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Abstract

In microarray gene expression data, clusters may hide
in subspaces.Traditional clustering algorithms thatmake
use of similarity measurements in the full input space
may fail to detect the clusters. In recent years a num-
ber of algorithms have been proposed to identify this kind
of projected clusters, but many of them rely on some crit-
ical parameters whose proper values are hard for users to
determine. In this paper a new algorithm that dynami-
cally adjusts its internal thresholds is proposed. It has a
low dependency on user parameters while allowing users
to input some domain knowledge should they be available.
Experimental results show that the algorithm is capable of
identifying some interesting projected clusters from real
microarray data.

1. Introduction

Clustering is a popular data mining technique for ex-
tracting information from gene expression profiles. A
large variety of clustering methods have been used to
generate many interesting clusters. Some recent stud-
ies include [8, 13, 17, 22]. The goal of these methods
is to partition similar objects (samples or genes) into
clusters such that intra-cluster similarity is maximized
while inter-cluster similarity is minimized. Sample clus-
tering is common in tumor studies for identifying tu-
mor subtypes [4, 12, 18]. Gene clustering has been used
to predict groups of genes that have similar functions
or are co-regulated [7, 11, 14]. It has also become very
popular to cluster both samples and genes individu-
ally and visualize the results in a single figure [4]. In
this paper, we will use the terms object and dimension
to mean a row and a column of a dataset respectively.
An object refers to a gene when performing gene clus-
tering, and refers to a sample when performing sample
clustering. The opposite holds for a dimension.

All the above cited studies assume object similarity
is measured in the input space formed by all the dimen-
sions of a dataset. It has been pointed out that gene

expression data may exhibit some checkerboard struc-
tures [15, 20], in which each block is defined by a sub-
set of objects and a subset of dimensions where the ob-
jects are similar when considering only the dimensions.
When all dimensions are considered, the objects may
appear to be dissimilar. This may occur when, for ex-
ample, two genes have similar expression patterns only
in a subset of samples where certain regulating factors
are present. In the other samples, the two genes may
express differently. Each block can be viewed as a clus-
ter of objects “projecting” onto a subspace defined by
the corresponding dimensions. This kind of clusters is
thus referred to as projected clusters [1].

Given a dataset D with N objects and a set V of d
input dimensions, a projected cluster CI contains NI

objects and is defined in a dI -dimensional subspace
formed by the set VI of dimensions, where VI ⊆ V .
In the subspace, the members of CI are similar to each
other according to a similarity function, but dissimi-
lar to other objects not in CI . dI is called the dimen-
sionality of cluster CI , which is the size of the set of
relevant dimensions VI of the cluster. The complemen-
tary set V − VI is called the irrelevant dimensions of
the cluster. The members of a cluster are dissimilar in
the subspace formed by its irrelevant dimensions. A di-
mension can be relevant to zero, one, or more clusters.
To distinguish the clusters defined based on some do-
main knowledge and the clusters identified by a clus-
tering algorithm, we will call the former ones the real
clusters and their relevant dimensions the real relevant
dimensions, while the latter kind of clusters will sim-
ply be called the clusters and the identified relevant di-
mensions the selected dimensions.

Notice that the above definition does not assume any
kind of object similarity, although a cluster is most of-
ten regarded as a group of objects having a small dis-
tance from each other (based on a distance function
such as Euclidean distance). This kind of clustering,
what we will describe as distance-based, has been suc-
cessful in many studies on gene expression data anal-
ysis. For instance, most of the studies cited above im-
plicitly assume distance-based clustering. In this pa-



per we will also introduce a new algorithm that is
distance-based. On the other hand, there are situations
where it is more suitable to measure the similarity be-
tween two objects by their rise and fall expression pat-
terns [6, 16, 24]. Two objects are similar if they have the
same direction of response across the relevant dimen-
sions, regardless of their absolute expression values. We
will discuss later how this kind of pattern-based cluster-
ing can be handled by a modified distance-based clus-
tering algorithm.

