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ABSTRACT

It is increasingly difficult to guarantee the first silicon success
for complex integrated circuit (IC) designs. Post-silicon vali-
dation has thus become an essential step in the IC design flow.
Tracing internal signals during circuit’s normal operation, be-
ing able to provide real-time visibility to the circuit under de-
bug (CUD), is one of the most effective silicon debug tech-
niques and has gained wide acceptance in industrial designs.
Trace-based debug solution, however, involves non-trivial de-
sign for debug overhead. How to conduct signal tracing ef-
fectively for bug elimination is therefore a challenging task for
IC designers. In this paper, we provide in-depth discussion for
trace-based debug strategy and review recent advancements in
this important area.

I. INTRODUCTION

Due to the high design complexity and the inaccurate ab-
stracted models used in various design and verification phases,
today’s complex integrated circuits (ICs) usually need to go
through one or more re-spins to become bug-free [7, 20], even
though half of the system development effort is allocated to ver-
ification tasks [16]. Since time-to-market dictates the success
of a chip, post-silicon validation techniques that help identi-
fying bugs effectively and efficiently is of crucial importance.
Debugging silicon, however, is an extremely complex problem
and cannot be tackled without effectively observing the opera-
tions of the design’s internal nodes.

A widely-adopted post-silicon validation technique utilized
by the industry is to reuse the IEEE Std. 1149.1 (JTAG) test
access port and existing design for test (DfT) structures in the
circuit (e.g., scan chains) to run, halt and step the circuit un-
der debug (CUD) to find bugs [22]. This technique is quite
effective in identifying those easy-to-find bugs that leave ”evi-
dences” when the circuit halts, but fails to find those tricky bugs
that manifest themselves only after a long period of operational
time. In addition, the behavior of many bugs is hard to repeat,
making diagnosis with this run/stop debug methodology even
more difficult. To mitigate the above problem, designers can
add shadow flip-flops (FFs) to the CUD to increase its visibil-
ity during normal operation [8]. However, this method can only
sample a few snapshots of the circuit’s operational states and it
also involves nontrivial design for debug (DfD) overhead.

To be able to root-cause design bugs, post-silicon valida-
tion requires to increase controllability and observability of

the CUD’s internal behavior to a much higher level than what
manufacturing test generally needs [7]. A more effective sili-
con debug technique is to selectively monitor and trace internal
signals of the circuit continuously during its normal operation.
The traced data can then be either stored in an on-chip trace
buffer or transferred out of the chip via a trace port for later
analysis.

A huge volume of trace data, however, is difficult to analyze
and results in high DfD overhead. Therefore, how to conduct
signal tracing effectively for bug elimination while keeping the
associated hardware cost manageable (usually required to be
less than 10% of the original design) is a challenging task for
IC designers. In this paper, we provide in-depth discussion
for trace-based debug strategy and review recent advancements
in this important area. In particular, we discuss the following
issues in trace-based debug solution:

• Out of the large amount of state elements in the circuit,
which signals should we choose to monitor and trace to
provide high visibility to the CUD?

• How do we design the trace data transfer module to pro-
vide enough observation flexibility while keeping the as-
sociated DfD overhead low?

• How can we compress the large volume of trace data ef-
fectively so as to make efficient use of the limited trace
bandwidth provided by trace buffers and/or trace ports?

• How do we control the signal tracing effectively to obtain
highly-qualified trace data?

The remainder of this paper is organized as follows. Sec-
tion II provides an overview for trace-based silicon debug strat-
egy. In Section III and Section IV, we discuss automated trace
signal selection methodologies and interconnection fabric de-
sign for trace data transfer, respectively. Section V illustrates
trace data compression techniques. The control mechanisms
for signal tracing is described in Section VI. Finally, Section
VII concludes this paper and points out some future work in
this direction.

II. OVERVIEW OF TRACE-BASED DEBUG METHODOLOGY

The hardware infrastructure to facilitate trace-based silicon
debug is shown in Fig. 1, wherein various DfD modules are in-
troduced at design stage of the CUD for later debug purpose.
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Generally speaking, designers select to tap a number of sig-
nals in the CUD (typically thousands of signals in million-gate
industrial designs [1]). However, only a subset of the tapped
signals are traced concurrently during debug phase due to trace
bandwidth limitation. This is achieved by an “interconnection
fabric” (e.g., a MUX tree) that link the tapped signals to trace
buffers or trace ports. In addition, trigger units are typically
used to determine when to start and stop signal tracing so as
to further reduce trace bandwidth requirement. In most cases,
designers reuse JTAG test access port as the control interface
for the debug phase.

