
Recursive Interlocking Puzzles

Peng Song Chi-Wing Fu

Nanyang Technological University

Daniel Cohen-Or

Tel Aviv University

Abstract

Interlocking puzzles are very challenging geometric problems with
the fascinating property that once we solve one by putting together
the puzzle pieces, the puzzle pieces interlock with one another, pre-
venting the assembly from falling apart. Though interlocking puz-
zles have been known for hundreds of years, very little is known
about the governing mechanics. Thus, designing new interlocking
geometries is basically accomplished with extensive manual effort
or expensive exhaustive search with computers.

In this paper, we revisit the notion of interlocking in greater depth,
and devise a formal method of the interlocking mechanics. From
this, we can develop a constructive approach for devising new in-
terlocking geometries that directly guarantees the validity of the in-
terlocking instead of exhaustively testing it. In particular, we focus
on an interesting subclass of interlocking puzzles that are recursive
in the sense that the assembly of puzzle pieces can remain an in-
terlocking puzzle also after sequential removal of pieces; there is
only one specific sequence of assembling, or disassembling, such
a puzzle. Our proposed method can allow efficient generation of
recursive interlocking geometries of various complexities, and by
further realizing it with LEGO bricks, we can enable the hand-built
creation of custom puzzle games.

CR Categories: J.6 [Computer Applications]—Computer-aided
design; K.8 [Personal Computing]: Games

Keywords: Computer-aided design, interlocking, 3D puzzles

Links: DL PDF

1 Introduction

3D puzzles are generally nontrivial geometric problems that chal-
lenge our ingenuity. They have been longstanding stimulating
recreational artifacts, where the task is to put together the puzzle
pieces to form a meaningful 3D shape. Such an endeavor requires
spatial cognitive skills for recognizing and understanding patterns
and 3D structures, as observed from different angles. Interestingly
enough, while solving a 3D puzzle assembly problem is already an
intricate task, the creation of nontrivial puzzles is an even greater
challenge.

Among the various families of 3D puzzles, a particularly challeng-
ing case is interlocking puzzles, for which one has to identify and
follow certain orders to assemble the puzzle pieces into the target
shape. The fascinating property of interlocking puzzles is that once

Figure 1: A 10-piece recursive interlocking BUNNY puzzle, where
the red piece is the first key in the puzzle.

they are assembled, the puzzle pieces interlock with one another,
preventing the 3D assembly from falling apart. More precisely,
all puzzle pieces become immobilized except one single key piece,
which is the last puzzle piece inserted to the assembly, and also the
first required to be removed in the disassembly.

The geometric properties of interlocking puzzles are highly intrigu-
ing, and have been a virtue attracting architecture designers because
the structure remains steady and solid while being glue-less, nail-
less, and screw-less, and yet can be repeatedly assembled and dis-
assembled. Nevertheless, little is known about the governing me-
chanics of interlocking puzzles [Cutler 1994; IBM Research 1997;
Xin et al. 2011], and we are unaware of any previous research work
in various communities, including graphics, computer aided design,
and computational geometry. In this paper, we revisit the notion of
interlocking in greater depth and develop a computational method
for creating interlocking puzzles of varying complexities.

We define an interlocking puzzle as follows:

An assembly of puzzle pieces (with at least three pieces)
is said to be interlocking if there exists only one movable
puzzle piece, while all other puzzle pieces, as well as
any subset of the puzzle pieces, are immobilized relative
to one another.

This definition stresses the difficulty of creating interlocking struc-
tures because, geometrically, the immobilization of individual puz-
zle pieces does not imply the immobilization of subsets of puzzle
pieces. Thus, a naive decomposition of a shape into interlocking
pieces would require (i) testing the immobilization of all the sub-
sets of pieces, and (ii) testing that the decomposition is not dead-
locked. Such tests lead to extremely expensive algorithms. Hence,
previous attempts to discover new interlocking puzzles based on ex-
haustive search [Cutler 1978; Cutler 1994; IBM Research 1997] are
extremely expensive. Other attempts, which are created manually,
are very limited and still require enormous effort.

Figure 2: Coffin’s four-piece interlocking cube.

http://doi.acm.org/10.1145/2366145.2366146
http://portal.acm.org/ft_gateway.cfm?id=2366146&type=pdf


Nevertheless, a manually-designed celebrated example is the inter-
locking cube of Coffin, shown in Figure 2. Unlike common burr
interlocking structures [IBM Research 1997] whose mechanics, or
blocking geometries, are centralized in a small region in the middle
of the burr structure, here the interlocking geometry is decentral-
ized, and the blocking parts in each puzzle piece are not as obvious
as that in the burr structure. As one can observe in Figure 2, all the
puzzle pieces appear structure-less, none suggesting its orientation
with respect to the source shape, and yet, they can be assembled.

Coffin’s interlocking cube motivated us to study the geometric me-
chanics that govern, or produce, interlocking. We devise a formal
method to describe and analyze the interlocking mechanics, and
then develop a constructive approach for devising new interlocking
geometries. Our method is constructive in the sense that it directly
guarantees the validity of the interlocking instead of exhaustively
testing it.

Figure 3: Examples. Top: recursive interlocking. After P is taken
out, we must take out Q in order to take out R. Bottom: interlocking
but not recursive interlocking. After P is taken out, we can take
out either Q or R. Note that we assume when we remove a puzzle
piece, we move it all the way out rather than moving it partially.

In our work, we focus on an interesting subclass of interlocking
puzzles that are recursive in the sense that the assembly of puzzle
pieces (with at least three pieces) remains an interlocking puzzle
also after the (sequential) removal of pieces (see Figure 3). Thus,
the disassembly (and assembly) of a recursive interlocking puzzle
has a unique solution. In other words, there is a specific sequence of
pieces with which the shape can be assembled (and disassembled).

Our formal derivation of recursive interlocking shows that if we
maintain certain interlocking properties locally within every subse-
quent group of puzzle pieces in the puzzle disassembly sequence,
the entire puzzle is proved to be interlocking. In this way, we can
avoid the expense of checking the required interlock immobiliza-
tion over all subsets of puzzle pieces. As a result, we can efficiently
create larger interlocking structures.

