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Abstract

We give an efficient algorithm that takes as input any (probabilistic) polynomial time algorithm A
which purports to solve SAT and finds, for infinitely many input lengths, SAT formulas φ and witnesses
w such thatA claims φ is unsatisfiable, butw is a satisfying assignment forφ (assumingNP !⊆ RP). This
solves an open problem posed in the work of Gutfreund, Shaltiel, and Ta-Shma (CCC 2005). Following
Gutfreund et al., we also extend this to give an efficient sampling algorithm (a “quasi-hard” sampler)
which generates hard instance/witness pairs for all algorithms running in some fixed polynomial time.

We ask how our sampling algorithm relates to various cryptographic notions. We show that our sam-
pling algorithm gives a simple construction of quasi-one-way functions, a weakened notion of standard
one-way functions. We also investigate the possibility of obtaining pseudorandom generators from our
quasi-one-way functions and show that a large class of reductions that work in the standard setting must
fail.
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1 Introduction

A fundamental unresolved issue in the complexity theoretic foundations of modern cryptography is whether
it is possible to base the security of cryptographic primitives, such as one-way functions, collision resistant
hash functions, or zero knowledge, on strong worst-case hardness assumptions such asNP !⊆ BPP. Despite
some remarkable progress in lattice-based cryptography in the last decade, this objective remains elusive.
A well-studied obstacle, articulated in a series of works [FF93, BT03, AGGM06], is basing the average-
case hardness of NP-problems on the assumption that NP !⊆ BPP. But this is not the only difficulty;
Impagliazzo’s influential position paper on average-case complexity [Imp95] indicates that the question of
equivalence of worst-case and average-case hardness for NP is separate from the question of basing one-
way functions (and symmetric key encryption) on average-case hard problems. That is, one-way functions
require the ability to sample not only instances of hard problems but also their solutions.
In this work we aim to illuminate that aspect of the relationship between cryptography and worst-case
hardness that is mostly unexplored in [FF93, BT03, AGGM06]. In particular, we focus on the following
question: if we can sample hard instances of problems, how can we sample their solutions as well?

1.1 Sampling hard instances and their solutions

The basic goal of average-case complexity is to explain the hardness of computational problems where
instances of the input are sampled efficiently from some distribution. Currently, we have no methods for
arguing the hardness of such problems from worst-case complexity assumptions. Gutfreund, Shaltiel and
Ta-Shma [GSTS05] proposed studying a substantially relaxed problem: instead of designing a single distri-
bution that is hard for all potential algorithms of an NP-problem — in particular SAT — they ask whether
it is possible to obtain a uniform family of hard distributions DA, one for every potential algorithm A for
SAT.
Gutfreund et al. showed how to obtain the distributions DA: Assuming P != NP, they give a sampling
procedure that, given a candidate A for SAT, runs in time polynomial in the running time of A and outputs
formulas φ on which A fails to solve SAT for infinitely many input lengths. Atserias [Ats06] gave a variant
of the result for nonuniform algorithms (assuming NP !⊆ P/poly).
While the algorihtm of Gutfreund et al. produces hard instances for the algorithm A, it does not produce
certificates proving that those instances are hard. Indeed, they state it as an open problem (suggested by
Adam Smith) to design a “dreambreaker”: a procedure that outputs not just a satisfiable formula on which
the algorithm fails, but also a satisfying assignment for that formula (i.e., a witness that the algorithm failed).
A dreambreaker procedure can be used to mechanically produce counterexamples to purported efficient SAT-
solving algorithms, assuming only P != NP. Given a candidate efficient SAT algorithm A and a hardness
parameter n, the dreambreaker will output a formula φ (of size polynomial in n) and an assignment a such
that a satisfies φ, but the purported SAT algorithm A claims that φ is not satisfiable. Given the wide use of
SAT solvers in the practice of software verification, AI, and operations research, a mechanical procedure for
obtaining certified hard instances for them may be of interest.
Our first contribution is to construct dreambreakers against candidate search algorithms for SAT, both deter-
ministic and randomized.
Following [GSTS05], we then use our dreambreakers to build quasi-hard instance/solution distributions:
These are distributions produced by samplers that given any time bound t(n) and a parameter n, run in
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time polynomial in t(n) and output (with noticeable probability) formula/witness pairs that are hard for all
candidate randomized search SAT algorithms that run in time t(n), for infinitely many values of n.

