost entries in T (i.e., T [t-2..t]) and the value of
the rightmost entry in T (i.e., T [t]), respectively. So the
net difference HT-sum(Ĥ, T) − HT-sum(H,T) = T [t-2]
- T [t-1]. If T is non-increasing, T [t-2] ≥ T [t-1] and thus
HT-sum(H,T) ≤ HT-sum(Ĥ, T).

Note that Lemma 2 is applicable only if the tail array
is non-increasing. In our running example, however, T
does not satisfy this requirement. Fortunately, we can
show that by applying a number of push-right opera-
tions, we can transform T to a T ′ that is non-increasing.
With T ′, Lemma 2 applies, and we can perform a num-
ber of push-left operations to transform H to an H∗.
Finally, we apply push-right operations to transform T ′

to a T ∗. In this transformation process, by Lemmas 1
and 2, we have HT-sum(H,T) ≤ HT-sum(H,T ′) ≤
HT-sum(H∗, T ′) ≤ HT-sum(H∗, T ∗). We can thus use
HT-sum(H∗, T ∗) as an upper bound of sni(P).

To complete the discussion, we need to define the
contents of T ′, H∗ and T ∗, and to show that (1) T ′ so
defined is non-increasing and that it can be obtained by
transforming T via a number of push-right operations;
(2) H∗ can be obtained from H via a number of push-left
operations, each of which preserves the non-increasing
property of the entries, and the content of H∗ so defined
can be derived from the constraint counts; and (3) T ∗

can be obtained from T ′ via a number of push-right
operations and its content so defined can be derived
from the constraint counts. To accomplish the above, we
need to prove a few properties of T first.

Recall that T contains sni(P [2..k-1]) entries and that
the l-th entry of T records the number of P [k] that
appears after the l-th occurrence of P [2..k-1] in the data
sequence Si. In our example, P [2..k-1] = 〈b, c〉 and there
are 8 occurrences of it in S1 at positions (1, 6), (1, 10),
(1, 12), (4, 6), (4, 10), (4, 12), (8, 10) and (8, 12). Let us
group the entries together if they correspond to the same
occurrence of P [2]. In our example, P [2] = b. The three
occurrences of b are positions (1), (4) and (8). So we group
the first 3 entries (which correspond to 〈b, c〉 at (1, 6),
(1, 10), (1, 12)) together. Similarly, the remaining entries
in T are divided into two more groups. We note that
each group forms a segment in the T array, called an
interval. In our example, the intervals are:

T : 2 1 0 2 1 0 1 0

Given an interval I in T , we define the interval average
of I as the average of the entries in I . For example, the
interval averages of the 3 intervals in our example T are
1, 1, and 0.5, respectively. Here is an important property
of the interval averages:

Lemma 3: The interval averages are non-increasing.

Proof: A formal proof is given in our technical
report [18]. In summary, consider any interval I and
its immediate right neighbor interval I ′. We can show
that I must contain I ′ as its rightmost entries (e.g., the
second interval ([2,1,0]) contains the third interval ([1,0])
at its right end). We can also show that if I contains
additional entries (other than those of I ′), the average
of these additional entries must be at least as large as
the interval average of I ′ (e.g., the additional entry [2]
in the second interval is larger than the third interval’s
average, which is 0.5). Therefore, the interval average of
I must not be smaller than the interval average of I ′.
Hence, the interval averages are non-increasing.

With the concept of intervals, we can now define T ′:
Definition 6: Array T ′ is the same as T in terms of

its size, the number of intervals, and the length of each
interval. For each interval I in T ′, the value of each entry
in I is equal to the average value of the corresponding
interval in T .

With our running example, we have,

T : 2 1 0 2 1 0 1 0
T ′: 1 1 1 1 1 1 0.5 0.5

The following lemma states the desired properties of T ′.
Lemma 4: T ′ is (a) non-increasing, and (b) obtainable

from T via a number of push-right operations.
Proof: (a): Within each interval, entries in T ′ share the

same value, so they are non-increasing. Also, the entries
in T ′ contain the interval averages of T . By Lemma 3,
these averages are non-increasing. So, the entries in T ′

are non-increasing across intervals.
(b): A formal proof is given in our technical report [18].

In summary, for each interval of T , we use push-right
operations to obtain the corresponding interval of T ′.
Here we use our example to illustrate. The entries of the
first interval of T are non-increasing, therefore we can
repeatedly move the excessive values above the interval
average from the leftmost entry to the next one by push-
right operations, forming (1, 2, 0) and then (1, 1, 1).

Next, we define H∗. Recall that the l-th entry of
H records the number of times the pattern P [2..k-1]
occurs after the l-th P [1] in Si. So, no entry in H can
exceed sni(P [2..k-1]). H∗ is obtained from H by pushing
as much value to the left as possible, subject to the
constraint that no entry in H∗ exceeds sni(P [2..k-1]). H
and H∗ thus have the same size and sum. Let x be the
number of entries in H , y = sni(P [2..k-1]), and z be the
sum of all entries in H . H∗ is given by

H∗[m] =


y 1 ≤ m ≤ b z

y c
z mod y m = b z

y c+ 1
0 b z

y c+ 2 ≤ m ≤ x

(2)

In our example, x = 3, y = 8, and z = 9. H∗ is thus:

H : 5 2 2
H∗: 8 1 0

Note that x, y, and z can be obtained from the constraint
counts, so H∗ can be constructed directly from these

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 9

counts based on Equation 2 without materializing H .
Lemma 5: H∗ is obtainable from H by a number of

push-left operations that preserve the non-increasing
property.

Proof: There are three types of entries in H∗: (1) 0-
valued entries, all rightmost; (2) max-valued entries, all
leftmost; (3) zero or one remainder entry. For any entry j
of H , we call it a donor, a receiver or a remainder entry
if the j-th entry of H∗ is of type-1, type-2 or type-3,
respectively. We repeatedly perform the following: take
the rightmost donor that is non-zero, and use a push-left
operation to move one from it to the leftmost receiver
that is not equal to the maximum value y yet, or to the
remainder entry if all receivers are already equal to y.
After all the donors are made 0 by the above procedure,
if there is a receiver that is still smaller than y by an
amount w, we push w from the remainder entry to the
receiver to obtain H∗. It is easy to see that each operation
preserves the non-increasing property of the array.

For our example, there is a donor H[3], a receiver
H[1], and a remainder entry H[2]. We first use two push-
left operations to move 2 from H[3] to H[1] to form
(7, 2, 0). Then since the receiver still has not reached the
maximum value y = 8, we use a push-left to move 1
from H[2] to H[1] to form (8, 1, 0), which is equal to H∗.