We show that our constructive method allows generating new re-
cursive interlocking structures of various complexities. In particu-
lar, we succeed in quickly generating a 20-piece 63 CUBE, which
is larger than a 19-piece example (manual effort, just interlocking)
we are aware of. We also succeed in generating 1250 pieces for a
353 CUBE, a task that is intractable by manual effort. Finally, like
common interlocking structures that make up of cubical shapes, our
method takes general voxelized shapes as input. Thus, as we show,
the puzzles can be realized with physical LEGO bricks, offering
simple means for the creation of “home-made” 3D puzzles.

2 Related work

Computational Methods for Physical Models. In recent years

various computational methods have been introduced for creat-
ing 3D structures that can be physically constructed. Mitani et
al. [2004] approximated a given surface mesh by triangle strips to
support the construction of paper-craft models. Kilian et al. [2008]
proposed a method to construct developable surfaces with curved
folding by minimizing the bending energy. Li et al. [2010] de-
veloped an automatic method to generate 3D pop-up paper archi-
tectures from 3D models based on a planar layout formulation.
Tachi [2010] proposed a two-step mapping algorithm to origamize
a 3D shape by producing a planar crease pattern that can be folded
to form a 3D shape without any cut. More recently, Li et al. [2011]
developed an interactive tool enabled by an automatic construction
method for designing v-style pop-up cards, while Hildebrand et
al. [2012] developed new methods to generate cardboard sculptures
that can be fabricated from planar slices.

Computational methods were also devised to support physi-
cal construction of various other types of designs. Mori and
Igarashi [2007] developed an interactive sketch interface that sup-
ports the design of 3D Plush toys from 2D cloth patterns. Weyrich
et al. [2007] proposed a pipeline for creating bas-relief sculptures
that meet various unique requirements such as depth discontinuity.
Mitra and Pauly [2009] designed a computational framework for
creating 3D shadow art by analyzing the constraints among shadow
shapes cast in different directions. Alexa and Matusik [2010] pro-
posed a sub-pixel representation for constructing reliefs so that a
relief can appear to show different pictures when illuminated with
different lighting directions. Most recently, Holroyd et al. [2011]
devised a pipeline of computational methods that can avoid visual
cracks when converting a 3D model into a multilayer artifact, while
Lau et al. [2011] converted furniture models into fabricatable parts
and connectors using lexical and structural analysis.

Computational methods for puzzles have received special attention.
Early work focused mainly on how to apply computers to solve puz-
zle problems: 2D apictorial jigsaw puzzles [Freeman and Garder
1964; Wolfson et al. 1988; Goldberg et al. 2002], 2D pictorial jig-
saw puzzles [Murakami et al. 2008; Cho et al. 2010], and 2D/3D
fragment assembly [Kong and Kimia 2001; Sagiroglu and Ercil
2006]. Recently, geometric methods have been proposed to gen-
erate 3D puzzle problems, including the work of Lo et al. [2009],
who created shell-based 3D puzzles with polyominoes as the com-
ponent shape of the puzzle pieces, and the work of Xin et al. [2011],
who replicated and connected pre-defined six-piece burr structures
to create interlocking puzzles from 3D models.

Creating Interlocking Puzzles. In this paper, we are interested
in developing computational methods to generate novel, rather than
replicating, interlocking structures.

Interlocking has a long history in the making of wooden artifacts.
In ancient Chinese and Japanese architecture [Seike 1977; Zwerger
2012], the wooden joint on top of a pillar actually contains a small
wooden pin (key) that can lock all local parts around it, including
the crossbeams and decorations. With such interlocking, the overall
timber framework is more stable and durable.

The design of a new interlocking configuration is extremely hard
for humans, even for skilled professional. This perhaps explains
why over many centuries there are not many known interlocking
puzzles, and that these puzzles were designed by skillful craftsmen
with great effort. As mentioned in [Coffin 1990], interlocking puz-
zle design requires hours, or even days, of mental work. Only in
the late 1970s, Cutler [1978; 1994] proposed to use computers to
exhaustively try and discover new possible configurations, thus in-
troducing a large number of six-piece interlocking structures. Nev-
ertheless, due to the combinatorial complexity, his computer pro-
gram took almost three years to loop over the tens of billions of



Figure 4: Overview: (a) a voxelized shape as input, S; (b) construct the key piece P1 (with remaining volume R1); (c) construct the next
piece P2 (with remaining volume R2); and (d,e) iteratively construct all other pieces.

possible configurations where each configuration involves only six
puzzle pieces and a variable cubical volume of less than 43 vox-
els [IBM Research 1997]. Other than complete analysis of all pos-
sible configurations, which is practical only for very small problem
sets, some 3D puzzle designers took a trial-and-error approach by
using computer software such as BurrTools by Röver [2011] as a
puzzle solver to test if their puzzle designs can be assembled. Al-
though this approach saves hours of time with papers and pencils,
the design of interlocking configurations remains highly dependent
on human intelligence, and yet only for small-scaled problems.

Moving forward in the holy grail of interlocking, a very recent work
by Xin et al. [2011] attempted to create larger interlocking puzzles
by replicating and connecting a known six-piece burr puzzle. Since
it is based on reusing a typical burr puzzle, this method does not
really create new interlocking configurations. In contrast, we first
analyze the interlocking mechanics, and through this study, new in-
terlocking configurations are created. In addition, compared to our
method, which is fully automatic, Xin et al. [2011]’s method re-
quires one to first manually design and construct a grid-based graph
inside a given 3D shape, so that the method can put a six-piece burr
puzzle at each grid point and connect them to guarantee the in-
terlocking. Furthermore, since each burr puzzle at the graph grid
points actually requires a bulky centralized structure in the middle
to achieve interlocking, this method is less flexible when dealing
with complex shapes and topologies. Unlike Xin et al.’s method,
we start by studying the mechanics of interlocking in greater depth
and devising a formal method on interlocking. Hence, we can de-
velop an efficient constructive method capable of devising new in-
terlocking geometries, and directly guarantee the validity of the in-
terlocking rather than exhaustively testing it. Moreover, since our
work follows the mechanism of Coffin’s interlocking cube, unlike
burr puzzles, the interlocking structure is decentralized, and thus
can adapt more flexibly to complex 3D shapes and topologies.