1.2 Quasi-one-way functions and pseudorandom generators

The notion of a quasi-hard distribution is substantially weaker than the notion of a “hard distribution” in
average-case complexity: Samplers for quasi-hard distributions may take more time to run than the ad-
versaries sampled against, while samplers for average-case hard problems have a fixed running time that
can be exceeded by their adversaries. Yet, Gutfeund and Ta-Shma [GTS07] showed that the techniques
of [GSTS05], while falling short of giving average-case hard problems, bypass the worst-case to average-
case barriers of [FF93] and [BT03].
Given that these methods manage to avoid some of the obstacles between worst-case and average-case
complexity, we find it natural to ask whether they can also yield weakened forms of various cryptographic
primitives. Roughly speaking, we consider primitives where the honest party may be given more resources
the adversary. (However, such constructions are not captured by merely inverting the order of quantifiers
in the standard cryptographic definition.) In this context, we show that using quasi-hard distributions it is
possible to construct quasi-one-way functions. These are functions which may take more time to compute
than the adversaries they fool (as with standard one-way functions, an adversary is “fooled” if it can’t invert),
but those adversaries still have enough resources to verify candidate preimages to the function. See Section
2 for a formal definition and discussion.
Next, we consider pseudorandom generators [Yao82, BM84]. Relaxing the notion of a cryptographic pseu-
dorandom generator into one where the generator has more time than the adversary does have a well mo-
tivated application – algorithmic derandomization. Indeed, a “relaxed” pseudorandom generator that takes
more time to run than the adversary is nothing more than a pseudorandom generator of the Nisan-Wigderson
type [NW94]. To be consistent with our terminology, for the purpose of this paper we will refer to pseudo-
random generators of the Nisan-Wigderson type as quasi-pseudorandom generators (quasi-PRGs).
The construction of a polynomial stretch quasi-pseudorandom generator from the assumption P != NP
would yield a new, non-trivial derandomization of HeurBPP. Such a derandomization would be a ‘low-
level’ analog of the Impagliazzo and Wigderson [IW98] construction, giving simulations of poly(n) bits
with n bits of randomness from a stronger hardness assumption ([IW98] obtain a sub-exponential simulation,
but only assume BPP != EXP).
We do not know if a quasi-pseudorandom generator can be obtained from quasi-hard samplers, but we
investigate the obstacles to applying the standard cryptographic technology for constructing pseudorandom
generators from one-way functions [GL89, HILL99] to our setting. In particular, we show that no black-
box reductions (we define these formally in Section 2) from distinguishing length-doubling pseudorandom
generators to inverting quasi-one-way functions can exist.

2 Our Results

In this section we present formal definitions and state the theorems we prove. We first describe the sampling
result.
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2.1 Hard instance/solution samplers

We consider search algorithms – it is well-known that an efficient SAT decision algorithm implies an efficient
SAT search algorithm. In our proofs, we assume the search algorithm is a canonical search algorithm, i.e.
that it checks that its output actually satisfies the input formula (so the algorithm only errs by outputting 0).
This is without loss of generality, since any formula φ ∈ SAT that causes the modified algorithm to reject
(incorrectly) also fools the original algorithm. We show how to construct “dream-breakers” for deterministic
and randomized algorithms:
Theorem 1. Assume P != NP and let A be a polynomial-time search algorithm. There is a polynomial time
procedure D, taking as input A, 1n and A′s running time t(n), that for inifnitely many n, outputs a formula
wn of length n and witness an such that A(wn) = 0 and an is a witness for wn.

Theorem 2. Assume NP !⊆ BPP and let A be a randomized polynomial-time search algorithm. There is
a probabilistic polynomial time procedure D, taking as input A, 1n and A′s running time t(n), that for
inifnitely many n, outputs a formula wn of length n and witness an such that with probability 1 − o(1), an

is a witness for wn and Pr[A(wn) = 0] > 2/3.

We use these samplers use to obtain a “hard instance” generator that produces instances hard for all algo-
rithms running in some fixed time t(n), both in the deterministic and randomized settings.
Theorem 3. Assume NP !⊆ BPP. Then for every polynomial t(n) there is a (randomized) polynomial-time
function S, S(1n) ! (φ,w) such that (with probability 1− 1/t(n)) φ is satisfied by w, but Pr[A(φ) = 0] >
2/3 for any canonical (randomized) search algorithm A running in time t(n).

2.2 Quasi-one-way functions

Next, we define quasi-one-way functions. A function is one-way in the standard sense if it is easy to
compute f(x) given inputs x but difficult to find preimages f−1(y) given outputs y. The adversary trying
to find an inverse for y may have access to more computational resources (here we focus on time) than
the honest party that computed f(x) = y. In contrast, quasi-one-way functions only require that finding
a preimage is hard for adversaries running in some fixed polynomial time, and, furthermore, computing
the function may take more time than those adversaries are allowed. In the cryptographic context, this
weakening is fundamental, and one may fairly ask if it trivializes the definition, stripping one-way functions
of any interesting property. To address this concern we add a requirement: the weakened adversary still has
the ability to verify input/output pairs to the function.
Definition 1 (Quasi-one-way function). Fix a polynomial tV (n) and let t(n) > tV (n) be any polynomial.
A (randomized) polynomial-time computable function f : {0, 1}n → {0, 1}n is an infinitely often quasi-
one-way function against (probabilistic) time t(n) with verifier V running in time tV if for every x,

V (x, f(x)) = 1,

but for every algorithm A that runs in time t(n) on inputs of length n,

Pr[V (A(x, f(x)), f(x)) = 1] ≤ 1/t(n)

(for infinitely many n).