The goal of projected clustering algorithms is to par-
tition the objects into high-quality projected clusters.
Basically, a cluster is of high quality if its member ob-
jects are unexpectedly similar. A formal quality mea-
sure will be described in Section 3. We will first as-
sume clusters are disjoint, i.e., each object belongs to
only one cluster, and later extend our study to con-
sider non-disjoint clusters since they are common in
gene clustering where each gene may belong to multi-
ple groups according to different categorizations.

In the next section, we will review some projected
clustering approaches proposed in recent years, and dis-
cuss some of their potential problems. A new algorithm
will be proposed in Section 3, which is designed to avoid
the problems. Experimental results on real datasets will
be presented in Section 4, and some discussions and the
conclusion of the study will be given in Section 5 and
Section 6 respectively.

2. Related Work

There have been a lot of studies on projected cluster-
ing and its related problems subspace clustering [3] and
biclustering [6] in recent years. A thorough survey of
the three problems can be found in [25]. In this section
we focus on the related work on the projected cluster-
ing problem, which assumes a distance-based similarity
definition and produces disjoint clusters. We are espe-
cially interested in this problem because of the large
number of fruitful studies on clustering gene expres-
sion profiles that also make the two assumptions, and
the few reported studies on applying projected cluster-
ing on gene expression profiles.

There are two major challenges in projected clus-
tering that make it distinctive from traditional clus-
tering. The first challenge is the simultaneous deter-
mination of both cluster members and relevant dimen-
sions. Cluster members are determined by calculating
object distances in the subspace formed by the rele-
vant dimensions, while the relevant dimensions are de-
termined by measuring the distances between the pro-
jections of the cluster members along different dimen-
sions. One common approach to tackling this chicken-

and-egg problem is to form some tentative clusters ac-
cording to some heuristics, determine their relevant di-
mensions, and then refine the cluster members based
on the selected dimensions. The heuristics being used
are critical to the effectiveness of the algorithm. If in-
appropriate heuristics are used, the tentative clusters
formed will not help the discovery of real clusters.

The second challenge is determining the dimension-
ality of each cluster, which is usually unknown to users
when working on gene expression profiles due to the
lack of domain knowledge and the large number of pos-
sible values given the high dimensionality of data.

We now review some proposed projected clustering
approaches. The partitional approach PROCLUS [1]
is based on the k-medoids method [19]. As in tradi-
tional k-medoids methods, some objects are initially
chosen as the medoids. But before assigning every ob-
ject in the dataset to the nearest medoid, each medoid
is first temporarily assigned a set of neighboring ob-
jects that are close to it in the input space to form a
tentative cluster. For each tentative cluster, all dimen-
sions are sorted according to the average distance be-
tween the projections of the medoid and the neighbor-
ing objects. On average l dimensions with the small-
est average distances are selected as the relevant di-
mensions for each cluster, where l is a user parameter.
Normal object assignment then resumes, but the dis-
tance between an object and a medoid is computed us-
ing only the selected dimensions. Medoids with too few
assigned objects are regarded as outliers, which are re-
placed by some other objects to start a new iteration.

The user parameter l may introduce a usability
problem since the correct value to use is hard to deter-
mine. Another potential problem arises when the real
clusters have few relevant dimensions, in which case the
cluster members may not be close to each other in the
full input space. Since the tentative clusters are formed
based on distance calculations in the input space, when
a member of a real cluster is chosen as a medoid, the
neighboring objects assigned to it may not come from
the same real cluster. Subsequently, the dimensions se-
lected would not be the real relevant dimensions and
the resulting cluster would be mixed of objects from
different real clusters.

Another partitional algorithm ORCLUS [2] was pro-
posed to improve PROCLUS. According to the exper-
imental results reported in [2], it is more accurate and
stable than PROCLUS. Nevertheless, it still relies on
user-supplied values in deciding the number of dimen-
sions to select for each cluster.

In the hypercube approach DOC and its variant
FastDOC [21], each cluster is defined as a hypercube
with width 2ω, where ω is a user parameter. The clus-



ters are formed one after another. To find a cluster,
a pivot point is randomly chosen as the cluster center
and a small set of objects is randomly sampled to form
a tentative cluster around the pivot point. A dimension
is selected if and only if the distance between the pro-
jected values of every sample and the pivot point on
the dimension is no more than ω. The tentative clus-
ter is thus bounded by a hypercube with width 2ω.
All objects in the dataset falling into the hypercube
are grouped to form a candidate cluster. More ran-
dom samples and pivot points are then tried to form
more candidate clusters, and a specially designed func-
tion is used to evaluate the quality of them. The candi-
date cluster with the best evaluation score is accepted,
and the whole process repeats to find other clusters.