3 Overview

Figure 4 outlines in high-level our computational method. Like
common interlocking structures, our method takes a general vox-
elized shape, denoted S, as input (Figure 4(a)), and iteratively ex-
tracts pieces, one by one, forming a sequence of extracted pieces
P1, P2, ..., Pn, with Rn, the remaining part of S, as the last piece:

S → [P1, R1] → [P1, P2, R2] → ... → [P1, ...Pn, Rn] .

The union of all resulting pieces is S, and our goal in this iterative
process is to ensure that any (postfix) subsequence [Pi, ..., Pn, Rn],
for i = 1..n− 1, is a recursive interlocking puzzle, where Pi is the
key and all the other pieces in the subsequence (and any subset
of it) are immobilized. To facilitate the understanding, we use a
consistent color scheme on the following puzzle pieces: red for
P1, blue for P2, yellow for P3, orange for P4, and green for the
remaining volume from which the next piece is to be extracted (see
again Figure 4).

To achieve this goal, during the iterative extraction of puzzle pieces,
we require a local interlocking among Pi, Pi+1, and the remain-
ing part Ri+1, e.g., P1, P2, and R2 are interlocking with P1 as
the key (Figure 4(c)). Such local interlocking can be enforced
by requiring that (i) Pi is the key piece in the local configuration
[Pi, Pi+1, Ri+1], while all other pieces and subsets of this config-
uration are immobilized; and (ii) once Pi is removed, Pi+1 can be
removed from Ri+1 (see Section 4 for detail).

In Section 5, we describe how to extract Pi’s to guarantee the above
properties. The key idea is that by enforcing local interlocking
among small subsequences, it can be proved by induction (Ap-
pendix) that puzzle pieces carefully constructed by our rules are
guaranteed to be interlocked without exhaustive interlocking tests
globally over subsets of all puzzle pieces. Moreover, such con-
structive requirement can be realized by an efficient method that
examines, and generates, the blocking mechanics only locally (Sec-
tion 5), allowing the efficient construction of interlocking structures
with large number of puzzle pieces.

Once we define the puzzle pieces (Figure 4(e)), we hand-build the
interlocking puzzles from standard LEGO bricks (Section 6).

4 Formal Method

The decomposition of a 3D solid into pieces may yield either an
assemblable or non-assemblable configuration. An assemblable
decomposition can either be interlocking or non-interlocking. See
Figure 5 for 2D examples. However, note that in 2D, a piece can
be moved only by shifting it along the main axes of the plane, and
removing a piece “vertically” up is an illegal move. In any case, our
interest is in 3D where the pieces can only be moved by translating
them along one of the three main axes. It should be noted that once
a piece is translated by moving along a certain axis and becomes
removable, we will remove it completely; we do not consider small
and partial translations.

Figure 5: Decomposing a solid in 2D space into non-interlocking,
interlocking, and non-assemblable pieces (left to right).

A non-interlocking configuration is one where more than one piece
is mobilized. In Figure 5(left), the three pieces are all removable
(in any order). A decomposition can be carefully defined so that
the pieces block one another and there is only a single piece (the
key) that is mobilized (see Figure 5(middle)). However, there could
be an excess of blocking among the pieces (see Figure 5(right)),
leading to a deadlock, and the decomposition cannot be assembled



Figure 6: A 4-piece 33 recursive interlocking CUBE generated by our method: (a) the puzzle piece anatomy; and (b-e) its disassembly.

nor disassembled. To achieve a valid interlocking in a 3D solid
decomposition, we have to make sure that the decomposition is in-
terlocking and that it can be assembled. Furthermore, to achieve re-
cursive interlocking, we have to ensure that all intermediate config-
urations during the assembly (and disassembly) are properly inter-
locked. See Figure 6 for an example recursive interlocking CUBE.

In the following, we start by presenting our requirements that lead
to constructing recursive interlocking puzzle pieces.

4.1 Requirements on Constructing the Puzzle Pieces

To achieve local interlocking that can be guaranteed to lead to
global (recursive) interlocking among all constructed puzzle pieces,
we propose the following requirements on local interlocking (see
again our notations on puzzle pieces in Section 3):

Requirements on constructing P1. When we decompose an input
3D solid into P1 and R1, we have the following requirements:

1. First, we can remove P1 directly in the two-piece configura-
tion [P1, R1] with a single-step one-dimensional translation.
This is to ensure that P1 can always be removed in the first
step in the recursive interlocking puzzle;

2. Second, P1 should be removable in only one direction. If P1

can be removed in more directions, it may fall off easily, as
well as leave fewer (or no) choices for the next piece (By
Lemma 3, see Appendix);

3. Lastly, P1 should be simply connected. In addition, the same
goes to R1 too; otherwise, we cannot enforce recursive inter-
locking for the remaining puzzle pieces. This is required for
recursive interlocking, but not for simple interlocking.

Requirements on constructing Pi (i > 1). After constructing
the key, P1, we can iteratively extract pieces one by one from the
remaining volume with the following requirements:

1. First, the three-piece configuration [Pi−1, Pi, Ri] should be
interlocking with Pi−1 as the key. This local interlocking
criteria can be proved to be fulfilled (by Lemma 2 in Ap-
pendix) by ensuring that (i) Pi is immobilized in configura-
tion [Pi−1, Pi, Ri] and (ii) Pi−1 and Pi cannot move together
relative to a fixed Ri;

2. Second, we have to make sure that Pi can be removed and
separated from Ri in the two-piece configuration [Pi, Ri] af-
ter Pi−1 is removed;

3. Lastly, like the last requirement on P1, both Pi and Ri should
be simply connected.

Global interlocking. The above requirements actually lead to a
formal model, and later our constructive method, which iteratively
extracts subsequences of locally-interlocked puzzle pieces. In par-
ticular, we found that by using mathematical induction (see Ap-
pendix), it is possible to show that puzzle pieces constructed with
these requirements can be guaranteed to be recursive interlocking,
regardless of the number of puzzle pieces involved. Thus, global
interlocking can be directly guaranteed without exhaustive tests.