Here, both the function f or the adversary A can be either deterministic or randomized. Here, we will
consider mainly randomized constructions against randomized adversaries.
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Deterministic versus randomized quasi-OWFs In the standard cryptographic setting, the existence of
one-way functions is equivalent to the existence of randomized one-way functions (both against determinis-
tic and against randomized adversaries): If a randomized one-way function exists, it can be made determin-
istic by making its randomness part of its input, which makes the job of the adversary only more difficult.
However, for quasi-one-way functions this may not be possible, as the amount of randomness used by f
may exceed the running time of the adversary, in which case it is unfair to ask the adversary to recover this
randomness (in particular, making the input of f too long for the verifier V ).
We remark, however, that under the derandomization notion introduced by Dubrov and Ishai [DI06] ran-
domized and deterministic quasi-one-way functions are equivalent. Dubrov and Ishai prove that their notion
can be realized assuming the existence of a hard average-case incompressible function in exponential time.1

The role of the verifier To relate the role of the verifier in our definition to cryptographic aims, we refer to
an analogy outlined in [Imp95], in which the bitter Professor Grouse hopes to humiliate Gauss by inventing
problems Gauss cannot solve. In Minicrypt, where classical one-way functions exist, such a task is possible.
If both Gauss and Grouse have access to the one-way function f , Professor Grouse can choose a random
input x and send y = f(x) to Gauss. The hardness of inverting f ensures that Gauss will be unable to solve
the “problem” f−1(y). Furthermore, the fact that f is easy to compute allows Grouse to humiliate Gauss by
presenting him with x, since Gauss may check for himself that x was indeed a pre-image of y.
Now, it is not unreasonable to suppose that Profesor Grouse would be willing to spend more time finding
the difficult problem than Gauss would be willing to spend solving it. Then a function f satisfying our
definition also accomplishes Gauss’s humiliation. Professor Grouse would choose a random input x and
send y = f(x) (possibly taking a long time to compute y) to Gauss. The hardness of inverting f prevents
Gauss from finding x ∈ f−1(y) in the amount of time he is willing to spend. Triumphant, Professor
Grouse could send x to Gauss, who is willing to take the the necessary time to check that f(x) = y. Thus,
humiliation is tied to verification, not to the ease of computing f or the comparitive computational powers
of Gauss and Grouse (in the classical case Professor Grouse wouldn’t be able to find f−1(y) without prior
knowledge of x).

Relation to cryptography One may object that humiliation isn’t a goal of cryptography. Indeed, we do
not yet know if quasi-one-way functions can be applied to any cryptographic problem. But we believe their
definition captures a non-trivial aspect of the easiness-hardness contrast, where our easiness refers to the
verification of input/output pairs (as opposed to finding outputs given inputs). The verification requirement
implies that quasi-one-way functions (for appropriate choices of tV and t) can’t exist unless P != NP (and,
it is not too hard to construct functions unconditionally without the verification requirement).

Quasi-one-way functions fromNP !⊆ BPP We show how to construct, based on worst-case assumptions,
a randomized quasi-one-way function against time t(n) for any polynomial t. In fact, we construct one
verifier V running in time tV while only the function f varies with t.

1In fact, a weaker notion of derandomization suffices for our purposes: The definition of Dubrov and Ishai requires statisti-
cal indistinguishability between the random and pseudorandom outputs (of the candidate f ), while we only need computational
indistinguishability.
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Theorem 4. If NP !⊆ BPP, then there is a polynomial tV and a verifier V running in time tV such that
for any polynomial t, there exists an i.o. randomized quasi-one-way function ft with verifier V against
probabilistic time t(n).

We remark that the verifier in our result essentially accepts if and only if its first input is a preimage of
its second input. The only exceptions are inputs of the form (x,0), which only occur when the sampling
algorithm of Theorem 3 fails.

2.3 Quasi-one-way functions and quasi-pseudorandom generators

We now argue that “black-box” type constructions of pseudorandom generators from one-way functions do
not carry over to the setting of quasi-pseudorandom generators and quasi-one way functions. Tomotivate our
impossibility result, we revisit the constructions of length-doubling pseudorandom generators from [GKL88,
Lev87] and [HILL99], and notice that they both conform to the model we describe below. Since our focus
is on proving lower bounds, we work with non-uniform definitions and do not impose any unnecessary
computational restrictions, which only makes our lower bounds stronger.
The pseudorandomness of cryptographic generators is proven via a reduction from distinguishing to invert-
ing. In the results mentioned above, the inverting algorithm has oracle access to the function it is inverting.
For a reduction to quasi-one-way functions, such an inverter will not suffice: the resulting inverter, in eval-
uating the function, will necessarily take more time than the hardness of inverting guarantee.
However it could still be conceivable that access to the quasi-OWF verifier V may be sufficient to extend the
argument. After all, the reductions of [GL89] and [HILL99] work by first coming up with a list of candidate
inverses for the function f and then evaluating f to check that the correct one was found. Can the use of
f be replaced by V for this purpose? We formalize the reductions of the previous works, replacing oracle
access to f with access to V :

Definition 2. A pair of oracle circuit families (G, I) (where I is polynomial-size) is a fully black-box quasi-
pseudorandom generator construction2 with stretch k(n) if the following conditions hold:

• There exists a polynomial m(n) such that Gf (1n) is a function from n bits to n + k(n) bits, where f
is a function from m(n) bits to m(n) bits.

• Whenever f is a quasi-one-way function with verifier V , for every circuit D such that
∣∣Prx∼{0,1}n [D(Gf (x)) = 1] − Pry∼{0,1}n+k [D(y) = 1]

∣∣ > ε,

the circuit ID,V (1n) inverts f with probability poly(ε/n) on at least a poly(ε/n) fraction of inputs.

We prove that fully black-box quasi-pseudorandom generator constructions do not exist. Notice that our
definition only imposes computational restrictions on I and not onG. (In fact, our proof allows I unbounded
access to the distinguishing oracle. We only use the fact that I makes a bounded number of queries to the
verification oracle.)