Finally, we define T ∗ and show how it can be obtained
from T ′. Recall that T has sni(P [2..k-1]) entries with a
sum of sni(P2). Let x = sni(P [2..k-1]) and z = sni(P2).
T ∗ is constructed by distributing an integral amount
of z evenly among the x entries, with the reminder
distributed to the rightmost entries of T ∗. That is,

T ∗[m] =
{

b z
xc 1 ≤ m ≤ x− (z mod x)

d z
xe x− (z mod x) + 1 ≤ m ≤ x

In our example, x = 8 and z = 7. T ∗ is thus:

T ′: 1 1 1 1 1 1 0.5 0.5
T ∗: 0 1 1 1 1 1 1 1

It is obvious that T ∗ can be constructed from the con-
straint counts alone.

Lemma 6: T ∗ can be obtained from T ′ by a number of
push-right operations.

Proof: Since the entries in T ′ are non-increasing and
those in T ∗ are non-decreasing, if T ′[1] = T ∗[1], then all
corresponding entries in the two arrays are equal and
no push-right operations are needed. Otherwise, T ′[1] >
T ∗[1], and we can move the difference T ′[1] − T ∗[1] to
T ′[2] by a push-right operation. If we now ignore the
first entry of each array, the same argument then applies
to the second entry. We can repeat the process to equalize
every pair of corresponding entries of the two arrays.

One can verify the following closed-form formula of
HT-sum(H∗,T ∗). For clarity, let us define a few values:

h1 =
⌊

sni(P [1..k − 1])
sni(P [2..k − 1])

⌋
,

h2 = sni(P [1..k − 1]) mod sni(P [2..k − 1]),

t1 =
⌊

sni(P [2..k])
sni(P [2..k − 1])

⌋
,

t2 = (sni(P [2..k]) mod sni(P [2..k − 1])),

Finally,

HT-sum(H∗, T ∗)
= h1 · sni(P [2..k]) +{

h2(t1 + 1) if h2 ≤ t2
t2(t1 + 1) + (h2 − t2)t1 otherwise (3)

Note that the above computation only requires the con-
straint counts. Therefore HT-sum(H∗,T ∗) can be calcu-
lated without materializing any of H , H∗, T , T ′ or T ∗.
For our running example, h1 = 1, h2 = 1, t1 = 0, t2 =
7, and HT-sum(H∗, T ∗) = 1 × 7 + 1 × (0 + 1) = 8. Our
HTBound thus equals HT-sum(H∗, T ∗)/sd1(P) = 8/81.
Note that the exact support is 6/81 and the MinBound
is 7/27 = 21/81 (see Section 4). HTBound is thus much
tighter than MinBound in this example. This is not mere
coincidence. We can show that the HTBound is indeed
theoretically guaranteed to be better than the MinBound.

Lemma 7: HTBound is always at least as tight as Min-
Bound.
Readers are referred to our technical report [18] for a
formal proof.

6.1 An improved HTBound

Using the ideas developed above, we have also identified
a simpler and slightly tighter HTBound. We keep the
description of how the old HTBound was derived as it
contains a lot of interesting ideas, and its proofs make it
easy to derive the following new bound.

The main ingredient of the improved HTBound is a
new T ∗, which is defined as follows:

Definition 7: Array T ∗ is the same as T in terms of its
size, and each entry is equal to the average of T .

With our running example, we have,

T : 2 1 0 2 1 0 1 0
T ∗: 7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8

Again, it is obvious that T ∗ can be constructed
from the constraint counts alone. Since it is also non-
decreasing, the proof of Lemma 6 is also valid for
showing that this T ∗ can be produced from T ′ by push-
right operations.

The corresponding HT-sum based on this T ∗ is simple:

HT-sum(H∗, T ∗) =
|H|∑
p=1

H[p]∑
q=1

T [|T | − q + 1]

=
|H|∑
p=1

H[p]∑
q=1

sni(P [2..k])
sni(P [2..k − 1])

=
sni(P [1..k − 1])sni(P [2..k])

sni(P [2..k − 1])
(4)

For our example, the HT-sum is equal to (9 × 7)/8 =
63/8 = 7.875, which gives the new HTBound of 7.875/81,
slightly better than 8/81 given by the old HTBound.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 10

In fact, the new HTBound is guaranteed to be at
least as tight as the old one. It is easy to see that the
old T ∗ can be produced from the current one using
push-right operations. Since each push-right operation
on the tail array cannot reduce the HTBound according
to Lemma 1, the HT-sum derived from the new T ∗ is
not larger than the old one, and thus after normalizing
by the same denominator sdi(P), the new HTBound is
at least as tight as the old one.

7 EXPERIMENTS

In this section we describe experiments that we perform
to evaluate the validity of the new OPSM-RM model,
and the efficiency of our mining algorithm.

7.1 Validity of the new OPSM-RM model
7.1.1 Setup
To justify the proposal of the more complex OPSM-RM
model as compared to the basic OPSM model, we need
to show that the mined frequent patterns of OPSM-RM
are potentially more biologically significant. We use real
microarray gene expression datasets to perform this test.
We randomly download seven microarray datasets of the
baker’s yeast Saccharomyces cerevisiae with replicates
from the Gene Expression Omnibus (GEO) database [19],
as shown in Table 3.

TABLE 3
Datasets used to evaluate the OPSM-RM model

ID Probes (rows) Samples (columns) Replicates
GDS1611(wt) 9,335 16 3
GDS1611(mut) 9,335 16 3
GDS2002 5,617 10 3
GDS2003 5,617 10 3
GDS2712 9,335 7 3
GDS2713 9,335 7 3
GDS2715 9,335 7 3

We use various ways to evaluate the biological signif-
icance of mined patterns. First, we evaluate them using
protein-protein interactions (PPIs) [14], [20], [21]. It has
been shown, in various model organisms, that proteins
encoded by genes with correlated expression are more
likely to physically interact [22], [23], [24], [25], [26]. One
concrete way to evaluate the mined frequent patterns is
to check what fraction of genes having same patterns
interact physically. For OPSM-RM, by definition each
gene has a fractional support for a pattern. In this part
of analysis we define the set of genes associated with a
pattern as those with a fractional support no less than
an inclusion threshold t. If the patterns based on the
OPSM-RM model have higher fractions of PPIs than the
traditional OPSM model, the former is potentially capa-
ble of revealing more functional relationships between
proteins in terms of their interactions.