5 Our Constructive Approach

Our constructive approach for devising new interlocking geome-
tries has two major procedures: (i) extract the key piece from the
input volume, and (ii) iteratively extract other puzzle pieces one by
one. Various blocking and unblocking mechanics are explored in
these two procedures in order to construct the puzzle pieces that
meet the specified requirements.

Let us first denote N as the total number of voxels representing the
given model and K the number of puzzle pieces to be constructed.
To balance the size of the puzzle pieces, our method attempts to
construct each piece with roughly m = ⌈N/K⌉ voxels, except for
the primary key P1, which could be rather small.

5.1 Extracting the Key Piece

The procedure for extracting the key piece includes:

1) Pick a seed voxel. We start by picking a seed voxel as a cor-
nerstone for growing the key piece. First, we identify a candidate
set of exterior voxels that have exactly a pair of adjacent exterior
faces, with one being on the top, see Figure 7. Here we require
axial free passages, that is, no voxels all the ways above these exte-
rior faces. Hence, such voxel can be moved out in one translational
step, which echoes the key’s requirement. From the candidate set,
we can either randomly pick a seed, or let the user make a choice.
Moreover, we define upward as the default moving direction for the
key, so that the assembled puzzle is more stable when sitting on a
table in an intended display orientation.

Figure 7: Candidate seed voxels (in red) should have exactly a pair
of adjacent exterior faces with one being on the top.

2) Compute voxel accessibility. After extracting a puzzle piece,
the remaining volume has to be connected. However, naive extrac-
tion of voxels may easily lead to fragmentation. Hence, we compute
an accessibility value, say aj(x), for each voxel x in a remaining
volume, and use it later as a heuristic to alleviate fragmentation,
where aj(x) is computed by recursively counting the (weighted)
number of voxel neighbors:

aj(x) =



number of neighbors of x, for j = 0
aj−1(x) + αj

P

i
aj−1(yi(x)) for j > 0 ,

where yi(x)’s are neighboring voxels of x in the remaining volume.
Note that the weight factor α is set to 0.1 in our implementation.
We stop the recursion at j = 3 because we found experimentally



that the resulting accessibility values are sufficient for guiding the
voxel selection, see Figure 8 for an example. Since voxels with low
accessibility are likely to be fragmented, we prioritize to include
them when constructing a puzzle piece.

Figure 8: Voxel accessibility on BUNNY. Left: red color indi-
cates low accessibility while green color indicates high accessibil-
ity. Right: we show an internal slice by a clip plane.

3) Ensure blocking and mobility. Now, we are ready to develop
the key piece such that it is removable by a translation along one
direction. We have the following substeps (see Figure 9):

• First, we identify the normal direction, say v̂n, of the non-
upward-facing exterior face of the seed voxel (Figure 9(a));

• Then, we do a breadth-first traversal from the seed to find Nb1

pairs of voxels (that orient along v̂n) that are the nearest to the
seed (see the oval shapes in Figure 9(b)), where in each pair,
the voxels on the positive and negative sides of v̂n are called
the blocking and blockee voxels, respectively. Among them,
we select Nb2 pairs whose blockee has the smallest accessi-
bility among the Nb1 pairs (note: in our implementation, Nb1

and Nb2 are set to be 50 and 10, respectively):

• Next, we use the following three strategies for constructing
the key with appropriate blockage:

– First, we block the key from moving towards v̂n by (i)
determining a set of shortest path candidates from the
seed to each blockee voxel candidate (without crossing
the related blocking voxel and voxels below it); we later
will select one of them for evolving the key; and (ii)
extracting all the voxels along a selected shortest path
until the blockee, and adding these voxels to evolve key
piece (Figure 9(b&c));

– Second, we ensure the key to be removable upward by
including any voxel above the selected shortest path
(Figure 9(e)). This is why the shortest paths determined

Figure 9: Steps to develop the key piece from a seed voxel.

in the strategy above should not go through the block-
ing voxel or any voxel below it, else the blockage is de-
structed (Figure 9(d)). Moreover, we ignore the shortest
path candidates that eventually add excessive voxels to
the key since the key should have less than m voxels;

– So far, we can devise a key that moves upward but not
along v̂n. However, since new voxels are added to the
key, the key may accidentally become mobilized in a
direction along which the seed was originally blocked,
e.g., +X , −Y , and ±Z for the seed in Figure 9. This
would require testing the blockage (or mobility) every
time we add voxels to the key. However, our third strat-
egy avoids such test: we identify an anchor voxel that
is directly-connected and furthest away from the seed
along each initially-blocked direction of the seed, e.g.,
voxel A+x for +X (Figure 9(e)). The key idea is that
if these anchor voxels stay with the remaining volume
(but not added to the key), the key can remain to be im-
mobilized in the blocked directions even if we add more
voxels to it (Figure 9(f)). Mobility test is not required
to ensure the maintenance of the blockage.

• To choose among the shortest paths resulted from the first two
strategies, we sum for each path the accessibility of all the
voxels required to be added to the key, i.e., voxels along the
path, the blockee, and any voxel above. Then, we pick the one
with the smallest accessibility sum for evolving the key with
the appropriate blockage.

4) Expand the key piece. Since the key piece usually has less than
m voxels at this moment, the goal of step 4 is to augment it with
more voxels to balance the size of the puzzle pieces:

• First, we identify an additional anchor voxel for the direc-
tion immobilized by the blocking voxel we picked in step 3.
Like before, it is directly-connected and furthest away from
the blocking voxel in direction v̂n; if no such voxels exist,
we use the blocking voxel as the anchor; Note that the anchor
voxel idea is crucial for the expansion process as the existing
blockage could be undesirably destructed if an anchor voxel
is inappropriately added to the key piece (Figure 9(g)).

• Then, we identify a set of candidate voxels to be added to the
key, say {ui}, that are resided next to the key but neither at the
anchor voxels nor below the anchors. For each ui, we identify
also the voxels directly above it, so that we know the voxels
required to be added to the key if ui is chosen. Furthermore,
if the number of voxels exceeds the number of extra voxels
the key needs, we remove ui from the candidate set.

• Next, we sum the accessibility of each ui and the voxels

above it, say sumi, and normalize pi = sum−β
i to be p̂i =

pi/
P

i
pi, where β is a parameter ranged from 1 to 6. Hence,

we can randomly pick a ui with p̂i as the probability of choos-
ing it, and expand the key piece. These substeps are repeated
until the key contains roughly m voxels.