2We call these reductions “fully black-box” as they treat both the primitive in the construction and the adversary in the proof
of security as black boxes. For a detailed explanation of the role of fully black-box reductions in cryptography we refer the reader
to [RTV04].
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Theorem 5. For ε = 1/2 and m(n) = ω(log n), there is no fully black-box quasi-pseudorandom generator
construction of stretch k(n) = ω(log n).

We argue that these bounds on the parameters m(n) and k(n) are the best possible. Form(n) = O(log n),
f can be inverted with inverse-polynomial probability simply by guessing a random inverse. For k(n) =
O(log n), Blum-Micali and Yao [Yao82, BM84] give a fully black-box construction that matches our defi-
nition from any one-way permutation f . While we do not know if the same stretch can be obtained when f
is an arbitrary one-way function, our impossibility result also applies to the setting where f is only assumed
to be a one-way permutation.
We remark that Theorem 5 is incomparable to a result of Gennaro and Trevisan [GT00], which lower bounds
the number of queries a pseudorandom generator must make to the one-way function, but imposes no re-
striction on the inverting algorithm.

2.4 Our Techniques

Sampling algorithms As mentioned in the introduction, we start with the sampling procedure from
[GSTS05], which is given a canonical search3 algorithm A and obtains a distribution that is hard for A.
Roughly speaking, this is achieved through diagonalization: the algorithm A is run on a formula which
describes the success of A on smaller input lengths. In short, A is used to find the instances on which it fails.
We show that in fact A may be used to find not only the instances on which it fails, but also the satisfying
assignments to these instances. This seems counterintuitive; how can A find the solutions to problems on
which it will fails? As in [GSTS05], the key lies in a diagonalization and running A on formulas which are
larger than the instances on which it fails.
More specifically, the sampler in [GSTS05] runs A on a formula Φn equivalent to the NP statement:

“There exists a formula wn of size n such that A(wn) = 0 but SAT(wn)=1.”

Whenever A returns a witness for Φn, we can extract a formula wn and assignment an such that A(wn) = 0
but an satisfies wn. But A may not return a witness for Φn, either because A makes a mistake or because
Φn is unsatisfiable. In the first case, we can hope to use Φn as a hard instance for A and obtain a witness
for it recursively among the formulas Φn′ for n′ < n. But what about the second case? Since P != NP, we
know that there are infinitely many satisfiable Φn; yet there is no reason to expect that A will succeed on
them. Our solution is to modify Φn so that when A fails on an instance of size n, the formulae Φn′ for all
n′ > n will be satisfiable until either A succeeds in finding a witness, or n′ is large enough to construct the
witness recursively among the smaller formulae. The details of our sampler and the analysis are given in
Section 3.2.
The same principle underlies our sampler for randomized algorithms. Now, the randomized search algorithm
A is run on a formula Φn,r parameterized by both the input length and the randomness used by A. (The
precise definition of Φn,r is given in Section A.) New challenges arise because we are concerned with
the fraction of satisfiable Φn,r (over the choice of r). For example, suppose n is such that Φn,r is mostly
satisfiable and that A fails on most Φn′,r′ for all n′ > n. The previous technique of constructing a witness
from the smaller formulae may fail, because there is nothing to prevent the density of satisfiable Φn′,r′ from

3Gutfreund et al. also handle decision algorithms, which presents some additional challenges. However, in our setting it makes
more sense to discuss search algorithms.
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degrading as n′ increases. We show how to overcome this obstacle and present the sampler for randomized
algorithms in Appendix A.
Finally, we use this sampler to build a “quasi-hard” sampler through a simple simulation argument similar
in spirit to the one in Section 5 of [GSTS05].

Constructing a quasi-one-way function The quasi-one-way function uses formula/witness pairs that can
be obtained from the quasi-hard sampler in the natural way: it outputs the formula, together with some extra
information. The information gives an easy way to find the witness given an inverse to the output.

Ruling out quasi-PRGs from quasi-OWFs The intuition behind the lower bound of Theorem 5 is that
in the quasi-cryptographic setting, where the inverter has no access to f , she can only gain very limited
information about f by interacting with the distinguishing oracle. In fact, we design the distinguishing
oracle in such a way that the inverter will not “know” which is the correct quasi-one-way function f to
invert (even if she has unbounded access to the oracle). To do this, we base the distinguisher D not only on
the range of Gf , but also the ranges of some other functions Gf1 , . . . , Gft . The purpose is to confuse the
inverter, which then has no way of knowing if she is supposed to invert f or one of the functions f1, . . . , ft.
Therefore the inversion is bound to fail with high probability.
One obstacle that must be surmounted is that in addition to f , the inverter is also given access to the verifier
V . Concievably, the verifier can be then used to gain some information about the actual f that was used
in the construction. We rule out this possibility by showing that in a bounded interaction, the inverter is
unlikely to gain much information about f from V . We defer the explanation for this and the full proof to
Appendix B.

3 Sampling hard instance witness pairs

We first show how to construct the sampler for deterministic algorithms in Section3.2, which proves Theo-
rem 1. We then also prove 3.
Owing to lack of space, the discussion of randomized algorithms can be found in AppendixA.