To ensure the generality of our conclusion, we use
three different sets of PPIs with different levels of
precision and coverage: BioGRID-10, BioGRID-200, and

DIP-MIPS-iPfam [27]. For each set, we compute the
background probability of finding a protein interaction
between two random proteins, by dividing the number
of known interactions by the total number of protein
pairs. Then for each mined frequent pattern, we compute
the within-pattern probability of protein interaction by
dividing the number of known interactions between the
proteins supported by the pattern by the number of
protein pairs. Finally, we compute the odd-ratio as the
within-pattern probability divided by the background
probability. A large odd-ratio would indicate a pattern
with significantly more protein interactions than a ran-
dom protein set. We also use the numbers of genes in 1)
the whole dataset, 2) the set of genes that support the
pattern, 3) the set of genes whose proteins interact and
4) the intersection of 2 and 3 to form a 2x2 contingency
table, and compute the probability of getting an intersec-
tion at least as large as the observed value using Fisher’s
exact test. To eliminate the effect of gene set size on these
p-values, we sample equal number of genes from each
gene set before computing the PPI p-values. We then
summarize the p-values of all the gene sets involved by
determining the fraction of gene sets being statistically
significant, with a p-value less than 0.01.

Besides using PPIs, we also check the enrichment
of functional annotations within the gene sets using
DAVID [28], a popular tool for performing functional
analysis. For each pattern, from the associated set of
genes the number of genes that belong to various func-
tional categories are counted, and statistical enrichment
is given by a Benjamini-Hochberg corrected p-value [29].
Again, for OPSM-RM the gene sets are determined based
on the inclusion threshold t. We summarize these p-
values by counting the fraction of statistically significant
patterns. We use the whole set of genes in a dataset as
the background, and adopt the default parameter values
on the DAVID web site.

We use the results from the PPI and DAVID analyses to
compare the frequent patterns mined from four different
procedures: 1) traditional OPSM, using only one set of
replicates (abbreviated as OPSM-x, where x is the repli-
cate number), 2) traditional OPSM, using the average of
all replicates (abbreviated as OPSM-avg), 3) traditional
OPSM, using the median of all replicates (abbreviated as
OPSM-med), and 4) OPSM-RM.

We repeat the tests with multiple values for the cutoff
t and the support threshold ρ for frequent patterns.

7.1.2 Results

Table 4 shows the average odd ratios for the patterns
mined from GDS2003 at support threshold ρ = 10%n (n
is the total number of rows in the dataset), evaluated
by the protein interactions in BioGRID-10. Each row
corresponds to the patterns of a different iteration (i.e.,
pattern length), and each column corresponds to one
OPSM model. We include results for two values of the
inclusion threshold t.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE 4
Odd ratios of patterns mined from GDS2003 at

ρ = 10%n, evaluated by BioGRID-10

Iter. OPSM-1 OPSM-2 OPSM-3 OPSM-avg OPSM-med OPSM-RM OPSM-RM
(t=0.7) (t=0.8)

2 1.1 1.1 1.1 1.1 1.1 1.2 1.2
3 1.3 1.2 1.3 1.3 1.3 1.8 2.0
4 1.5 1.5 1.5 1.6 1.6 2.9 3.3

From the results, we see that all methods have all
average odd ratios above 1, which suggests that pro-
teins supporting same patterns generally tend to interact
more often than random. However, the odd ratios differ
between iterations, and between different models. First,
the odd ratios correspond to later iterations are higher,
which is expected as a longer pattern guarantees that
the supporting proteins have similar gene expression
trends across more samples. Second, the odd ratios of
the OPSM-RM model are higher than the traditional
OPSM model. In contrast, while OPSM-avg and OPSM-
med combine the information of multiple replicates,
they are only marginally better than when only one
of the replicates is considered. This comparison shows
that OPSM-RM is able to better utilize the information
provided by the repeated experiments than applying
OPSM on an averaged dataset.

Since longer patterns are observed to be more bio-
logically relevant, in the following we concentrate on
the results of the last iteration that all models contain
frequent patterns. For example, for the set of results
corresponding to Table 4, only the odd ratios of iteration
4 will be shown.

Figure 4 and Figure 5 show the fraction of signif-
icant patterns based on PPI and DAVID, respectively.
Again we see that the patterns obtained by the OPSM-
RM approach are more biologically relevant. This is an
encouraging result since the default functional categories
used by DAVID do not include protein physical inter-
actions, and thus the two types of analysis are largely
independent, yet the main conclusions are consistent.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(a) 50 gene sets

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

(b) 100 gene sets

Fig. 4. Fraction of significant patterns mined from
GDS2003 at ρ = 10%n, evaluated by PPI.

It is then natural to ask if the patterns from OPSM-RM
are also more biologically relevant than the traditional
OPSM model when other datasets, support thresholds,
and protein interaction sets are used. We first fix the
other parameters, and change the microarray dataset.
Figure 6 shows the resulting odd ratios.

The odd ratios from OPSM-RM are in general larger

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

Fig. 5. Fraction of significant patterns mined from
GDS2003 at ρ = 10%n, evaluated by DAVID

0

0.5

1

1.5

2

2.5

3

3.5

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

Fig. 6. Odd ratios of patterns mined from various microar-
ray datasets at ρ = 10%n, evaluated by BioGRID-10

than those from traditional OPSM, but the differences
are dataset-dependent. More substantial differences are
observed for GDS1661(wt), GDS2002 and GDS2003 than
the other datasets. We conclude that while the quality of
mined patterns highly depends on the specific dataset,
OPSM-RM has the potential to mine better patterns.

Next we vary the support threshold to see its effect on
the odd ratios. The results are shown in Figure 7.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

5%n 10%n 20%n

Support threshold

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

Fig. 7. Odd ratios of patterns mined from GDS2003 at
various support thresholds, evaluated by BioGRID-10

We again observe the general trend that OPSM-RM
gives patterns with larger odd ratios. The difference is
more apparent for smaller support thresholds. The main
reason is that when the support threshold is small, the
frequent patterns can grow longer, and longer patterns
are more likely to contain proteins that interact as we
observed earlier. This result indicates that while a larger
support threshold is intuitively equivalent to a more
stringent requirement, the pattern quality is not neces-
sarily higher due to shorter pattern lengths. In practical
use of OPSM-RM, one should thus try multiple support
thresholds, and look for reasonably stringent values that
give sufficiently long patterns.

Finally, we test the effect of the protein interaction set
for evaluation. Figure 8 shows the resulting odd ratios.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 12

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

BioGRID-10 BioGRID-200 DIP-MIPS-
iPfam

Protein interaction dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

Fig. 8. Odd ratios of patterns mined from GDS2003 at
ρ = 10%n, evaluated by various protein interaction sets

The results confirm that patterns from OPSM-RM have
higher odd ratios than OPSM regardless of the precision
and coverage of the evaluating protein interaction set.