5) Confirm the key piece. After steps 1 to 4, the key is guaran-
teed to fulfill all interlocking requirements, except that R2 needs
to be simply connected. With the help of accessibility, the chance
of fragmenting R2 (and other remaining volumes) is rather low;
hence, testing the connectivity of voxels in R2 at the end of the key
piece generation procedure is more efficient than doing it at mul-
tiple places. To guarantee that R2 is simply connected, we gather
all the voxels next to the key in a set, say Rs, and apply a simple
flooding algorithm to test whether all voxels in Rs can be visited or
not in R2.



Figure 10: Left: local interlocking established among every three consecutive puzzle pieces in an 8-piece 43 CUBE; in each subfigure, the
solid and dashed arrows show the moving direction of the current movable puzzle piece and its successive piece, respectively; the blockage
between these two pieces is indicated by dashed black line(s). Right: our home-made 43 LEGO CUBE, its anatomy, and the building sequence.

5.2 Extracting Other Puzzle Pieces

Similar to that of the primary key piece, the procedure of extracting
subsequent puzzle pieces, e.g., Pi+1 from Ri, also starts by picking
a seed voxel, and then growing Pi+1 from it. However, since there
are additional requirements for local interlocking among Pi, Pi+1,
and Ri+1, the blocking mechanics are more involved. To facilitate

our discussion, we denote ~di as the target moving direction of Pi.

Figure 11: Steps to extract Pi+1 from Ri.

1) Candidate seed voxels. Since Pi+1 is blocked by Pi, but be-
comes mobilized as soon as Pi is removed, at least one of its voxel
must reside next to Pi. Since successive puzzle pieces should move
in different directions (by Lemma 3 in Appendix), we use the con-

tact between Pi and Pi+1 to define ~di+1 for blocking Pi+1 by the
presence of Pi. Our strategy is to pick voxels (in Ri) next to Pi as
candidate seeds, requiring them to contact Pi in a direction perpen-

dicular to ~di. See Figure 11(b) for valid and invalid candidates in
blue and violet, respectively.

Since there may be too many valid candidates, trying them all is
overly time consuming. Hence, we compute the accessibility of
voxels in Ri and reduce the number of candidates to ten by the
following equally-weighted criteria: (i) smaller accessibility value;

and (ii) shorter distance to the furthest-away voxel in Ri along ~di+1,
see Figure 11(c) for examples: an initial Pi+1 formed by C2 will
contain more voxels as compared to C1 because of a longer shortest
path determined by step 2 below. Hence, the second criteria helps
reduce the number of voxels that are required to form an initial
Pi+1. Note that we attempt to use fewer voxels (in early steps)
to construct an initial Pi+1 because this allows us to have more
flexibility when expanding the puzzle piece in step 3.

2) Create an initial Pi+1. After step 1, we have a set of candidate

seeds, each associated with a ~di+1. Our next step is to pick one

of them by examining its cost of making Pi+1 removable in ~di+1:

(i) from each candidate, we identify all voxels in Ri along ~di+1

(see the orange voxels in Figure 11(d)) since these voxels must be

taken to Pi+1 to make the candidate removable along ~di+1; (ii) we
determine a shortest path to connect the candidate to these identified
voxels (Figure 11(e)), and (iii) we locate also any additional voxel

required to mobilize the shortest path towards ~di+1 (Figure 11(f)).
To choose among the candidates, we sum the accessibility of all the
voxels involved in each candidate path (blue voxels in Figure 11(f)),
and pick the one with the smallest sum for forming the initial Pi+1.

3) Ensure local interlocking. Until now, Pi+1 is modeled with

appropriate blocking for direction ~di+1 (Figure 11(f)), where its

mobility towards ~di+1 depends on the presence of Pi alone. Next,
we further have to ensure appropriate blocking for the other five
directions for achieving local interlocking in [Pi, Pi+1, Ri+1]: (i)
Pi+1 is immobilized in the presence of Ri+1 and Pi, and (ii) it
cannot co-move with Pi. For this, we perform a mobility check for
each of the five directions to see if Pi+1 is blocked or not. Note

that the mobility check of Pi+1 along any direction ~d is done by

checking if any voxel from Pi or Ri+1 contacts Pi+1 along ~d. If

this is true, Pi+1 is immobilized to move along ~d. Only if Pi+1

is movable, we apply the first two strategies in Section 5.1 (step 3)
to extend Pi+1 to some blockee voxels for achieving appropriate
blocking in related direction(s).

For requirement (i) above, we perform the mobility check on Pi+1

in the presence of both Pi and Ri+1. However, the tricky part for

direction ~di is that since Pi+1 should not be co-movable with Pi,
we have to perform the mobility check on Pi+1 in the absence of
Pi for this particular direction. Lastly, note further that the anchor
voxel strategy in Section 5.1 can also be applied here. See Figure 10
(left) for the local interlocking established in an 8-piece 43 CUBE.



Figure 12: Recursive interlocking puzzles. From left to right and then top to bottom: BUNNY, MUG, DUCK, SHARK, CACTUS, PIGGY,
CHAIR, WORK PIECE, ISIDORE HORSE, TEAPOT, EIGHT, HIPPO, SHUTTLE, and TOY TRAIN.

4) Expand Pi+1 and 5) Confirm it. After the above steps, Pi+1

can fulfill the local interlocking requirement, but yet we have to
expand it to m voxels and check whether Ri+1 is simply connected
or not. These are done in the same way as in Section 5.1.

6 Implementation and Results

Implementation Issues. To improve the computational efficiency
for handling very large voxelized models, we localize the puzzle
piece extraction process. We define a rectangular box with a margin
of 10 voxels around the seed (for key) or the previous puzzle piece
(for others), and then dynamically expand this box when growing a
puzzle piece. Thus, computations, including accessibility, shortest
paths, etc., are localized to the extent of the box.