3.1 Preliminaries

As in [GSTS05], we think of boolean formulae as binary strings which can be padded easily. In other words,
if x is an encoding of a formula φ then x ·0i is also an encoding of φ. We consider search algorithms instead
of decision algorithms – it is well-known that an efficient SAT decision algorithm implies an efficient SAT
search algorithm. In our proofs, we assume the search algorithm is a canonical search algorithm, i.e. that
it checks that its output actually satisfies the input formula (so the algorithm only errs by outputting 0).
This is without loss of generality, since any formula φ ∈ SAT that causes the modified algorithm to reject
(incorrectly) also fools the original algorithm.
As described previously, for a given search algorithm A we define a formula Φn which is equivalent to the
NP statement:

∃wN ∈ {0, 1}N : SAT (wN ) = 1 and A(wN ) = 0 and n1/k < N ≤ n.
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By the Cook-Levin theorem, we may assume for every n that Φn is a formula of size q(n) for some polyno-
mial q(·) which depends on A, and that Φn can be constructed in polynomial time from A. We choose k so
that for large enough x, it holds that q(x) < (x − 1)k.

3.2 The sampling procedure for deterministic algorithms

LetA be a candidate polynomial-time search algorithm for SAT (see the previous section for the assumptions
we make about A and the definition of Φn). Assuming P != NP, A must fail to find a satisfying assignment
for infinitely many satisfiable formulas. Our sampler is designed to handle two cases:

1. Either A finds assignments to Φn infinitely often, or

2. for every large enough n, A(Φn) = 0 (either because Φn /∈ SAT or A makes a mistake).

It is clear how to handle the first case: a witness for Φn gives a formula and a satisfying assignment that A
errs on. We give a sampler (to be used as a subroutine by the overall sampler) to handle the second case in
the following lemma:

Lemma 1. Assume P != NP, and let A be a polynomial-time search algorithm running in time t(n).
Suppose there exists n0 such that for every n > n0, either Φn is unsatisfiable or A(Φn) = 0. Then there is
an algorithm D1 (taking inputs 1n, t(n), and A) and some n1, such that for every n > n1, D1(1n, A, t(n))
(outlined below) returns a formula w of length N for n1/k < N ≤ n and a witness α that satisfies w, but
A(w) = 0.

Proof. Let n′ be the smallest input size larger than n0 such that Φn′ ∈ SAT (such n′ exists if P != NP).
We wll give an algorithm D1 which successfully constructs a witness for Φn for any n > 2n′k . First, we
claim that for any n′′ in {n′, . . . , n}, the formula Φn′′ is satisfiable. By assumption Φn′ , . . . ,Φ(n′−1)k are
satisfiable, so the claim holds for n′ ≤ n′′ ≤ (n′ − 1)k . Otherwise, consider i successive applications of q
until qi(n′) ≤ n′′ < qi+1(n′). We can reason inductively that Φqi−1(n′) is satisfiable, so by assumption A

outputs “0” on Φqi−1(n′) which is of length qi(n′). But then Φqi(n0) . . .Φ(qi(n0)−1)k are all satisfiable, and
the choice of k gives qi(n′) ≤ n′′ ≤ (qi(n′′) − 1)k so Φn′′ must be satisfiable as well.
Now a witness for Φn should be a formula of size n1/k < N ≤ n together with a satisfying assignment.
Our choice of k gives the existence of some N so that q−1(N) is an integer. Since q−1(N) > n′, we know
that Φq−1(N) is satisfiable and that A(Φq−1(N)) = 0. Thus we may use Φq−1(N) as a witness for Φn if we
find a satisfying assignment for Φq−1(N). Using the same reasoning, we continue to construct a witness
using formulae of decreasing size, until we are left with a formula Φn′′ for n′′ ≤ n′k that we may satisfy by
exhaustive search.
We describe the algorithm D1 precisely below. Set i := n and w := 0:

1. If i ≤ n′k, find a witness for Φi by exhaustive search, append to w and stop. Otherwise,

2. run A(Φi). If A returns a witness, output fail.

3. Find an integer j such that i1/k < q(j) ≤ i.

4. Append Φj to w, set i := j, and repeat.
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Note that the algorithm will not output fail if it is called with any i > n′. We also have that in Step 3 a
suitable j is always available since ik > q(i + 1). Finally, it is easy to verify that the algorithm runs in time
polynomial in n when n > 2n′k . !

We may now describe the sampling algorithm D on input 1n:

1. For i = n . . . nk, run A on Φi and output (w, a) returned by A if |w| = n.

2. If no such pair is returned, run D1(1i, t(i), A) for i = n, . . . , nk and output the first (w,α) where w
is of length n.

Using Lemma 1, it is easy to prove that the sampling procedure D must output hard instance/witness pairs
for A infinitely often, which proves Theorem1.

Proof of Theorem 1. Suppose A finds assignments for Φn infinitely often. For each such n, the length of the
assignment N may be between n1/k and n. Then Step 1 ensures that the sampler D will succeed on input
length N .
On the other hand, assume that the condition of Lemma1 holds. Then for large enough n, we have that D1

returns a pair (w,α) where |w| = N . The same argument as the previous case gives that D will succeed on
input length N . !

3.3 Quasi-hard samplers

Using a diagonalization argument, we can use the hard instance generators describe above to obtain a single
generator that produces instances hard for all algorithms running in some fixed time t(n).