When the first silicon is back with some bugs, in each debug
run (see Fig. 2), designers first configure the DfD module in
the CUD by selecting the to-be-traced signals from the tapped
ones and determining the trigger conditions for signal tracing,
and then put the CUD into normal operational mode. If the pre-
determined trace condition is met, the traced data is transferred
through the interconnection fabric to on-chip trace buffers or
off-chip trace ports. The collected data are then analyzed to
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Fig. 3. ARM CoreSight Multi-Core Debug Architecture [3]

root-cause the possible design bugs. The above process iter-
ates a number of debug rounds or even a few re-spins (when
unlucky), until all the bugs are eliminated.

Fig. 3 depicts the ARM CoreSight trace-based debug solu-
tion [3], wherein each ARM core is equipped with an embed-
ded trace macrocell (ETM) for capturing the processor’s states.
It also contains a cross trigger interface so that trigger events
can be transferred between different ETMs to facilitate multi-
core debug.

III. TRACE SIGNAL SELECTION

Ideally, we wish to “see any signal at any time” during post-
silicon validation. This is clearly not achievable with the large
amount of internal signals deeply embedded in the fabricated
chip. As indicated in Fig. 1, with the help of constrained DfD
resources, we can only afford to tap a few internal state ele-
ments and use them to help designers root-cause the abnormal
behaviors of the CUD. Our objective is therefore to select those
essential signals in the CUD so that bugs have a high chance to
leave “evidences” on them, and the effectiveness of trace-based
debug strategy highly relies on which signals are selected to be
traced.

To debug errors on microprocessors and software running
on them, naturally it is beneficial to observe the execution of
the instructions. In [15], the authors proposed to trace the be-
havior of every execution stage of instructions to obtain more
detailed information on how the microprocessor operates. In
addition, several methods have been presented to monitor ei-
ther the communication interface of the processor (data chan-
nel, address channel and control channel) [3, 11, 17], or the
memory contents that store the execution results [10, 24].

For the increasingly popular network-on-chip (NoC) based
designs, more visibilities are required to the communication
among multiple cores, especially at transaction level to provide
a globally consistent view of the system. Several trace selec-
tion methods were proposed for such type of designs in the
literature to tackle this problem [6, 23, 18]. As an example, [6]
proposed to attach dedicated monitoring probes on routers and
provide transaction level observability of the NoC.

The above techniques are quite effective for the targeted
types of circuits, but we are still facing the trace signal selec-
tion problem for general logic circuitries. In current practice,
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designers usually manually select those signals that are consid-
ered to be vulnerable to bugs or important for analysis to trace,
based on their own design experience. This ad-hoc method,
however, cannot guarantee the quality of the selected trace sig-
nals. More importantly, bugs often occur in unexpected scenar-
ios and it is very difficult, if not impossible, to predict which
signals will be related to them during the design phase. There-
fore, we need to have at least some trace signals that are se-
lected in an automated manner without designers’ intervention.

The work presented in [9] is the first attempt to address
the above problem. In this paper, the authors found that it
is possible to expand the logic states on the few traced sig-
nals to “restore” many missing states on untraced ones with
logic implication, as the example shown in Fig. 4. The restora-
tion can be either forwardly propagated (e.g., from FF C to
FF D, referred as forward propagation) or backwardly justi-
fied (e.g., from FF C to FF A, referred as backward justifi-
cation. A so-called restoration ratio was defined and calcu-
lated as R = Ntraced+Nrestored

Ntraced
, serving as the evaluation metric to

measure the quality of the selected trace signals. Ntraced and
Nrestored represent the number of traced states and that of re-
stored states, respectively. Since the actual states of the inter-
nal signals are unknown before runtime, such restoration ra-
tio can only be estimated at design stage. Therefore, [9] also
defined several gate-level restorabilities, which are utilized to
estimate restoration ratio. With the above, the objective for
the automated trace signal selection problem is to maximize
the restoration ratio for the selected trace signals, which is re-
solved by a greedy heuristic in [9].

In [14], we showed that the gate-level restorability defini-

tions in [9] are lack of theoretical basis and hence are not ac-
curate in many cases. Consequently, the quality of the selected
trace signals guided by such inaccurate estimation is not very
effective. To tackle this problem, in [14], we redefined the gate-
level restorabilities in a theoretically-precise manner to obtain
the visibility1 as the evaluation metric for trace signal selec-
tion. Then, we conduct circuit-level propagation of visibilities
from traced signals to untraced ones carefully, which tries to
avoid both overestimation and underestimation of the restora-
bility by imitating the logic implication behavior as described
in Fig. 5. Experimental results show that under constrained ran-
dom simulation, with the more accurate visibility estimation,
our method is able to achieve up to 133.6% higher restoration
ratio than [9] for ISCAS’89 benchmark circuits, and the actual
restoration ratio varies from 5x to 64x.