Results. Our method can create recursive interlocking puzzles on
voxelized models of various shapes and topologies, see Figure 12,
e.g., EIGHT with two holes, MUG with a large open concave re-
gion in the middle, CACTUS with branches, and PIGGY, which is
modeled as a coin bank with a central cavity and a coin slot on
top. Our method can also work with models with large variation
in voxel counts (N ) and average puzzle piece size (m). Figure 6
presents our 4-piece recursive interlocking 33 CUBE, whereas Fig-
ure 14 presents our 1250-piece recursive interlocking 353 CUBE.
All these puzzles are recursive interlocking. More examples are
shown in Figure 15.

We believe that the 1250-piece CUBE is the largest (recursive) in-
terlocking puzzle with the greatest number of puzzle pieces ever
defined or known. The computation time to create it is around 10
hours. In contrast, the largest interlocking 3D puzzle we found in
the Internet contains 19 puzzle pieces only, which is a 63 interlock-
ing CUBE. Our method can also produce a 63 recursive interlocking
CUBE, but with 20 pieces instead (and 22 if recursive interlocking
is relaxed). Moreover, for a 43 interlocking CUBE, the largest num-
ber of puzzle pieces we aware of is 8, and our method can generate a
43 recursive interlocking CUBE with 8 pieces, see Figure 10 (right).
However, since our CUBE puzzle is recursive, it is claimed to be a

new puzzle that was not discovered before. Lastly, other than the 43

LEGO CUBE shown in Figure 10, we also create a LEGO BUNNY

with 40 interlocking puzzle pieces and 966 voxels, see Figure 13.

Performance. Table 1 presents recursive interlocking CUBE and
BUNNY in different Ns (number of voxels) and Ks (number of
puzzle pieces). Note that this table is incomplete since puzzles with
large K cannot be created with relatively small number of voxels.
Timing statistics are also provided, showing that these puzzles can
be created fairly efficiently with our method though the time taken
to generate the puzzles could vary from seconds to hours depend-
ing on the the puzzle model. In more detail, the puzzle generation
performance depends on several factors: a combination of N and
K, as well as the complexity of the model’s shape and topology:

• For fixed N , the computation time generally increases when
m gets too small because for a small m, it is obviously harder
to determine the shortest paths for constructing the interlock-
ing geometry;

• On the other hand, the computation time also increases with
N when K is fixed. Since each puzzle piece contains more

Figure 13: Our 40-piece home-made LEGO BUNNY.



Table 1: Performance: generating recursive interlocking CUBE

and BUNNY with different Ns and Ks.

voxels, it takes more time to find a suitable seed, to construct
the shortest paths, and to expand the puzzle piece, etc.;

• Lastly, we also found that the computation time depends on
the complexity of 3D shape, and shapes with branches and
holes generally demand more computation time.

7 Conclusion

Interlocking is an intriguing but complex mechanical state, where
assembled component pieces appear to lock one another. Yet, the
puzzle can be disassembled through certain sequences of moves
starting from the key. Rather than creating interlocking structures
by manual effort, or by expensive exhaustive search with comput-
ers, we develop a novel computational method that enables the cre-
ation of new interlocking geometry by manipulating the underlying
blocking mechanics. We focus on an interesting and challenging
subclass of interlocking, called recursive interlocking, where all in-
termediate assembling (and disassembling) stages remain interlock-
ing, resulting in a unique sequence of moves.

In summary, our contributions are as follow. As inspired by the way
Coffin’s interlocking cubes work, we first derive a formal method
of the problem of interlocking. After revisiting the notion of in-
terlocking, we contrast interlocking against other scenarios of 3D
solid decompositions, which are either not interlocking, or not ca-
pable of being assembled (deadlocking). Then, we formulate the
requirements and derive a formal model for enforcing recursive
interlocking, where the puzzle pieces constructed accordingly are
guaranteed to be globally interlocked regardless of the number of
puzzle pieces involved. These enable us to create recursive inter-

locking puzzles of various complexities, and to extend the number
of interlocking puzzle pieces that one can ever construct. Second,
based on the formal model, we devise a constructive approach that
iteratively creates interlocking puzzle pieces. A family of construc-
tion strategies that manipulate the blocking mechanics is presented
for producing appropriate blockage according to the requirements.
Lastly, we also demonstrate the feasibility of creating home-made
interlocking 3D puzzles with LEGO bricks.

Limitations. First, we may not be able to generate interlocking
puzzles with the largest possible K for a given voxelized shape, in
particular when the shape is not so small. This is due to the fact
that the solution space is astronomical since the number of pos-
sible ways to dissect an input model increases exponentially with
the voxel count. Second, our method assumes no rotation of puz-
zle pieces. Some existing wooden puzzles have a small tricky step,
requiring that a certain puzzle piece must be rotated to remove or
assemble, see also Coffin’s book [1990]. Lastly, our method cannot
handle input models with voxels connected by an edge rather than
a face, and one-voxel-layer thin models, e.g., a 1 × 3 × 10 plane.

Future work. Our formal model can be generalized to create inter-
locking (but not recursive) puzzles by (i) allowing the decomposi-
tion of a remaining volume into three or more pieces at a time, and
requiring that the decomposed pieces together with their preceding
piece are locally interlocking; and (ii) allowing a remaining volume
after puzzle piece extraction to be disconnected. Yet, we can mod-
ify the proof in the appendix to show that the resulting puzzle after
this generalization can still be assembled into an interlocking struc-
ture (though no longer recursive). In this way, we can also avoid
exhaustive testing on interlocking. Second, we plan to construct
puzzle pieces that are geometry-aware. By identifying groups of
voxels that contribute to different surface features on the 3D shape,
we can prioritize the selection of groups of voxels altogether when
making the puzzle pieces. Moreover, we could also symmetrize
voxel groups if the input shape is symmetric. Lastly, to deal with
more general shapes other than voxels, we plan to explore the space
carving technique in Xin et al. [2011], i.e., the possibility of extrud-
ing our voxelized puzzle pieces to meet the general surface of the
associated 3D shape.

Acknowledgments. We thank anonymous reviewers for the vari-
ous constructive comments, John Rausch of www.johnrausch.com
for sharing the photos shown in Figure 2, Michael Brown for narrat-
ing the video presentation, William Lai for his help on 3D Studio
Max, and William Hutama for building the LEGO puzzle. This
work is supported in part by the MOE Tier-2 grant (MOE2011-T2-
2-041), Singapore, and the Israel Science Foundation.