Proof of Theorem 3. We prove the deterministic version of the theorem. The randomized version follows
by an analogous argument, using standard randomness amplification (specifically n log(t(n)) independent
repetitions) to boost the probabilities.
Consider any standard enumeration of Turing machines M1, · · · . Let Ni be the machine which on input
φ simulates all the machines M1, . . . ,Mi on φ for t(n) steps, outputting the first non-zero assignment
satisfying φ if one exists and ‘0’ otherwise. The sampler S on input 1n runsD(1n,Ni, t(n)) for i = 1, . . . , n
and outputs the last response (φi, w) so that Ni(φi) = 0.
Now consider any machine running in time t(n)with descriptionMj . By Lemma 1, the output ofD(1n,Nj , t(n))
will succeed infinitely often, and the output ofD(1n,Ni, t(n)) for any i ≥ j will be a hard instance forMj .

!

4 Constructing a quasi-one-way function

The existence of a quasi-sampler suggests a natural construction of a quasi-one-way function: Run the
sampler. If one obtains a pair (φ,w) output (φ, x ⊕ w), otherwise output “0”. The verifier V (x, (φ, r))
outputs 1 whenever x ⊕ r satisfies φ or the second argument is “0”.
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Proof of Theorem 4. Fix any polynomial t(n). Let t′(n) = 2t(n)(t(n) + tV (n)) and let S be the sampler
for time 4(t(n))2. Let f : {0, 1}n → {0, 1}2n be the randomized function:

f(rw) = (φ, rw ⊕ w).

where (φ,w) is the output of S(1n). The verifier V (rw, (φ, r)) accepts if its second argument is zero or if φ
is satisfied by rw ⊕ r.
We describe how, given an algorithm A which runs in time t(n) and causes V to accept with probability
1/t(n) for almost all n, one may construct an algorithm A′ which runs in time t′(n) and solves SAT with
high probability under the output distribution of S(1n):

Algorithm A′. On input φ, repeat the following 4t(n) times. Choose a random r and run
A(φ, r) to obtain a candidate inverse rw. If V (rw, (φ, r⊕ rw)) accepts for any r, output r⊕ rw,
otherwise reject.

If φ is distributed according to S(1n), then (φ, r) follows the output distribution of the one-way function, so
by assumption the inversion algorithm will succeed with probability 1/t(n). Therefore for at least 1/2t(n)
fraction of the inputs φ, the inversion algorithm succeeds for a 1/2t(n) fraction of rs. By repetition, for
such a φ, the corresponding r will be found with probability 1/2, in which case r ⊕ rw is a witness for φ.
Therefore A′ produces a witness for φ with probability 1/4t(n), contradicting Theorem3. !

5 Conclusions

We proposed a relaxed definition of cryptographic primitives. Our motivation is a better understanding of the
boundaries between worst-case complexity, average-case complexity, and various flavors of cryptography in
a world of relaxed definitions where the primitives are no longer useful, but strong enough to imply P != NP.
We managed to construct the analog of one-way functions in this setting.
We find it instructive that some methods we take for granted in the standard setting — e.g. that the hardness
of one-way functions can be amplified, or that one-way functions and pseudorandom generators are “com-
putationally equivalent” — do not carry over to this new setting. Yet quasi-cryptography offers other tools
— like simulations and “non-black-box” methods such as the ones in [GSTS05] — that might compensate
for this difficulty. It would be interesting to see how much of this can be achieved.
Part of our motivation was to investigate alternatives to [IW98] in constructing pseudorandom generators
under uniform hardness assumptions. Here, we fall short in two aspects: First, our construction of “quasi-
one-way functions” is randomized; and second, we find obstacles to turning quasi-one-way functions into
pseudorandom generators. Towards bypassing the first obstacle, we observed that randomized quasi-one-
way functions can be derandomized by using assumptions considered before (see [DI06]). Therefore, while
complete derandomization (assuming the existence of hard problems in NP) may be out of reach for cur-
rent techniques, an intermediate goal may be to show that the existence of pseudorandom generators for
HeurBPP follows from a hardness assumption plus some generic derandomization assumption.
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A Sampling hard instance witness pairs for randomized adversaries

For randomized algorithms, we work with a new formula Φn,r which is parameterized by not just the input
length, but also the randomness used by the algorithm:

∃wN ∈ {0, 1}N : SAT (wN ) = 1 and A′(wN , r) = 0 and n1/k < N ≤ n.

Here A is a randomized search algorithm (as before, we assume in the proof that A only errs by answering
unsatisfiable), and A′(wN , r) denotes the result of running 2N many trials of A and outputting the first
satisfying assignment to wN found by A (and zero otherwise) using randomness r (which may be truncated
asN varies). Note that ifA uses randomness of length nb then A′ uses randomness of length 2nb+1, and that
almost all choices of randomness for A′ reflect the failure probability of A. More precisely, with probability
at least 1− (2/3)n over the choice of r, for every x it holds that A′(x, r) = 0 implies Pr[A(x) = 0] > 2/3.
We now show how to sample hard instance/witness pairs for any randomized search algorithm A by consid-
ering two cases. Let A′ be the corresponding algorithm described in Section3.1.

• For inifnitely many n, the a random formula Φn,r is likely to be satisfiable and A′ will likely find a
witness for it.

• There is some n0 so that for all n > n0, either Φn,r is unlikely to be satisfiable or A′ will likely make
a mistake.

If the first case holds, we can simply find formula/witness pairs by running A′. Our main task is to show
how to find witnesses when the second case holds. Because the failure of A′ may be because Φn,r is mostly
unsatisfiable, the task of constructing witnesses for this case is more difficult than for the deterministic case.
We give the sampler for this case in Lemma2 below.