Recently, [25] tried to address the trace selection problem
from a different angle. In this work, they proposed to select
trace signals in such way that the erroneous states on other in-
ternal signals will take fewer cycles to expose themselves on
the traced ones.

IV. TRACE DATA TRANSFER

In this section, we discuss the DfD module that facilitates
trace data transfer from the tapped signals to trace buffer/port,
including block-level interconnection fabric design for signal
tracing and system-level trace data transfer infrastructure for
multi-core debug.

1The probability that a logic value ‘1’/‘0’ is actually observed on a circuit
node.



A. Interconnection Fabric Design for Signal Tracing

As designers are not knowledgeable about which part of the
design may contain bugs, a relatively large number of signals
are selected to be traceable in the circuit, typically in the thou-
sand range for million-gate designs [1]. Due to the associated
DfD area cost and debug bandwidth requirement, however, it
is impossible to concurrently monitor and trace all the tapped
signals. Instead, only a small number of internal signals can
be real-time observed together, and it is up to the designers to
determine which signals to trace at a specific debug run, ac-
cording to the system’s erroneous behavior. These signals are
then transferred to on-chip trace buffers and/or off-chip trace
ports for diagnosis.

To reduce the DfD cost, industrial designs typically use
MUX trees to select a subset of the tapped signals to trace in
each debug run, in which the control signals to the multiplex-
ers are configured through the JTAG interface (e.g., [1, 21]).
To meet timing constraint for the tracing logic, the MUX trees
can be pipelined. In addition, when the tapped signals come
from multiple clock domains, first-in first-out (FIFO) buffers
and/or flip-flop chains can be used to ensure data safety [1].
The above design methodology, however, limits this flexibility
of observing any combinations of related tapped signals and re-
duces the visibility to the CUD, as any signals going through
the same multiplexer cannot be traced concurrently. This prob-
lem can be easily solved by introducing non-blocking concen-
tration network, which is able to select any m signals out of n
inputs (m ≤ n) and output them to the trace buffers/ports, but
such design is with prohibitive DfD cost.

In [13], we proposed a novel interconnection fabric design
to satisfy necessary debugging flexibility while keeping the
cost at acceptable level. As shown in Fig. 6, our design con-
tains two parts (1). a multiplexer network that connects those
mutually-exclusive tapped signals, which can be designated by
designers and/or extracted automatically based on structural
analysis. This stage outputs potentially-correlated signals. (2).
a non-blocking concentration network that is able to transfer
any signals (constrained with bandwidth) out of potentially-
correlated inputs to the trace buffers and/or trace ports. One of
the main objectives of the design is to minimize the number of
potentially-correlated signals (the outputs of MUX network).
This is because, accessing the same signals with MUX tree al-
ways results in smaller DfD cost when compared to concen-
trator, since the latter one requires more resources to achieve
“any combination” transfer capability. We presented a struc-
tural analysis method to identify those mutually-exclusive sig-
nals. Then, an “uncorrelation graph” is built as shown in Fig. 7,
in which each vertex denotes a tapped signal while an edge de-
notes that the connected two signals are not highly correlated.
Hence, the signals in a clique represent they are mutually-
exclusive and can be transferred with MUX tree. To minimize
the output signals from the multiplexer network, it can be sim-
ply mapped to the “minimum clique cover problem” and we
resort to a classical heuristic to solve it. Starting from existing
concentration network, we also proposed several simplification
rules to remove redundant hardware that provides unnecessary
paths or permutations in the concentrator. Experimental results
verify that our solution is able to significantly reduce DfD area
cost while satisfying designer’s debug flexibility requirement.
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B. System-Level Trace Data Transfer

In today’s complex system-on-a-chip (SoC), embedded
cores communicate with each other during normal operation.
Hence, debugging one core at a time can be ineffective and
sometimes misleading [17], especially for SoCs containing a
number of processors. To tackle this problem, several multi-
core debug solutions were proposed for bus-based SoCs by in-
troducing various on-chip instrumentation (OCI) blocks cus-
tomized for diverse processors, logic cores and embedded
buses [3, 11, 17]. Dedicated debug buses are then used for
system-level trace data transfer, which incurs non-trivial rout-
ing overhead to the CUD.

For NoC-based system, since the communication bandwidth
is much higher than that of bus-based system and usually they
are not fully occupied, several work advocated to reuse the
NoC for trace data transfer so that we can avoid the routing
overhead associated with dedicated debug buses (e.g., [6, 18]).
At the same time, since a large volume of trace data can sig-
nificantly affect the performance of the on-chip network, such
reuse methods should be designed carefully. In [18], we pro-
posed a novel NoC-based multi-core debug platform as shown
in Fig. 8 to address this problem. With a system-level debug
agent (DA) and several core-level debug probes between CUD
and its network interface, the platform can facilitate designers
to synchronize multiple CUD’s debug operations and qualify
trace data before transferring them through NoC, so that the
required NoC traffic cost can be dramatically reduced.