References

ALEXA, M., AND MATUSIK, W. 2010. Reliefs as images. ACM
Tran. on Graphics (SIGGRAPH) 29, 4. Article 60.

CHO, T. S., AVIDAN, S., AND FREEMAN, W. T. 2010. A proba-
bilistic image jigsaw puzzle solver. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 183–190.

COFFIN, S. T. 1990. The Puzzling World of Polyhedral Dissections.
Oxford University Press.

CUTLER, W. H. 1978. The six-piece burr. Journal of Recreational
Mathematics 10, 4, 241–250.

CUTLER, W. H., 1994. A computer analysis of all 6-piece burrs.
Self published.



Figure 14: Disassembling our recursive interlocking 353 CUBE with 1250 pieces (now rendered in wooden style). From left to right, the
number of puzzle pieces are 1250, 1150, 950, 350, and 50, respectively.

FREEMAN, H., AND GARDER, L. 1964. Apictorial jigsaw puzzles:
The computer solution of a problem in pattern recognition. IEEE
Transactions on Electronic Computers EC-13, 2, 118–127.

GOLDBERG, D., MALON, C., AND BERN, M. 2002. A global
approach to automatic solution of jigsaw puzzles. In Proceedings
of the Eighteenth Annual ACM Symposium on Computational
Geometry, 82–87.

HILDEBRAND, K., BICKEL, B., AND ALEXA, M. 2012. crdbrd:
Shape fabrication by sliding planar slices. Computer Graphics
Forum (Eurographics) 31, 2, 583–592.

HOLROYD, M., BARAN, I., LAWRENCE, J., AND MATUSIK, W.
2011. Computing and fabricating multilayer models. ACM Tran.
on Graphics (SIGGRAPH ASIA) 30, 6. Article 187.

IBM RESEARCH, 1997. The burr puzzles site. http://www.

research.ibm.com/BurrPuzzles/.

KILIAN, M., FLÖERY, S., CHEN, Z., MITRA, N. J., SHEFFER,
A., AND POTTMANN, H. 2008. Curved folding. ACM Tran. on
Graphics (SIGGRAPH) 27, 3.

KONG, W., AND KIMIA, B. B. 2001. On solving 2D and 3D
puzzles using curve matching. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 2, 583–590.

LAU, M., OHGAWARA, A., MITANI, J., AND IGARASHI, T. 2011.
Converting 3d furniture models to fabricatable parts and connec-
tors. ACM Tran. on Graphics (SIGGRAPH) 30, 4. Article 85.

LI, X.-Y., SHEN, C.-H., HUANG, S.-S., JU, T., AND HU, S.-M.
2010. Popup: Automatic paper architectures from 3D models.
ACM Tran. on Graphics (SIGGRAPH) 29, 3. Article 111.

LI, X.-Y., JU, T., GU, Y., AND HU, S.-M. 2011. A geometric
study of v-style pop-ups: theories and algorithms. ACM Tran.
on Graphics (SIGGRAPH) 30, 4. Article 98.

LO, K.-Y., FU, C.-W., AND LI, H. 2009. 3D Polyomino puzzle.
ACM Tran. on Graphics (SIGGRAPH Asia) 28, 5. Article 157.

MITANI, J., AND SUZUKI, H. 2004. Making papercraft toys from
meshes using strip-based approximate unfolding. ACM Tran. on
Graphics (SIGGRAPH) 23, 3, 259–263.

MITRA, N. J., AND PAULY, M. 2009. Shadow art. ACM Tran. on
Graphics (SIGGRAPH Asia) 28, 5. Article 156.

MORI, Y., AND IGARASHI, T. 2007. Plushie: an interactive design
system for plush toys. ACM Tran. on Graphics (SIGGRAPH) 26,
3. Article 45.

MURAKAMI, T., TOYAMA, F., SHOJI, K., AND MIYAMICHI, J.
2008. Assembly of puzzles by connecting between blocks. In
19th International Conference on Pattern Recognition, 1–4.

RÖVER, A., 2011. Burr tools. http://burrtools.sourceforge.

net/.

SAGIROGLU, M., AND ERCIL, A. 2006. A texture based matching
approach for automated assembly of puzzles. In 18th Interna-
tional Conference on Pattern Recognition, vol. 3, 1036–1041.

SEIKE, K. 1977. Art Of Japanese Joinery. Weatherhill.

TACHI, T. 2010. Origamizing polyhedral surfaces. IEEE Transac-
tions on Visualization and Computer Graphics 16, 2, 298–311.

WEYRICH, T., DENG, J., BARNES, C., RUSINKIEWICZ, S., AND

FINKELSTEIN, A. 2007. Digital bas-relief from 3D scenes.
ACM Tran. on Graphics (SIGGRAPH) 26, 3. Article 32.

WOLFSON, H., SCHONBERG, E., KALVIN, A., AND LAMDAN, Y.
1988. Solving jigsaw puzzles by computer. Annals of Operations
Research 12, 51–64.

XIN, S.-Q., LAI, C.-F., FU, C.-W., WONG, T.-T., HE, Y., AND

COHEN-OR, D. 2011. Making burr puzzles from 3D models.
ACM Tran. on Graphics (SIGGRAPH) 30, 4. Article 97.

ZWERGER, K. 2012. Wood and Wood Joints: Building Traditions
of Europe, Japan and China. Birkhäuser Verlag.

Appendix A. Lemmas on Interlocking.

• Lemma 1: Group Immobilization. A group of puzzle
pieces are immobilized for moving together in any direction
if there is a puzzle piece (or a subset) in the group that is im-
mobilized (blocked) by the complement pieces in the puzzle.
Note that this lemma is also true for puzzle pieces that are not
simply connected since they can still be moved together.

• Lemma 2: Relativity Rule. Given a set of assembled puzzle
pieces that are divided into two non-empty sets, S1 and S2:

– If all puzzle pieces in S1 can move together in a certain
direction D while S2 is fixed in space, then all puzzle
pieces in S2 can also move together in opposite direc-
tion (−D) while S1 is fixed in space;

– The inverse of the above is also true: If S1 cannot move
in a certain direction D (blocked by S2), S2 cannot
move in −D (blocked by S1), and vice versa.