As with PROCLUS and ORCLUS, the selected di-
mensions of DOC and FastDOC are determined by
a user parameter. In addition, they also restrict each
cluster to be a hypercube with equal width along all rel-
evant dimensions, which is unlikely to be true in real
data. Tentative clusters are formed by random sam-
pling, which avoids direct distance calculations in the
input space. However, the number of tentative clusters
required to try can become so large that seriously af-
fects the speed performance.

Summarizing the above observations, in order to ap-
ply projected clustering on gene expression data, it
would be preferable to develop an algorithm that can
identify the dimensionalities of the clusters directly
from data and avoid the formation of problematic ten-
tative clusters. In the next section we will describe a
new projected clustering algorithm HARP (a Hierar-
chical approach with Automatic Relevant dimension
selection for Projected clustering) [25] that satisfies
these requirements. It is an agglomerative hierarchi-
cal clustering algorithm with each object treated as a
singleton cluster at the beginning, and the most simi-
lar clusters are merged iteratively according to a merge
score. The building components of the algorithm will be
introduced first, followed by a description of the com-
plete algorithm and some possible extensions.

3. The HARP Algorithm

3.1. Relevance Index, Cluster Quality and
Merge Score

In distance-based projected clustering, a cluster can
be viewed as a group of objects being unexpectedly
close to each other in a certain subspace. In other
words, for a dimension to be relevant to a cluster,
the projections of the cluster members on the dimen-
sion should be unexpectedly close to each other. This

closeness can be measured by the ratio of the variance
within the cluster to the variance in the whole dataset.
Denote σ2

Ij as the variance of projected values of all ob-
jects in CI along dimension vj (the local variance) and
σ2
·j as the variance of projected values along vj in the

whole dataset (the global variance), the relevance in-
dex of vj in cluster CI is defined as follows:

RIj = 1−
σ2

Ij

σ2
·j

. (1)

The index gives a high value when the local vari-
ance is small compared to the global variance, which
refers to the situation where the projections of the clus-
ter members on the dimension are close, and the close-
ness is not due to a small average distance between the
projected values in the whole dataset. A dimension re-
ceives an index value close to the maximum of one if
the local variance is extremely small, which means the
projections form an excellent signature for identifying
the cluster members. Alternatively, if the local vari-
ance is only as small as the global variance, the dimen-
sion will receive an index value of zero. This suggests a
baseline for dimension selection: a negative R value in-
dicates a dimension is not more relevant to a cluster
than to a random sample of objects. The dimension
should therefore not be selected. We will discuss later
how this baseline is used to define the stopping crite-
ria of HARP.

Based on the relevance index, the quality of a clus-
ter CI can be measured by the sum of the index values
of all the selected dimensions:

QI =
∑

vj∈VI

RIj . (2)

In general, the more selected dimensions a cluster
has and the larger are their respective R values, the
larger will be the value of Q. We define the quality
measure in this way since an identified cluster is more
likely to be consist of objects from the same real clus-
ter if the identified cluster has more selected dimen-
sions and the dimensions have higher relevance index
values [25]. We will discuss how HARP determines the
relevant dimensions of each cluster later. At this point
it can be assumed that each cluster has a reasonable
set of selected dimensions.

Similarly, a score can be defined to evaluate the
merge between two clusters. Basically, if two clusters
can be merged to form a cluster with a high quality,
the merge is a potentially good one, i.e., the two clus-
ters probably contain objects from the same real clus-
ter. However, in case the two merging clusters have
a large size difference, an unfavorable situation called



mutual disagreement can occur. Consider a large clus-
ter with a thousand objects and a small one with only
five objects. If they are merged to form a new cluster,
its mean and variance of projected values will highly
resemble the original values of the large cluster, which
will dominate the choice of the dimensions to be se-
lected. If a dimension is originally selected by the large
cluster, it will probably be selected by the new cluster
also no matter the projected values of the small clus-
ter are close to those of the large cluster or not. The re-
sulting cluster can have a high Q score even the two
clusters have a strong mutual disagreement on the sig-
natures of the resulting cluster.