Due to space limitation, we leave the results for other
parameter combinations and evaluation methods to our
technical report [18]. The general conclusions drawn
from the above observations are supported by most of
the results. For the DAVID analysis, since the DAVID
API imposes limitations on the number of genes per
gene set and the total number of gene sets per day, we
resorted to performing the analysis by manually entering
the gene lists one by one. This time-consuming process
prohibited us from performing a complete evaluation of
all patterns, methods and parameter choices. Instead, for
each method we could only sample 10 patterns mined
from GDS2003 at support threshold 0.1n. We hope that
in the future there will be simple ways to perform large-
scale DAVID evaluations efficiently.

7.1.3 Handling replicates by statistical tests
We have shown that if we summarize the values from
different replicates by a single statistic (such as mean and
median), the resulting mined frequent patterns are not as
biologically relevant as the ones obtained by the OPSM-
RM approach. To further explore other possible ways
to handle replicates, we have also studied a method
based on statistical tests. For each row, we define the
order a < b for columns a and b if the values at a are
significantly smaller than those at b based on t-test and
a p-value cutoff. Similarly, we define the order a > b
if the values at b are significantly smaller than those at
a. If the values at the two columns are not significantly
different, no ordering is defined between the columns,
and the row would not support any pattern that involves
an ordering of a and b. This results in a variation of the
original OPSM mining problem, with each row allowed
to refuse supporting both the patterns 〈a, b〉 and 〈b, a〉.

We compared the resulting frequent patterns at dif-
ferent p-value cutoffs with those returned by OPSM-
RM. In general, the patterns based on this statistical test
approach are slightly more biologically relevant, but the
number of frequent patterns is much smaller even at
a loose significance level such as 0.1. There is thus a
tradeoff between precision and coverage.

This statistical test approach is equivalent to the
ANOVA F-test for two samples. For a pattern with more

than two columns, we need to perform a t-test for every
pair of adjacent columns in the pattern, and a row
supports the pattern only if the results of all the tests
are statistically significant. This requirement could be too
strict as in some cases statistically insignificant changes
are still biologically meaningful, especially when the
number of replicates is small. It is possible to derive a
method to test all involved columns at the same time,
but this cannot be done by a standard ANOVA analysis,
as it does not involve the total order of all the columns.
We leave the detailed investigation of more advanced
statistical test approaches to a future study.

7.2 Mining efficiency
7.2.1 Setup
After showing the potential biological significance of
the patterns from OPSM-RM, our next concern is the
mining efficiency. In particular, we would want to test
the speed performance of our algorithm in terms of
four scalability parameters, namely the number of rows,
columns, replicates, and the support threshold. We are
interested in both the absolute performance of our final
algorithm with HTBound, and the relative performance
as compared to other bounding techniques described.

In order to test the scalability of our algorithm, we
start with a small microarray dataset, and generate more
rows, columns, and replicates based on the original data
distribution as follows.

We choose the microarray dataset that was also used
in some previous studies on mining data with repeated
measurements [30], [31]. It is a subset of a dataset ob-
tained from a study of gene response to the knockout of
various genes in the galactose utilization (GAL) pathway
of the baker’s yeast [32]1. In our dataset, the columns
correspond to the knockout experiments of 9 GAL genes
and the wild type, growing in media with or without
galactose, yielding a total of 2(9 + 1) = 20 experiments
(columns). Each experiment has 4 replicates. There are
205 rows corresponding to genes that exhibit responses
to the knockouts. The genes belong to four different
classes according to their functional categories. Figure 1
in Section 1 shows some example values of our dataset
from one of the replicates.

To synthesize additional replicates, for each gene and
each experiment, we follow standard practice to model
the values by a Gaussian distribution with the mean
and variance equal to the sample mean and variance of
the 4 replicates. The expression values of new replicates
were then sampled from the Gaussian. New columns are
synthesized by randomly drawing an existing column,
fitting Gaussians as described, and sampling values
from it. This way of construction mimics the addition
of knockout experiments of genes in the same sub-
pathways of the original ones. Finally, new rows were
synthesized as in the synthesis of new columns, but with

1. The dataset can be downloaded at http://genomebiology.com/
content/supplementary/gb-2003-4-5-r34-s8.txt.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 13

an existing row as template instead of a column. This
way of construction mimics the addition of genes that
have similar responses as some existing ones, due to co-
occurrence in the same downstream pathways.

We compare the performance of three methods: (1)
Basic, which applies the basic Apriori algorithm (see
Figure 2) with the counting array data structure and
data compression, (2) MinBound, which is the Basic
method plus candidate pruning using MinBound, and
(3) HTBound, which is the Basic method plus candidate
pruning using HTBound.

We use two different performance metrics: the num-
ber of candidate patterns, and the actual running time.
The former shows the effectiveness of the bounding
techniques, while the later also takes into account the
overhead of computing the bounds.

Our programs are written in C. The experiments are
performed on a machine with 2GHz CPU, 16GB memory,
and Red Hat Linux as the operating system.

7.2.2 Results
We first test the speed performance with various num-
bers of rows. Figure 9 shows the results.

0
0.5

1
1.5

2
2.5

3
3.5

4

25000 27000 29000 31000 33000 35000
Number of rows

N
um

be
r o

f c
an

di
da

te
 p

at
te

rn
s

/
N

um
be

r o
f f

re
qu

en
t p

at
te

rn
s

Basic
MinBound
HTBound

(a) Ratio of candidate patterns

0

20

40

60

80

100

120

25000 27000 29000 31000 33000 35000
Number of rows

R
un

ni
ng

 ti
m

e
(s

)

(b) Running time

Fig. 9. Speed performance with respect to the number of
rows, with 20 columns, 4 replicates and ρ = 20%n

Figure 9(a) shows how many candidate patterns are
generated as a multiple of the actual number of fre-
quent patterns. A smaller ratio indicates more effective
pruning, and an ideal algorithm that prunes away all
infrequent candidate patterns before the verification step
would have a ratio of 1. We observe that the bounding
techniques are very effective. HTBound, in particular,
has a ratio constantly very close to 1 for all numbers
of rows. Figure 9(b) further suggests that this saving in
support verification justify the extra overhead incurred
by computing the bounds. The actual running time of the
mining algorithm improves by using better bounds. For
instance, with HTBound, the mining time is consistently
less than half that without using bounding techniques.

The absolute running time is also reasonable. For
25,000 rows, which is approximately the number of
genes in the human genome, the total mining time is
only half a minute. This suggests that the OPSM-RM
model can be practically applied to new datasets of date.