• Lemma 3: Successive Moving Directions. In a recursive
interlocking puzzle, successive puzzle pieces should have dif-
ferent removal directions (in fact, perpendicular), else they
can move together and violate the notion of interlocking.

These lemmas appear to be straightforward but as we shall soon
see, they are helpful in deriving the formal model below.

Appendix B. Proof: The Formal Model.

Here we prove by mathematical induction that puzzle pieces that
are iteratively constructed according to the requirements in Sec-
tion 4.1 are guaranteed to be recursive interlocking without exhaus-
tively testing the subset immobilization.

http://www.research.ibm.com/BurrPuzzles/
http://www.research.ibm.com/BurrPuzzles/
http://burrtools.sourceforge.net/
http://burrtools.sourceforge.net/


Figure 15: Disassembling the PIGGY coin bank (top) and the ISIDORE HORSE puzzles (bottom).

Let Cn = [P1, P2, ..., Pn, Rn] be the puzzle configuration after
the extraction of n pieces. From the specified requirements, we
can show that puzzle pieces in C2 (n = 2) are capable of being
assembled into a recursive interlocking structure [Q.E.D.].

Assume that Cn can be assembled into a recursive interlocking
structure for some positive integer n ≥ 2. Our goal is to show
that if we base on our requirements to decompose Rn (in Cn) into
Pn+1 and Rn+1, the next configuration Cn+1 can also be assem-
bled into a recursive interlocking structure.

For this, we have to prove the following three statements:

(i) Cn+1 can be assembled. If a puzzle assembly can be assem-
bled, it can also be disassembled. Therefore, we can prove this
statement by showing that all pieces in Cn+1 can be removed one
after another. Since Cn can be assembled (and disassembled), we
can sequentially remove P1, P2, ..., up to Pn from Cn+1 by re-
garding Pn+1 and Rn+1 of Cn+1 as Rn of Cn. Then, by the re-
quirement on Pi, the remaining two pieces, i.e., Pn+1 and Rn+1,
can be disassembled too. Hence, if Cn can be disassembled (and
assembled), Cn+1 can also be disassembled (and assembled).

(ii) Cn+1 is interlocking. This claim is more complicated than
the above proof because we have to show that P1 is the only mov-
able piece in Cn+1, while all other subsets of Cn+1 (except P1 and
Cn+1 − P1, by Lemma 2) are immobilized. For this, we need to
prove the following three conditions:

1) P1 is removable in Cn+1. This can be proved by the requirement
on the key piece P1 [Q.E.D.].

2) Every other piece (P2, ..., Pn+1, and Rn+1) is immobilized:

• Since Cn is interlocking, each Pi (i = 2...n) in Cn+1 is im-
mobilized by regarding Pn+1 and Rn+1 as Rn of Cn because
Pn+1 and Rn+1 are fixed together in space in this case;

• In addition, Pn+1 and Rn+1 are also immobilized when Pn

is fixed because the local configuration [Pn, Pn+1, Rn+1] is
interlocking by our requirement.

3) All subsets of Cn+1 (except P1 and Cn+1 − P1, by Lemma 2)
are immobilized. Here we divide these subsets into the following
six mutually-exclusive cases, where the last four cases account for
those subsets with either Pn+1 or Rn+1:

• Case 1: Subsets without Pn+1 and Rn+1. Since Cn is inter-
locking, all these subsets except P1 are immobilized because
Pn+1 and Rn+1 are fixed in space, behaving like Rn of Cn.

• Case 2: Subsets with both Pn+1 and Rn+1. Since both Pn+1

and Rn+1 are included, they can be regarded as Rn of Cn

when moving together. Again, since Cn is interlocking, all
subsets in this case are immobilized except Cn+1 − P1.

• Case 3: Subsets with Pn and Pn+1 but not Rn+1. By the re-
quirement on Pi, we cannot move Pn and Pn+1 together rela-
tive to Rn+1 in configuration [Pn, Pn+1, Rn+1]. By Lemma
1, subsets containing them but not Rn+1 are immobilized.

• Case 4: Subsets with Pn and Rn+1 but not Pn+1. By the
requirement on Pi, Pn+1 is immobilized in configuration
[Pn, Pn+1, Rn+1]. By Lemma 2, Pn and Rn+1 cannot move
together relative to Pn+1 in the same configuration. Again by
Lemma 1, we can conclude this case.

• Case 5: Subsets with Pn+1 but not (Pn and Rn+1). Similar
to case 4 (by Lemma 2) [Q.E.D.].

• Case 6: Subsets with Rn+1 but not (Pn and Pn+1). Similar
to case 3 (by Lemma 2) [Q.E.D.].

Since the above six cases cover all subsets of Cn+1, all subsets of
Cn+1 except P1 and Cn+1−P1 are immobilized. Summarizing the
above three conditions (1-3), we show that Cn+1 is interlocking if
Cn is interlocking.

(iii) Cn+1 is recursive interlocking. Now, we have to show that
if Cn is recursive interlocking, Cn+1 is also recursive interlocking,
i.e., all postfix subsequences in Cn+1 are interlocking.

Since Cn is recursive interlocking, all postfix subsequences in
Cn, [Pi, ..., Pn, Rn] (denoted by Di), are interlocking for i=1...n-
1. Since Di is interlocking, if we decompose Rn of Di into
Pn+1 and Rn+1, the resulting configuration, denoted by Ei =
[Pi, ..., Pn, Pn+1, Rn+1], is still interlocking (by our proof for
statement (ii) above). Hence, postfix subsequences in Cn+1 (Ei)
for i=1...n-1 are interlocking. Lastly, since [Pn, Pn+1, Rn+1],
which is En, is trivially interlocking by our requirement, we can
conclude that Cn+1 is recursive interlocking.

In our proof for statements (i), (ii), and (iii) above, we show that
if Cn can be assembled, interlocking, and recursive interlocking,
Cn+1 can also be assembled, interlocking, and recursive interlock-
ing. Hence, by the principle of induction, Cn can always be as-
sembled, interlocking, and recursive interlocking for any n ≥ 2,
and so, puzzle pieces constructed by our formal model (with lo-
cal interlocking) are directly guaranteed to be globally (recursive)
interlocking, regardless of the number of puzzle pieces involved.