To cope with this problem, we modify the rel-
evance index to take into account the mutual dis-
agreement phenomenon. Suppose CI3 is the resulting
cluster formed by merging CI1 and CI2 , the mutual-
disagreement-sensitive relevance index of dimension vj

in CI3 is defined as follows:

R∗
I3j =

RI1j|I2 + RI2j|I1

2
, (3)

RI1j|I2 = 1−
σ2

I1j + (xI1j − xI2j)2

σ2
·j

= 1−
∑

xi∈CI1
(xij − xI2j)2/Ni

σ2
·j

, (4)

where xij is the projection of object xi on dimension
vj , and xIj is the mean projected value of all members
of cluster CI on vj . RI1j|I2 is the adjusted relevance in-
dex of vj in CI1 given that CI1 is merging with CI2 . The
numerator of its second term is the average squared dis-
tance between the projected values of CI1 on vj from
the mean projected value of CI2 . RI2j|I1 is defined sim-
ilarly. If the two clusters do not agree on the values
along vj , (xI1j −xI2j)2 will effectively diminish the R∗

score of the dimension. The original R index is used
to determine the quality of a cluster, while the modi-
fied index R∗ is used to determine the merge score be-
tween two clusters. When CI1 and CI2 are merged to
form CI3 , the merge score is as follows:

MS(CI1 , CI2)
=

∑
vj∈VI3

R∗
I3j

=
∑

vj∈VI3

RI1j|I2 + RI2j|I1

2

=
∑

vj∈VI3

[1−
σ2

I1j + σ2
I2j + 2(xI1j − xI2j)2

σ2
·j

]. (5)

The MS score will be used to determine the merge
order. Merges with higher MS scores will be allowed
to perform earlier.

3.2. Dynamic Threshold Loosening

When we introduced the MS function, we assumed
that there is a way to determine the relevant dimen-
sions of each cluster. In this section we discuss how
this is made possible by the dynamic threshold loosen-
ing mechanism.

As discussed in Section 3.1, a cluster is more likely to
be correct if it contains a larger number of selected di-
mensions, and the selected dimensions have higher rel-
evance index values. This means merges that form re-
sulting clusters with both properties should be allowed
to perform earlier. Practically, this is achieved by two
internal thresholds Rmin and dmin. Two clusters are al-
lowed to merge if and only if the resulting cluster has
dmin or more selected dimensions, and a dimension vj

is selected by CI if and only if R∗
Ij ≥ Rmin. At any

time, the two thresholds define a set of allowed merges
where the actual merging order within the set is deter-
mined by the MS scores.

At the beginning, Rmin and dmin are initialized to
their tightest (i.e., highest) values 1 and d respectively.
All allowed merges produce clusters that contain iden-
tical objects, so the clusters must be correct. At some
point, there will be no more qualified merges. The
thresholds will be slightly loosened to qualify some new
merges. Whenever all qualified merges have been per-
formed, the thresholds will be further loosened. As clus-
tering proceeds, the clusters grow bigger in size. The
projections of the cluster members on the real relevant
dimensions remain close to each other, but the chance
of having similar closeness of projections along other di-
mensions drops, so as their relevance index values. This
allows the real relevant dimensions to be clearly differ-
entiated from the irrelevant ones, which in turn ensures
the formation of correct clusters.

In order to guarantee the quality of the final clus-
ters, the two thresholds are associated with baseline
values such that when the baselines are reached, no fur-
ther loosening is allowed. As mentioned in Section 3.1,
a negative R value means that a dimension is very un-
likely to be relevant to a cluster. The baseline of Rmin

is thus set to zero. For dmin, the baseline is set to one,
which is the minimum value for a cluster to be de-
fined as a projected cluster. We will see later that the
HARP algorithm allows users to specify an optional
target number of clusters. According to our experi-
ence, if such a value is specified, the algorithm usually
finishes the clustering process well before the thresh-
olds reach their baselines. The clusters produced thus
contain selected dimensions with R scores much bet-
ter than that of a random set of projected values.