Next, we test the speed performance with various
numbers of columns. As more datasets are produced and
incorporated into single analyzes, being able to scale well
with respect to the number of columns is crucial to the

applicability of an analysis method. Figure 10 shows the
speed performance of our algorithm.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

20 22 24 26 28 30
Number of columns

N
um

be
r o

f c
an

di
da

te
 p

at
te

rn
s

/
N

um
be

r o
f f

re
qu

en
t p

at
te

rn
s

Basic
MinBound
HTBound

(a) Ratio of candidate patterns

0
100
200
300
400
500
600
700
800
900

1000

20 22 24 26 28 30
Number of columns

R
un

ni
ng

 ti
m

e
(s

)

(b) Running time

Fig. 10. Speed performance with respect to the number
of columns, with 25,000 rows, 4 replicates and ρ = 20%n

Again, we observe strong pruning power of the
bounding methods, with the candidate to frequent pat-
tern ratios for HTBound always close to 1. The running
time clearly reveals the importance of the bounding
methods when there is a large number of columns. For
instance, at 30 columns, the algorithm takes only two
minutes to complete with HTBound, while the basic
approach requires eight times more time.

The next set of tests concerns the number of replicates.
The results are shown in Figure 11.

0
0.5

1
1.5

2
2.5

3
3.5

4

4 5 6 7 8 9 10
Number of replicates

N
um

be
r o

f c
an

di
da

te
 p

at
te

rn
s

/
N

um
be

r o
f f

re
qu

en
t p

at
te

rn
s

Basic
MinBound
HTBound

(a) Ratio of candidate patterns

0
20
40
60
80

100
120
140
160
180

4 5 6 7 8 9 10
Number of replicates

R
un

ni
ng

 ti
m

e
(s

)

(b) Running time

Fig. 11. Speed performance with respect to the number
of replicates, with 25,000 rows, 20 columns and ρ = 20%n

The general trends remain the same as before, with the
importance of the bounding methods clearly shown. We
observe that with HTBound, the running time remains
reasonable even with 10 replicates. As in real experi-
ments it is very rare to exceed this number of replicates,
practically the algorithm remains applicable.

Finally, we test the efficiency with respect to the
support threshold ρ. The results are shown in Figure 12.

0

1

2

3

4

5

6

0.1 0.15 0.2 0.25 0.3
Support threshold

N
um

be
r o

f c
an

di
da

te
 p

at
te

rn
s

/
N

um
be

r o
f f

re
qu

en
t p

at
te

rn
s

Basic
MinBound
HTBound

(a) Ratio of candidate patterns

0

200

400

600

800

1000

1200

0.1 0.15 0.2 0.25 0.3
Support threshold

R
un

ni
ng

 ti
m

e
(s

)

(b) Running time

Fig. 12. Speed performance with respect to the support
threshold ρ (as a fraction of the total number of rows, n),
with 25,000 rows, 20 columns and 4 replicates

The running time is longer when a smaller support
threshold is used, as there are more patterns qualified
as frequent. While the basic approach takes almost 1,000

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 14

seconds to complete when the support threshold is equal
to 10% of the total number of rows, with HTBound it
requires only 1/5 of the time.

In summary, we have observed that our mining al-
gorithm with HTBound is efficient in practical settings,
and it is scalable with respect to the number of rows,
columns, replicates, and the support threshold. For very
large datasets, our algorithms could be quite demanding
in terms of memory usage. How efficient disk access can
be incorporated in the algorithms is an important follow-
up work for this study.

8 CONCLUDING REMARKS
In this paper we have described the problem of high
noise level to the mining of OPSM’s, and discussed
how it can be alleviated by exploiting repeated mea-
surements. We have listed some practical requirements
for a new problem, OPSM-RM that takes into account
the repeated measurements, and proposed a concrete
definition that fulfills the requirements. We have de-
scribed a basic Apriori mining algorithm that utilizes
a monotonic property of the definition. Its performance
depends on the component functions generate and ver-
ify. We have proposed the counting array data structure
and a sequence compression method for reducing the
running time of verify. For generate, we have proposed
two pruning methods based on the MinBound and the
HTBound. The latter makes use of the head and tail
arrays, which are useful both in constructing and prov-
ing the bound. We have performed experiments on real
microarray data to demonstrate the biological validity of
the OPSM-RM model, the effectiveness of the pruning
methods, and the scalability of the algorithm.

As sequencing-based methods have become more
popular, the noise level in new gene expression datasets
is expected to decrease and more distinct states of
expression can be identified. How this will affect the
advantages of OPSM-RM over OPSM is to be studied
when more sequencing datasets become available.

REFERENCES
[1] C. K. Chui, B. Kao, K. Y. Yip, and S. D. Lee, “Mining order-

preserving submatrices from data with repeated measurements,”
in Eighth IEEE International Conference on Data Mining (ICDM’08),
2008, pp. 133–142.

[2] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders,
M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher, “Compre-
hensive identification of cell cycle-regulated genes of the yeast
saccharomyces cerevisiae by microarray hybridization,” Molecular
Biology of the Cell, vol. 9, no. 12, pp. 3273–3297, 1998.

[3] A. Ben-Dor, B. Chor, R. M. Karp, and Z. Yakhini, “Discovering
local structure in gene expression data: the order-preserving
submatrix problem,” Journal of Computational Biology, vol. 10, no.
3-4, pp. 373–384, 2003.

[4] L. Cheung, K. Y. Yip, D. W. Cheung, B. Kao, and M. K. Ng,
“On mining micro-array data by order-preserving submatrix,”
International Journal of Bioinformatics Research and Applications,
vol. 3, no. 1, pp. 42–64, 2007.

[5] M.-L. T. Lee, F. C. Kuo, G. A. Whitmore, and J. Sklar, “Importance
of replication in microarray gene expression studies: Statistical
methods and evidence from repetitive cDNA hybridizations,”
Proceedings of the National Academy of Sciences of the United States
of America, vol. 97, no. 18, pp. 9834–9839, 2000.

[6] B. J. Gao, O. L. Griffith, M. Ester, and S. J. M. Jones, “Discovering
significant opsm subspace clusters in massive gene expression
data,” in Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2006, pp. 922–928.

[7] S. Bleuler and E. Zitzler, “Order preserving clustering over mul-
tiple time course experiments,” in EvoWorkshops 2005, ser. LNCS,
vol. 3449, 2005, pp. 33–43.

[8] J. Liu and W. Wang, “OP-Cluster: Clustering by tendency in high
dimensional space,” in Proceedings of the Third IEEE International
Conference on Data Mining, 2003, pp. 187–194.

[9] H. Wang, W. Wang, J. Yang, and P. S. Yu, “Clustering by pattern
similarity in large data sets,” in Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, 2002, pp.
394–405.

[10] Y. Cheng and G. M. Church, “Biclustering of expression data,” in
Proceedings of the 8th International Conference on Intelligent Systems
for Molecular Biology, 2000, pp. 93–103.