Lemma 2. Assume NP !⊆ BPP, and suppose that there exists an n0 such that for every n > n0,

Prr,r′ [A′(Φn,r, r
′) = 0 ∨ Φn,r /∈ SAT ] > 1 − 1

q(q(n))2
.

12



Then for infinitely many n > n0, the algorithm D1 described below, on inputs A′, 1n, and t(n) returns a
randomly chosen Φn,r and satisfying assignment with probability at least 1 − o(1) over the choice of r and
randomness of D1.

Proof. Let n′ > n0 be such that there is a satisfiable x ∈ {0, 1}n
′
but Pr[A′(x, r) = 0] > 1 − 1/n′2. Since

NP !⊆ BPP, this occurs infinitely often. We describe the algorithm D1 below, and show that it returns a
satisfying assingment to a random Φn,r for n = poly(2n′k) with high probability. Our algorithm works
as in the deterministic case by stringing together smaller and smaller Φi,ri until it may find a witness by
exhaustive search. Of course, each successive Φi,ri must be satisfiable or the entire process fails. The main
difficulty comes in the analysis, where we need to to show that all the Φi,ri are satisfiable with high (actually
increasing) probability over the choices of r and ri (Claim 1).
We now describe the algorithm D1 more precisely below. Suppose A′ uses nb bits of randomness. Set
i := n and w := 0 and choose a random ri ∈ {0, 1}nb

.

1. If i ≤ n′k , find a witness for Φi,ri by exhaustive search, append to w and stop. Otherwise

2. run A′(Φi,ri) and output fail if A′ returns a witness.

3. Find an integer j such that i1/k < q(j) ≤ i and pick a random rj ∈ {0, 1}jb
.

4. Append Φj,rj to w, set i := j, ri := rj and repeat.

The idea of the third step is that Φj,rj is a formula of size q(j) which satisfies Φi,ri with high probability
because we assume A′ “fails” on most Φj,rj . Of course A′ may fail because a significant fraction of the Φj,rj

were unsatisfiable, in which case Φj,rj is not a useful witness and D1 will fail. So we must ensure that the
density of satisfiable Φj,rj is maintained as j increases. It is plausible that this density decreases; as we’ve
observed, when a fraction of the Φi,ri are unsatisfiable, this affects the number of witnesses for Φj,rj , which
may decrease our bound for the satisfiable instances of Φj,rj (which in turn affects the number of witnesses
for Φq(j),rq(j)

. . . ). We assert that the density is in fact increasing:

Claim 1. Let n′ ≤ i. Then Pr[Φi,ri /∈ SAT ] < 2
i2 .

First, observe that we may easily prove Lemma 2 from Claim 1. Note that any consecutive j < i in the
sequence of integers chosen by D1 satisfy q(j) ≤ i. Thus there are at most O(log n) random formulas
chosen. On the other hand, by Claim 1 any formula chosen fails to be satisfiable with probability at most
2/(log n)2; Thus each chosen Φj,rj will satisfy Φi,ri except with probability 2/(log n)2 +1/q(q(log n))2 =
O(1/(log n)2). A union bound gives that the probability of choosing some unsatisfiable formula is at most
O(1/ log n). We proceed to prove Claim 1 which completes the proof of the lemma. !

Proof of Claim 1. By assumption, we have that Pr[Φn′,r′ /∈ SAT ] < 1/n′2. We need to use our assumption
that A′ fails to find a witness for Φi,ri (either because Φi,ri /∈ SAT or because A′ outputs 0) to show that
Φq(i),rq(i)

will be mostly satisfiable. The key observation is that if there are not many Φi,ri that can be
witnesses, they must be witnesses to many Φq(i),rq(i)

. Suppose that for any i we have

• Prr,r′ [A′(Φi,r, r′) = 0 ∨ Φi,r /∈ SAT ] > 1 − 1
h(i) , and that

• Pr[Φi,r ∈ SAT ] > 1 − 1/&(i).
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Then we know that

Prr,r′[Φi,r ∈ SAT ∧ A′(Φi,r, r
′) = 0] > 1 − 1

h(i)
− 1
&(i)

.

Let S be the set of r such that Φi,r ∈ SAT . Then we also have that

Prr,r′ [Φi,r ∈ SAT ∧ A′(Φi,r, r
′) = 0] ≤ Prr[Φi,r ∈ SAT ]maxr∈S{Pr[A′(Φi,r, r

′) = 0]}.

Combining the two inequalities, we have that

maxr∈S Pr[A′(Φi,r, r
′) = 0] ≥

1 − 1
h(i) − 1/&(i)

1 − 1/&(i)
= 1 − 1

h(i)(1 − 1/&(i))
.

Now, observe that Φi,r has length q(i) and that there is some r ∈ S so that

Pr[A′(Φi,r, r
′) = 0] ≥ 1 − 1

h(i)(1 − 1/&(i))
.

This implies that for any j ∈ {q(i), . . . , q2(i)}

Pr[Φj,r′ ∈ SAT ] > 1 − 1
h(i)(1 − 1/&(i))

.

Claim 1 follows by letting h(i) = q(q(i))2 and noting that 1 − &(i) is always greater than 1/2. !

Having proven Lemma 2, we may now give a proof of Theorem 2

Proof of Theorem 2. We describe the behavior of the sampler D on inputs 1n, A and t(n):

• For i = n, . . . , nk, run A′ on 2nq(q(i))2 randomly chosen Φi,r. If there is some (w, a) returned of
size n output it.

