More on Merge Sort and
Binary Search

CSCI2100 Tutorial 3

Adapted from the slides of the previous offerings of the course



Outline

* Review recursion principle

* Review merge sort and its variant
* A variant of binary search

* Closest pair problem



Review — Recursion Principle

* When dealing with a subproblem (same problem
but with a smaller input), consider it solved.

1. We consider that the subproblem has already
been solved.

2. We can directly use the output of the
subproblem in the rest algorithm design.
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Review — Merge Sort

* |dentify the subproblems:

 Sort the first half of the array S.
» Sort the second half of S.

The original array S:

Subproblems: 28

28 38|17 |41 |88 |26
38|17 41 | 88 | 26
28 | 38 26 |41 | 88

Output: i 17




Review - Merge Operation

* Merge 2 sorted arrays into a single sorted array

17 | 28 | 38 26 |41 | 88




Review - Merge Operation

*Seti,jto1l

* Compare 17 and 26
e 17 is smaller

* Place 17 into the new array and increase i by 1
L J

17128 | 38 26141 | 88

17




Review - Merge Operation

* Compare 28 and 26
e 26 is smaller
* Place 26 into the new array and increasej by 1

28 | 38 26 |41 | 88

17 | 26




Review - Merge Operation

* Compare 28 and 41
e 28 is smaller
* Place 28 into the new array and increase i by 1

28 | 38 41| 88

17 | 26 | 28




Review - Merge Operation

* Continue the above process until we have placed all
elements into the new array

* Single pass over all the input elements
* Time complexity: O(n)

17 26|28 (38|41 |88




Review - Merge Sort Time Complexity

* Let f(n) be the worst case time

- fm) < 2f ([5]) + o)
* By Master theorem we can get f(n) = O(nlogn)

* Note that it suffices to analyze only one level of the
algorithm due to recursion.



Exercise: Modified Merge Sort

* Regular Exercise 3 Problem 6

* A variant of merge sort
* If n = 1 then return immediately
* Otherwise set k = [n/3]|
* Recursively sort A[1...k] and A[k + 1...n], respectively
* Merge A[1 ...k]and A[k + 1...n] into one sorted array

* Prove the time complexity is O(nlogn)



Solution

* Let f(n) be the worst case time
*f(1) =0(1)

f < £ ([5]) + 7 (15]) + o
* Want to prove f(n) = O(nlogn)

* This can be done using the substitution method —
see the course website for solution (reg ex list 3).



A Variant of Binary Search

* Instead of comparing the target value with the
middle element, we compare the target with the

[ﬂth element each time.
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Time Complexity

* In the worst case, after each comparison, two-
thirds of the active elements are left.

e Solution
« T(1) = 0(1)
. T(n) < T( %”D +0(1)

* Solving the recurrence gives T(n) = O(logn).



Time Complexity

 What if we compare the target with the [%}—th
element?

* The time complexity is also O (logn)!
* Try verifying this by yourself.

* In general, if the comparison is made to the [H—th

element for some constant k> 1, the time
complexity is still O (logn).
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A Bonus Problem: Closest Pair

* Problem input:

* Two unsorted sequences A and B with m and n integers

*h<m

* Goal: Find a pair (x,y), x from A and y from B, with
the minimum |x — y/|.

Sequence A

Sequence B

1 20.23

20

Bk

12

13
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A Bonus Problem: Closest Pair

* This problem can be solved in O(m log n) time.
* Sort the shorter sequence.

* Then, use elements of the longer sequence to perform
binary searches.

* Note: O(m log n) is better than O(m log m) when
n << m.

Sequence A 1 20.23 2 |20

Sequence B E- 7 [ 12|13
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