[11] L. Lazzeroni and A. Owen, “Plaid models for gene expression
data,” Statistica Sinica, vol. 12, pp. 61–86, 2002.

[12] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Pro-
ceedings of the Eleventh International Conference on Data Engineering,
1995, pp. 3–14.

[13] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining closed sequential
patterns in large databases,” in Proceedings of the Third SIAM
International Conference on Data Mining, 2003, pp. 166–177.

[14] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. Buhlmann,
W. Gruissem, L. Hennig, L. Thiele, and E. Zitzler, “A systematic
comparison and evaluation of biclustering methods for gene
expression data,” Bioinformatics, vol. 22, no. 9, pp. 1122–1129, 2006.

[15] K.-O. Cheng, N.-F. Law, W.-C. Siu, and A. W.-C. Liew, “Identi-
fication of coherent patterns in gene expression data using an
efficient biclustering algorithm and parallel coordinate visualiza-
tion,” BMC Bioinformatics, vol. 9, no. 210, 2008.

[16] R. Agrawal and R. Srikant, “Fast algorithms for mining associa-
tion rules in large databases,” in Proceedings of the 20th International
Conference on Very Large Data Bases, 1994, pp. 487–499.

[17] D. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching, Third Edition. Addison-Wesley, 1997.

[18] K. Y. Yip, B. Kao, X. Zhu, C. K. Chui, S. D. Lee, and
D. W. Cheung, “Mining order-preserving submatrices from data
with repeated measurements,” HKU CS, Tech. Rep. TR-2011-04,
May 2011, http://www.cs.hku.hk/research/techreps/document/
TR-2011-04.pdf.

[19] T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, D. Rudnev,
C. Evangelista, I. F. Kim, A. Soboleva, M. Tomashevsky, K. A.
Marshall, K. H. Phillippy, P. M. Sherman, R. N. Muertter, and
R. Edgar, “NCBI GEO: Archive for high-throughput functional
genomic data,” Nucleic Acids Research, vol. 37, pp. D885–D890,
2009.

[20] Y. Okada, K. Okubo, P. Horton, and W. Fujibuchi, “Exhaustive
search method of gene expression modules and its application
to human tissue data,” IAENG International Journal of Computer
Science, vol. 34, no. 16, 2007.

[21] X. Liu and L. Wang, “Computing the maximum similarity bi-
clusters of gene expression data,” Bioinformatics, vol. 23, no. 1,
pp. 50–56, 2007.

[22] N. Bhardwaj and H. Lu, “Correlation between gene expres-
sion profiles and protein-protein interactions within and across
genomes,” Bioinformatics, vol. 21, no. 11, pp. 2730–2738, 2005.

[23] S. D. Bodt, S. Proost, K. Vandepoele, P. Rouze, and Y. V.
de Peer, “Predicting protein-protein interactions in arabidopsis
thaliana through integration of orthology, gene ontology and co-
expression,” BMC Genomics, vol. 10, no. 288, 2009.

[24] H. Ge, Z. Liu, G. M. Church, and M. Vidal, “Correlation between
transcriptome and interactome mapping data from saccharomyces
cerevisiae,” Nature Genetics, vol. 29, no. 4, pp. 482–486, 2001.

[25] R. Jansen, D. Greenbaum, and M. Gerstein, “Relating whole-
genome expression data with protein-protein interactions,”
Genome Research, vol. 12, no. 1, pp. 37–46, 2002.

[26] A. K. Ramani, Z. Li, G. T. Hart, M. W. Carlson, D. R. Boutz, and
E. M. Marcotte, “A map of human protein interactions derived
from co-expression of human mRNAs and their orthologs,” Molec-
ular Systems Biology, vol. 4, no. 180, 2008.

[27] K. Y. Yip and Mark Gerstein, “Training set expansion: An ap-
proach to improving the reconstruction of biological networks
from limited and uneven reliable interactions,” Bioinformatics,
vol. 25, no. 2, pp. 243–250, 2009.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 15

[28] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic
and integrative analysis of large gene lists using DAVID bioinfor-
matics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009.

[29] Y. Benjamini and Y. Hochberg, “Controlling the false discovery
rate: a practical and powerful approach to multiple testing,”
Journal of the Royal Statistical Society. Series B, vol. 57, no. 1, pp.
289–300, 1995.

[30] M. Medvedovic, K. Y. Yeung, and R. E. Bumgarner, “Bayesian
mixture model based clustering of replicated microarray data,”
Bioinformatics, vol. 20, no. 8, pp. 1222–1232, 2004.

[31] K. Y. Yeung, M. Medvedovic, and R. E. Bumgarner, “Clustering
gene-expression data with repeated measurements,” Genome Biol-
ogy, vol. 4, no. R34, 2004.

[32] T. Ideker, V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, J. K.
Eng, R. Bumgarner, D. R. Goodlett, R. Aebersold, and L. Hood,
“Integrated genomic and proteomic analyses of a systematically
perturbed metabolic network,” Science, vol. 292, no. 5518, pp. 929–
934, 2001.

Kevin Y. Yip is an assistant professor in the Department of Computer
Science and Engineering at the Chinese University of Hong Kong. He
received his B.Engg. in Computer Engineering and M.Phil. in Computer
Science from the University of Hong Kong, in 1999 and 2004, respec-
tively. He received his Ph.D. in Computer Science from Yale University
in 2009. His research interest is in bioinformatics, with a special focus
on biological network inference and analysis using data mining and
machine learning techniques.

Ben Kao received the B.Sc. degree in computer science from the
University of Hong Kong in 1989 and the Ph.D. degree in computer
science from Princeton University in 1995. He is currently a professor
in the Department of Computer Science at the University of Hong
Kong. From 1989 to 1991, he was a teaching and research assistant
at Princeton University. From 1992 to 1995, he was a research fellow
at Stanford University. His research interests include database manage-
ment systems, data mining, real-time systems, and information retrieval
systems.

Xinjie Zhu is a Research Assistant at the University of Hong Kong. He is
expected to receive his M.Phil degree from the University of Hong Kong
in 2011. He is interested in the research area of data mining, uncertain
data management and bioinformatics.

Chun Kit Chui is a Ph.D. candidate at the University of Hong Kong
(HKU). His research interests include data mining, data warehousing,
cloud computing and uncertain data management.

Sau Dan Lee is a Post-doctoral Fellow at the University of Hong Kong.
He received his Ph.D. degree from the University of Freiburg, Germany
in 2006 and his M.Phil. and B.Sc. degrees from the University of Hong
Kong in 1998 and 1995. He is interested in the research areas of data
mining, machine learning, uncertain data management and information
management on the WWW. He has also designed and developed
backend software systems for e-Business and investment banking.