There are many possible ways to loosen the thresh-



old values. From our empirical study, a simple linear
loosening scheme is found to be very adaptive and per-
formed well. In this scheme, there is a fixed number of
threshold levels such that whenever no more qualified
merges remain, the values of the two thresholds are up-
dated using a linear interpolation towards the baseline
values (see Section 3.3 for details). By default, we set
the number of threshold loosening steps to the dataset
dimensionality d such that after each threshold loosen-
ing, dmin is reduced by 1.

Obviously, while the simple loosening mechanism
and the default number of loosening steps work well in
our experiments, they are not always the best choice.
To this end, we allow users to input some domain
knowledge should they be available. Users are allowed
to input the initial and baseline values for the two
thresholds and the number of loosening steps. They
may also select an alternative loosening scheme (e.g.
aggressive loosening that always loosens the threshold
that leads to more qualified merges, or conservative
loosening that does the reverse), or specify their pre-
ferred scheme as a plugin procedure.

3.3. The Complete Algorithm

The whole algorithm is shown in Algorithm 1. At the
beginning of the clustering process, each object forms
a singleton cluster. The dimensionality and relevance
thresholds dmin and Rmin are initialized to their tight-
est values. For each cluster, the dimensions that sat-
isfy the threshold requirements are selected. The merge
score between each pair of clusters is then calculated.
Only merges that form a resulting cluster with dmin

or more selected dimensions are qualified and the oth-
ers are ignored.

The algorithm repeatedly performs the best merge
according to the MS scores of the qualified merges.
In order to efficiently determine the next best merge,
merge scores are stored in a cache (e.g. a quad tree or
a Conga line [10]). After each merge, the scores related
to the merged clusters are removed from the cache, and
the best scores of the qualified merges that involve the
new cluster are inserted back. The selected dimensions
of the new cluster are determined by its members ac-
cording to Rmin. According to the definition of R, if
a dimension is originally not selected by both merg-
ing clusters, it must not be selected by the new cluster.
However, if a dimension is originally selected by one or
both of the merging clusters, it may or may not be se-
lected by the new cluster.

Whenever the cache becomes empty, there are no
more qualified merges at the current threshold level.
The thresholds will be loosened linearly according to

Algorithm 1 The HARP algorithm.
Algorithm HARP (k: target no. of clusters (default: 1))
1 For step := 0 to d− 1 do {
2 dmin := d− step
3 Rmin := 1− step/(d− 1)
4 Foreach cluster CI

5 SelectDim(CI , Rmin)
6 BuildScoreCache(dmin, Rmin)
7 While cache is not empty {
8 // CI1 and CI2 are the clusters involved in the
9 // best merge, which forms the new cluster CI3

10 CI3 := CI1 ∪ CI2

11 SelectDimNew(CI3 , Rmin)
12 UpdateScoreCache(CI3 , dmin, Rmin)
13 If clusters remained = k
14 Goto 17
15 }
16 }
17 ReassignObjects()
End

the formulas in lines 2 and 3 of Algorithm 1. Further
rounds of merging and threshold loosening will be car-
ried out until a target number of clusters remain, or
the thresholds reach their baseline values and no more
qualified merges exist.

To further improve clustering accuracy, an optional
object reassignment step can be performed after the
completion of the hierarchical part. The MS score be-
tween each clustered object and each cluster is com-
puted based on the final threshold values when the hi-
erarchical part ends. After computing all the scores,
each of the objects is assigned to the cluster with the
highest MS score. The process repeats until conver-
gence or a maximum number of iterations are reached.