SoC devices often contain dedicated test access mechanisms
(TAMs) used to transfer test data between external testers and
embedded cores. Since TAMs are left unused after manufactur-
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ing test, we proposed to use these valuable resources for trace
data transfer in normal functional mode in [12], thus signifi-
cantly reducing routing cost for trace data transfer. To achieve
the above objective, several DfD structures are introduced, as
shown in Fig. 9. As depicted in Fig. 10, the original test wrap-
pers that enable test data flow from the internal signals of the
wrapped core into TAMs are modified to facilitate real-time
trace data transfer with the help of a formatter and a debug
MUX. We also define the transfer data format and design the
corresponding buffer interface to decode it. The method is fur-
ther developed to avoid data corrupting during multi-core de-
bugging. Experimental results show that the proposed method
facilitates trace data transfer in various debug scenarios with
negligible DfD cost.

V. TRACE DATA COMPRESSION

Due to the limited trace bandwidth provided by trace buffers
and/or trace ports, storing the “raw” traced data is not quite eco-
nomical. Various trace data compression methodologies were
presented to tackle this problem.

In [15], the authors utilized the locality feature of instruction
sequence and redundant information in monitored data that can
be easily identified with the executed instruction to store the ex-
ecution states of microprocessor. With the technique, a small
amount of footprints are enough to observe the whole opera-
tional behavior of the microprocessor under debug. Recently,
several works [10, 24] were presented for tracing the contents
in cache. They both utilize the data locality feature when ac-
cessing cache and adopt dictionary-based compression to fur-
ther improve the compression ratio. Different from each other,
[24] observed the following features to enhance compression
ratio: the similarity in tag field caused by spacial locality of
memory reference and the unusual usage of high order bits for
integer value; [10], on the other hand, proposed to reuse cache
to compress instructions by inserting supporting module into
it. The method is able to restore full information with a small
amount of traced data combined with the contents remaining in
cache.

Recently, a lossy compression method based on multiple-
input signature register (MISR) was presented in [2]. With
the assumption that the CUD behaves repeatable in different
debug iterations, the method consecutively zooms-in the sam-
pling intervals with compressed failure signatures generated
from MISR to localize the error.

VI. TRACE-BASED DEBUG CONTROL

This section discusses the control mechanisms that deter-
mine the signal tracing behavior. These mechanisms can be
used to start and stop tracing so that unnecessary data can be
filtered to reduce trace data volume (known as trace qualifica-
tion). More importantly, the designers’ capability of control-
ling the CUD directly affects the debug effectiveness. This is
because, when designers can easily control the CUD into sus-
picious state and obtain relevant information, it becomes much
earlier for them to root-cause the possible errors.

In [22], the authors described several basic DfD modules that
can be used for debug control, including comparator to check
if the condition signals are met with pre-configured value, and
counter to facilitate the trigger control with temporal informa-
tion. Later, [4] proposed to synthesize more complex control



unit (i.e., assertion checker) to monitor complex behaviors of
the CUD (e.g., ATB communication protocol). The unit is a
state machine that can be generated from the description with
formal languages for assertion-based verification. Later, the
same authors [5] introduced several enhanced features to local-
ize the errors that are buried as internal states in sophisticated
assertions, in addition to reduce the associated hardware cost
in unit generation in [4],.

Multi-core debug control for complex SoC devices is a chal-
lenging task since we need to be able to control related cores
simultaneously [23]. This problem becomes particularly diffi-
cult when the data transfer among cores is not deterministic,
in which case, it is rather ineffective to configure all the re-
quired trigger conditions before running the system. To tackle
this problem, [19] proposed a so-called in-band cross-trigger
event transmission infrastructure. By inserting the cross-trigger
events into the messages, designers are able to trace the desired
messages more easily.

VII. CONCLUSION AND FUTURE WORK

Trace-based debug techniques have been successfully ap-
plied in the industry for some time and they are shown to be
quite effective for post-silicon validation. In this paper, we
provide in-depth discussion for state-of-the-art signal tracing
techniques presented in the literature.

While trace-based debug solution has advanced a lot re-
cently, the overall methodology is still more like an ‘art’ rather
than a ‘science’. Whether we can obtain more accurate eval-
uation metrics to measure the quality of trace-based solutions
(e.g., similar to “fault coverage” in manufacturing test) remains
to be an open question. In addition, most prior works in this
area focused on debugging logic errors that are easy to be re-
peated. A more challenging problem in post-silicon validation
is to debug those electrical errors that only manifest themselves
in certain electrical environment, which has not been explored
much so far. More innovations are required in the above areas
to shorten the time-to-market for the increasingly complex IC
designs in the future.
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