David W. Cheung received the M.Sc. and Ph.D. degrees in computer
science from Simon Fraser University, Canada, in 1985 and 1989, re-
spectively. Since 1994, he has been a faculty member of the Department
of Computer Science in The University of Hong Kong. His research
interests include database, data mining, database security and privacy.
Dr. Cheung was the Program Committee Chairman of PAKDD 2001,
Program Co-Chair of PAKDD 2005, Conference Chair of PAKDD 2007
and 2011, and the Conference Co-Chair of CIKM 2009.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 16

A PROOFS

Lemma 1
Proof: Let H be a head array, and T1 and T2 be two

arrays with |T1| = |T2|, where T2 is produced by a push-
right operation that moves a positive value v from the
x-th entry of T1 to the y-th entry, with x < y. Then,

HT-sum(H,T2)− HT-sum(H,T1)

=
|H|∑
p=1

H[p]∑
q=1

T2[|T2| − q + 1]−
|H|∑
p=1

H[p]∑
q=1

T1[|T1| − q + 1]

=
|H|∑
p=1

H[p]∑
q=1

T2[|T1| − q + 1]−
H[p]∑
q=1

T1[|T1| − q + 1]


=

|H|∑
p=1

 0 if |T1| −H[p] + 1 < x
0 if |T1| −H[p] + 1 > y
v otherwise

≥ 0

Therefore the HT-sum is not reduced.
Lemma 2

Proof: Let T ′ be an array with non-increasing entries,
H1 be a head array, and H2 be an array with |H1| =
|H2|, where H2 is produced by a push-left operation that
moves one from the x-th entry of H1 to the y-th entry,
with x > y. Due to the push-left operation and the non-
increasing property of head arrays,

H2[x] = H1[x]− 1 < H1[x] ≤ H1[y] < H1[y] + 1 = H2[y]

We have:

H1[x] < H2[y]
⇒ |T ′| −H1[x] + 1 > |T ′| −H2[y] + 1
⇒ T ′[|T ′| −H1[x] + 1] ≤ T ′[|T ′| −H2[y] + 1]
⇒ −T ′[|T ′| −H1[x] + 1] + T ′[|T ′| −H2[y] + 1] ≥ 0

where the third line is due to the non-increasing property
of T ′. Now,

HT-sum(H2, T
′)− HT-sum(H1, T

′)

=
|H2|∑
p=1

H2[p]∑
q=1

T ′[|T ′| − q + 1]−
|H1|∑
p=1

H1[p]∑
q=1

T ′[|T ′| − q + 1]

=
|H1|∑
p=1

H2[p]∑
q=1

T ′[|T ′| − q + 1]−
H1[p]∑
q=1

T ′[|T ′| − q + 1]


=

H2[x]∑
q=1

T ′[|T ′| − q + 1]−
H1[x]∑
q=1

T ′[|T ′| − q + 1]

 +

H2[y]∑
q=1

T ′[|T ′| − q + 1]−
H1[y]∑
q=1

T ′[|T ′| − q + 1]


= −T ′[|T ′| −H1[x] + 1] + T ′[|T ′| −H2[y] + 1]
≥ 0

Therefore the HT-sum is not reduced.
Lemma 3

Proof: Without loss of generality, let us compare the
averages of the first and second intervals. Each entry
in the second interval corresponds to an occurrence of
P [3..k-1] after the second occurrence of P [2], which is
in turn after the first occurrence of P [2]. Therefore each
entry in the second interval has a corresponding entry in
the first interval with the same value. The first interval
may contain additional entries, corresponding to occur-
rences of P [3..k-1] where the P [3] is before the second
occurrence of P [2]. Since the entries are in lexicographic
order, these additional entries must be the leftmost en-
tries of the first interval. Let us call the additional entries
the leading group and the remaining ones the trailing
group. We will prove that the average of the leading
group is no smaller than that of the trailing group, which
is sufficient to show that the average of the first interval
is not smaller than that of the second interval. We prove
this proposition by mathematical induction.

Base case: k-1=3. As discussed, the entries in the lead-
ing group all have their P [k-1]=P [3] before the second
occurrence of P [2] while the entries in the trailing group
all have their P [k-1] after it. Since the value of an entry
equals the number of P [k]’s after its P [k-1], each entry in
the leading group must be not smaller than every entry
in the trailing group. The average of the leading group
must therefore be not smaller than the average of the
trailing group.

Inductive case: Now assume the proposition is true up
to k-1=l, for some l ≥ 3. For k-1=l+1, we transform
the sequence by keeping only elements after the first
occurrence of P [2], and then remove all occurrences of
P [2] in the resulting subsequence. Then each entry in
the first interval of the original sequence corresponds
to the number of occurrences of P [k] after a P [3..k-
1] in this transformed sequence. We again partition the
transformed sequence into intervals by grouping entries
that share the same occurrence of P [3] together. If we can
show the averages of these intervals are non-increasing,
then certainly the average of the leading group, which
is composed of the leftmost intervals, must be not
smaller than the average of the trailing group, which is
composed of the rightmost intervals. But this is exactly
the inductive assumption. Therefore by mathematical
induction, the proposition is true for all k ≥ 4.
Lemma 4(b)

Proof: We will prove that for each interval of T ,
we can use push-right operations to obtain the corre-
sponding interval of T ′. Again, we will use mathematical
induction.

Base case: k-1=3. As proved in the base case of
Lemma 3, the entries in the interval are non-increasing
in T . We repeat the following: take the leftmost entry in
the interval that is larger than the average, and use a
push-right operation to move the difference to the next
entry. The resulting interval will have all entries equal
to the average, which is the same as the corresponding

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 17

interval in T ′.
Inductive case: Now assume the proposition is true

up to k-1=l, for some l ≥ 3. For k-1=l+1, we first
partition the entries in the interval of T into sub-intervals
according to which P [3] they refer to. As proved in
the inductive case of Lemma 3, the averages of these
sub-intervals are non-increasing. We use push-right op-
erations to make them all have the same average as
follows: repeatedly we pick the leftmost sub-interval
with an average larger than the average of the whole
interval. Then we move the difference from the last entry
of the sub-interval to the first entry of the next sub-
interval. After that, the sub-intervals all have an average
equal to the average of the corresponding sub-intervals
of T ′. Therefore by the inductive assumption, each of
these sub-intervals of T ′ can be obtained by push-right
operations of the corresponding sub-interval of T .
Lemma 7