The parameter k that specifies the target number
of clusters is optional. Like other hierarchical cluster-
ing methods, k can be set to 1 and the whole clustering
process can be logged as a dendrogram, which allows
users to determine the cluster boundaries from a graph-
ical representation (e.g. [9]), or cut the tree according
to the merge order of the clusters and a value of k deter-
mined a posteriori. Due to the threshold requirements,
it is not always possible to merge the objects into a sin-
gle cluster at the end of clustering. In general, the den-
drograms of HARP are forests of trees. Also, it can be
observed that the dynamic threshold loosening mecha-
nism relies on the hierarchical nature of HARP. These
explain why we adopt the hierarchical approach in spite
of its intrinsic high time complexity. HARP is espe-
cially suitable for applications where accuracy is the
first priority and the datasets are of moderate sizes,
such as gene expression profiles. For instance, cluster-



ing a typical gene expression dataset with 5000 genes
and 50 samples takes ten to twenty minutes on a desk-
top PC, which is quite reasonable. It is also possible
to improve the speed performance of HARP in a num-
ber of ways. The details can be found in [25].

3.4. Extensions

As discussed previously, there are situations where
pattern-based clustering and non-disjoint clusters are
desirable. HARP can be extended to satisfy these two
requirements. To consider pattern-based similarity, the
input dataset is first preprocessed by subtracting each
expression value by the row average so that all result-
ing rows have a zero mean. Each resulting expression
value measures the relative expression level of the ob-
ject on the particular dimension. The distance between
two preprocessed objects captures their pattern sim-
ilarity in the full input space. A similar mechanism
is carried out to determine the pattern similarity be-
tween two clusters in the subspace of the resulting clus-
ter formed by merging the clusters. Suppose clusters
CI1 and CI2 have relevant dimensions VI1 and VI2 re-
spectively, and they can be merged to form CI3 . The
potential set of relevant dimensions of CI3 , V est

I3
, is es-

timated by the intersection of VI1 and VI2 . Each object
in CI1 and CI2 subtracts their expression values by the
mean expression along the dimensions in V est

I3
. The dis-

tance between the two clusters in the subspace formed
by V est

I3
thus captures their pattern similarity in the

subspace. The set of selected dimensions can be refined
by comparing the relevance index value of each dimen-
sion with the Rmin threshold, and the process can be
repeated a few times to identify a satisfactory set of se-
lected dimensions.

When clustering completes, for each produced clus-
ter CI , all the objects in the dataset will be examined
to see if they can be merged into CI without lower-
ing its quality. Each object is regarded as a singleton
cluster, and its expression values are adjusted as de-
scribed above according to the relevant dimensions of
CI . The MS score between it and CI is calculated sub-
ject to the thresholds where dmin and Rmin are set as
the number and minimum R value of the relevant di-
mensions of CI . All the objects involved in the allowed
merges are assigned as members of CI . Since each ob-
ject can be assigned to multiple clusters, the final clus-
ters are likely to be non-disjoint.

4. Experiments

In this section we present the experimental results of
HARP on two real datasets. Due to space limitation, we

omit other extensive experimental results that compare
HARP with seven projected and non-projected cluster-
ing algorithms on both synthetic and real datasets. The
results show that HARP is able to identify some pro-
jected clusters hidden in some low-dimensional space
that are missed by the other algorithms. The details
can be found in [25].

4.1. Datasets

Lymphoma: It is a dataset used in studying dis-
tinct types of diffuse large B-cell lymphoma (DL-
BCL)(Figure 1 of [4]). It contains 96 samples, each with
4026 expression values. The samples are categorized
into 9 classes according to the category of mRNA sam-
ple studied. We used HARP to perform distance-based
clustering to produce 9 sample clusters. Each relevant
dimension of a cluster represents a gene that has simi-
lar expression levels in the member samples of the clus-
ter, which is a potential signature of the sample type.

Yeast: The original dataset was published in [7]. It
contains the expression levels of 6,218 yeast ORFs at
17 time points taken at 10 minute intervals, which
cover nearly two full cell cycles. The dataset used here
is the subset selected according to [23] that contains
2,884 genes. We preprocessed the data according to the
method suggested in [6], and used HARP to perform
pattern-based clustering to produce non-disjoint gene
clusters using the two extensions. As in [6], we treated
two genes as similar if they have complementary ex-
pression patterns in the relevant subspace, i.e., the two
genes constantly show opposite rise and fall patterns
across the relevant dimensions. This is accomplished
by having two copies of each gene in the dataset, one
with the original expression values, and the other the
negation of them. This results in two nearly identical
copies of every cluster being formed. In the results re-
porting in the coming sections, all duplicated clusters
and duplicated genes in a cluster are removed.

4.2. Results

Lymphoma: HARP was able to separate the sam-
ples of different types to different clusters with only
a small number of errors. Some interesting clusters lo-
cated at the top two levels of the dendrogram are listed
in Table 1. We investigated the importance of dimen-
sion selection in the clustering process by calculating
the distance ratios A1 to A3 defined as follows:

A1(CI) =

∑
xi∈CI ,vj∈VI

(xij−xIj)
2/dI∑

xi∈CI ,vj∈V
(xij−xIj)2/d

(6)

A2(CI) =

∑
xi∈CI ,vj /∈VI

(xij−xIj)
2/(d−dI)∑

xi∈CI ,vj∈V
(xij−xIj)2/d

(7)



Samples Selected A1 A2 A3

genes
6 RAT 2456 0.72 1.32 0.87
43 DLBCL, 2 NILNT 3515 0.96 1.25 1.02
10 ABB, 1 TCL 2734 0.80 1.32 1.00
9 FL, 2 GCB, 2 RBB 3104 0.85 1.38 1.00
11 CLL, 2 RBB 2614 0.82 1.27 0.97
16 DLBCL 3347 0.90 1.38 1.01
27 DLBCL, 2 NILNT 3610 0.96 1.32 1.00

Table 1. The distance ratios of some clusters
identified by HARP from the lymphoma data.

A3(CI) =

∑
xi /∈CI ,vj∈VI

(xij−xIj)
2/dI∑

xi /∈CI ,vj∈V
(xij−xIj)2/d

(8)

A1 measures the increase in compactness of the clus-
ter due to dimension selection, A2 measures how irrele-
vant are the non-selected dimensions, and A3 measures
the increase in separation between the cluster mem-
bers and other objects due to the selection. For a good
cluster, A1 should be smaller than one, A2 should be
greater than one, and A3 should be larger than A1. All
clusters in Table 1 satisfy these requirements, which
means the selection of relevant dimensions makes the
cluster members more distinguishable. For each clus-
ter of samples, we also randomly selected 100,000 sets
of relevant dimensions and calculated the correspond-
ing distance ratios. All the resulting ratios are very
close to one with standard deviations not more than
10−5, which verify that the relevant dimensions se-
lected by HARP are statistically unexpected and sig-
nificantly better than random selections.

We then examined the biological meaning of the se-
lected dimensions of the clusters. In Figure 2 of [4],
some genes are highlighted as the signatures of some
sample types or biological processes: proliferation, ger-
minal centre B, lymph node and T cell. For each cluster
formed by HARP, we sorted all the genes in descend-
ing order according to their R values, and checked the
ranks of the signature genes. It was found that the large
DLBCL cluster contains many signature genes in the
proliferation region receiving high ranks, which sug-
gests that the expression values of the genes could po-
tentially be used to identify DLBCL samples. Similarly,
it was found that the resting/activated T samples have
a distinctive expression pattern. The 6 samples form a
clear cluster with many of the signature genes receiv-
ing very large R values. Activated blood B, FL and
CLL samples formed three separate clusters consisting
of few samples from other types. They all have large
R values at the signature genes at the lymph node re-

Algorithm Cheng and Church HARP
Avg. no. of genes 167 243
Avg. no. of time points 12 10
Avg. H score 204 203
Avg. score to size ratio 0.10 0.08

Table 2. Comparison of the clusters identified
by HARP and those reported Cheng and Church
2000 from the yeast data.

gion due to the constantly low expression, but the three
types of samples were successfully separated into differ-
ent clusters according to the expression values of other
relevant genes, in particular those in the germinal cen-
tre B region.