Proof: For any pattern P [1..k] and each row i,
MinBound is composed of two parts due to the head
P [1..k-1] and the tail P [2..k], with values si(P [1..k-
1]) and si(P [2..k]) respectively. The part due to the
head assumes the extreme case that each occurrence
of the head is followed by r(P [k]) occurrences of P [k]
later in the sequence. It is interesting that this part
of the bound, si(P [1..k-1]), can be obtained from HT-
sum(H,T †), where H is the actual head array of P and
T † is an array with the same number of entries as the
actual tail array of P , but every entry takes the maximum
allowed value r(P [k]) of the array:

HT-sum(H,T †) =
|H|∑
p=1

H[p]∑
q=1

T †[|T †| − q + 1]

=
|H|∑
p=1

H[p]∑
q=1

r(P [k])

= r(P [k])
|H|∑
p=1

H[p]

= r(P [k])sni(P [1..k − 1])

where the last line is due to the sum constraint of the
head array. Normalizing the HT-sum by the number of
replicate combinations, we get the part of MinBound due
to the head:

HT-sum(H,T †)∏k
j=1 r(P [j])

=
r(P [k])sni(P [1..k − 1])∏k

j=1 r(P [j])

=
sni(P [1..k − 1])∏k−1

j=1 r(P [j])
= si(P [1..k − 1])

Since the bounding tail array T ∗ cannot contain any

entry larger than the maximum, HT-sum(H∗, T ∗) must
not be larger than HT-sum(H,T †):

HT-sum(H∗, T ∗) =
|H∗|∑
p=1

H∗[p]∑
q=1

T ∗[|T ∗| − q + 1]

≤
|H∗|∑
p=1

H∗[p]∑
q=1

r(P [k])

= r(P [k])
|H∗|∑
p=1

H∗[p]

= r(P [k])sni(P [1..k − 1])
= HT-sum(H,T †)

Therefore the corresponding bound for si(P) is also
not larger than that from the part of MinBound due to
the head.

Similarly, the part of MinBound due to the tail assumes
the extreme case that each occurrence of the tail is
preceded by r(P [1]) occurrences of P [1] earlier in the
sequence. This part of the bound, si(P [2..k]), can be
obtained from HT-sum(H†, T), where T is the actual tail
array of P and H† is an array with the same number
of entries as the actual head array of P , but every entry
takes the maximum allowed value sni(P [2..k-1]) of the
array, which is also equal to the number of entries of T :

HT-sum(H†, T) =
|H†|∑
p=1

H†[p]∑
q=1

T [|T | − q + 1]

=
|H†|∑
p=1

sni(P [2..k−1])∑
q=1

T [|T | − q + 1]

=
|H†|∑
p=1

sni(P [2..k])

= r(P [1])sni(P [2..k])

where the third line is due to the sum constraint of the
tail array and the fourth line is due to the size constraint
of the head array.

Again, we can show that it is no better (smaller) than
HT-sum(H∗, T ∗) :

HT-sum(H∗, T ∗) =
|H∗|∑
p=1

H∗[p]∑
q=1

T ∗[|T ∗| − q + 1]

≤
|H∗|∑
p=1

sni(P [2..k−1])∑
q=1

T ∗[|T ∗| − q + 1]

=
|H∗|∑
p=1

sni(P [2..k])

= r(P [1])sni(P [2..k])
= HT-sum(H†, T)

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 18

Combining the two parts of results, HTBound is al-
ways at least as tight as MinBound.

B THE COMPLETE SET OF RESULTS FOR
EVALUATING THE OPSM-RM MODEL

The following figures show the complete set of results
with all combinations of microarray dataset, support
threshold, evaluation method and protein interaction set.
Notice that Figure 13(b) is the same as Figure 6.

0

1

2

3

4

5

6

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(a) At ρ = 5%n

0

0.5

1

1.5

2

2.5

3

3.5

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(b) At ρ = 10%n

0

0.5

1

1.5

2

2.5

3

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(c) At ρ = 20%n

Fig. 13. Odd ratios of the patterns mined from various
microarray datasets, evaluted by BioGRID-10

0

2

4

6

8

10

12

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(a) At ρ = 5%n

0

1

2

3

4

5

6

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(b) At ρ = 10%n

0

0.5

1

1.5

2

2.5

3

3.5

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(c) At ρ = 20%n

Fig. 14. Odd ratios of the patterns mined from various
microarray datasets, evaluted by BioGRID-200

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 19

0

1

2

3

4

5

6

7

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(a) At ρ = 5%n

0

2

4

6

8

10

12

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(b) At ρ = 10%n

0

0.5

1

1.5

2

2.5

3

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

O
dd

 ra
tio

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(c) At ρ = 20%n

Fig. 15. Odd ratios of the patterns mined from various
microarray datasets, evaluted by DIP-MIPS-iPfam

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(a) At ρ = 5%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s
OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(b) At ρ = 10%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(c) At ρ = 20%n

Fig. 16. Fraction of significant patterns mined from vari-
ous microarray datasets, evaluted by BioGRID-10 with 50
genes sampled from each gene set

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 20

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(a) At ρ = 5%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(b) At ρ = 10%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(c) At ρ = 20%n

Fig. 17. Fraction of significant patterns mined from var-
ious microarray datasets, evaluted by BioGRID-200 with
50 genes sampled from each gene set

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(a) At ρ = 5%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s
OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(b) At ρ = 10%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(c) At ρ = 20%n

Fig. 18. Fraction of significant patterns mined from var-
ious microarray datasets, evaluted by DIP-MIPS-iPfam
with 50 genes sampled from each gene set

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 21

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(a) At ρ = 5%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(b) At ρ = 10%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(c) At ρ = 20%n

Fig. 19. Fraction of significant patterns mined from var-
ious microarray datasets, evaluted by BioGRID-10 with
100 genes sampled from each gene set

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(a) At ρ = 5%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s
OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(b) At ρ = 10%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(c) At ρ = 20%n

Fig. 20. Fraction of significant patterns mined from var-
ious microarray datasets, evaluted by BioGRID-200 with
100 genes sampled from each gene set

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 22

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(a) At ρ = 5%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(b) At ρ = 10%n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

GDS16
11

(w
t)

GDS16
11

(m
ut)

GDS20
02

GDS20
03

GDS27
12

GDS27
13

GDS27
15

Microarray dataset

Fr
ac

tio
n

of
 s

ig
ni

fic
an

t p
at

te
rn

s

OPSM-1
OPSM-2
OPSM-3
OPSM-avg
OPSM-med
OPSM-rm (0.7)
OPSM-rm (0.8)

(c) At ρ = 20%n

Fig. 21. Fraction of significant patterns mined from var-
ious microarray datasets, evaluted by DIP-MIPS-iPfam
with 100 genes sampled from each gene set