Yeast: We used HARP to produce about 100 distinct
clusters and compared them with the 100 biclusters re-
ported in [6]. Table 2 compares some statistics of the
two sets of clusters. The H score of a cluster is the av-
erage squared residue score defined as follows:

HI =

∑
xi∈CI ,vj∈VI

(xij−xIj−xiJ+xIJ )2

NIdI
, (9)

where xiJ and xIJ are the row average and block av-
erage respectively:

xiJ =
1
dI

∑
vj∈VI

xij (10)

xIJ =
1

NIdI

∑
xi∈CI ,vj∈VI

xij (11)

The lower is the H score, the more similar are the
rise and fall patterns of the expression values of dif-
ferent objects. On average the clusters produced by
HARP contain more genes but fewer time points. They
also have a slightly better average squared residue score
to size (number of genes multiplied by number of time
points) ratio. Figure 1 shows the clusters with the best
scores. According to the results, HARP was able to
identify clusters with diverse sizes and dimensionali-
ties. It also successfully grouped together genes with
similar expression patterns but in opposite directions.
The average size of the clusters suggests that a signif-
icant number of genes were assigned to multiple clus-
ters with matched signatures.

We evaluated the biological significance of
the clusters by a phenotypic categorization of
mRNAs that are regulated with the cell cycle
(http://yscdp.stanford.edu/yeast_cell_cycle/
functional_categories.html). Some clusters were
found to contain a significant amount of genes from re-
lated categories. One such clusters is shown in Ta-



Figure 1. The clusters identified by HARP from
the yeast data with the best mean squared
residue scores.

Category: genes
Budding, directional growth: YDR507C
Cell cycle regulators: YPL256C, YJL187C
Chromosome, nuclear segregation: YMR076C,
YDL003W, YKL042W, YMR078C
DNA repair and recombination: YLR383W,
YDR097C
DNA replication: YOR074C, YLR103C,
YAR007C, YNL312W, YDL164C, YBR088C

Table 3. One of the clusters identified by HARP
from the yeast data that contains a significant
amount of genes from related categories (all in
late G1 phase).

ble 3, which contains many categorized genes in the
late G1 phase, with functions ranging from bud-
ding, cell cycle regulation, nuclear segregation to DNA
replication and repair.

5. Discussions

The results show that HARP can identify statisti-
cally and biologically meaningful clusters without rely-
ing on user parameters whose proper values are hard to
determine. It can thus be used to automatically iden-
tify some interesting clusters from a large number of
datasets for later, more labor-intensive analysis.

The object assignment extension discovered some in-
teresting non-disjoint clusters from the yeast dataset,

but in general some important clusters could be missed
if their structures are not captured by some disjoint
clusters before object assignment. We propose two fu-
ture extensions of HARP for identifying these clusters:
to allow each cluster to be merged with multiple clus-
ters, and to produce disjoint clusters on different small
data samples, and then reassign other objects to the
clusters. Both approaches allow the discovery of more
projected structures.

A well-known weakness of hierarchical clustering al-
gorithms is the deterministic property: once an object
is assigned to a cluster, it cannot be reassigned to an-
other. The object reassignment performed at the end
of clustering helps redistribute each object to the most
similar cluster, but it is unable to correct wrong merges
during the early stage of clustering. We have attempted
to perform an object reassignment at the end of each
threshold loosening step, but no significant accuracy
improvements were observed, and the clustering pro-
cess was severely prolonged. We will try to integrate
the threshold loosening mechanism into other more ef-
ficient and non-deterministic clustering methods.

6. Conclusion

In this paper, we analyzed the major challenges of
the projected clustering problem, and suggested some
potential weaknesses of some existing projected clus-
tering algorithms. Based on the analysis, we proposed
a new projected clustering algorithm HARP that does
not rely on user inputs in determining the relevant di-
mensions of clusters, which makes it practical for appli-
cations where correct parameter values are hard to ob-
tain. HARP makes use of the relevance index and dy-
namic threshold loosening to dynamically adjust the
merging requirements of clusters according to the cur-
rent clustering status. It also allows users to input some
available domain knowledge, and it can be extended
to perform pattern-based clustering and produce non-
disjoint clusters by adaptive mean centering and post-
clustering object assignment respectively. The experi-
mental results on real microarray datasets show that
HARP works well in situations where object similar-
ity is based on either distance or expression pattern,
and where disjoint or non-disjoint clusters are required.
The clusters identified are both statistically and biolog-
ically meaningful.
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