• If no such pair is returned, run D1(1i, A′, t(i)) for i = n, . . . , nk. If D1 outputs some Φi,r and
satisfying assingment (w,α) with |w| = n, output (w, a).

The proof follows the one for deterministic samplers. If A′ finds a witness to Φn,r with probability greater
than 1/q(q(n))2 for infinitely many n (i.e. the condition of Lemma2 doesn’t hold), the first step amplifies
the success of A′ so that D will output a formula and witness pair with probability at least 1 − o(1) for
infinitely many n.
Otherwise, Lemma 2 tells us that for infinitely many n, with probability at least 1 − o(1), D1 will output
some pair (w,α) such that |w| = n and (w,α) satisifes a randomly chosen Φi,r for some i ∈ {n, . . . , nk},
i.e. A′(w, r) = 0 but α satisfies w. By the construction of A′ (see Section 3.1), this implies that Pr[A(w) =
0] > 2/3 (except with negligible probability over the choice of r). !
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B Quasi-one-way functions versus quasi-pseudorandom generators

In this section we give a proof of Theorem 5. We prove the theorem by contradiction. In particular, we
analyze what happens when we instantiate the construction with a random permutation f : {0, 1}m(n) →
{0, 1}m(n) . Such a random permutation is one-way with high probability. (While it is not crucial that we
use a permutation, it simplifies the analysis somewhat.)
The idea of the proof is that the distinguisher can be chosen in such a way so that the inverter will not “know”
which f was used, so she will be unlikely to produce the correct inverse for information-theoretic reasons.
One complication is that the inverter also has access to a verifier, from which some information about f may
be gained. We will argue that this verification oracle is unlikely to reveal any useful information, so that
with little effect on the analysis it can be replaced by an oracle that always answers zero.
Specifically, for any permutation f , we define the following distinguisher Df and verifier Vf . In our defi-
nition, the distinguisher is randomized, but in the end the randomness can be fixed to minimize the distin-
guishing probability of the inverter.
In what follows t = t(n) is a parameter that is chosen to be super-polynomial in n, but such that t < 2m/2

and t < 2k/2. By our assumptions on m and k such a choice is always possible.
Distinguisher Df (y): Choose r ∈ {1, . . . , t} uniformly at random. Define fi : {0, 1}m → {0, 1}m to
be f if i = r, and a uniformly random permutation otherwise. Output 1 if y is in the range of some Gfi ,
1 ≤ i ≤ t, and 0 otherwise.
Verifier Vf (x, y): Output 1 if f(x) = y, and 0 otherwise.
Notice that D(Gf (x)) = 1 for every x, but the number of ys for which D(y) = 1 is at most t · 2n. As long
as t < 2k/2, D distinguishes the output of Gf from the uniform distribution with probability at least 1/2.
We begin by proving that when t is sufficiently large, the queries made by the inverter to the verifier are
always answered by 0.

Claim 2. Assume 12q ≤ t ≤ 2m/2. Fix any z ∈ {0, 1}m. The probability that IDf ,Vf (z) ever makes a
query of the form (x, f(x)) to Vf is at most 2−m + 12q/t, where q is the number of queries that I makes to
the Vf oracle.

The intuition behind the claim is this. Suppose we give the inverter a complete description of the truth-tables
of the functions f1, . . . , ft. In particular this contains all the information provided by the oracle Df . Now
think of the verifier as playing a game where her goal is to make the query (x, fr(x)) for some x. The
problem is that she does not know what r is, and she can only gain information about r by making other
queries of the same type. What is her best strategy? Intuitively, she should be looking to make queries (x, y)
where y = fi(x) for many is simultaneously. If one of these i’s equals r she wins, and otherwise she can
rule out several possible values of r. However, since the permutations are random, it is unlikely that there
exists a point (x, y) where the graphs of many of them intersect.

Proof. Let us begin by giving an upper bound on the quantity

M = max(x,y)|{i : y = fi(x)}|

when f1, . . . , ft are random permutations. For any point (x, y) and any subcollection of 6 of the permuta-
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tions, the probability that all of them hit (x, y) is at most 2−6m, so by a union bound we have that

Pr[M ≥ 6] ≤ 22m ·
(

t

6

)
· 2−6m > 2−m

using the assumption t ≤ 2m/2.
Now let (x1, y1), . . . , (xq, yq) denote the queries made by the inverter on input z. The probability that the
inverter manages to make a query of the type (x, fr(x)) can be upper bounded by

Pr[M ≥ 6] + Pr[y1 = fr(x1) | M < 6] + Pr[y2 = fr(x2) | y1 != fr(x1) ∧ (M < 6)]
+ · · · + Pr[yq = fr(xq) | y1 != fr(x1) ∧ · · · ∧ yq−1 != fr(xq−1) ∧ (M < 6)]

so it remains to upper bound the quantity

Pr[yi = fr(xi) | y1 != fr(x1) ∧ · · · ∧ yi−1 != fr(xi−1) ∧ (M < 6)]

for 1 ≤ i < q. To do this, fix any collection of fis that satisfy the condition M < 6, so now the probability
is only taken over a random choice of r. By the bound on M , the number of fj such that yi = fj(xi) for
some i is at most 6i ≤ 6q, so r is uniformly distributed over a set of size at least t − 6q. It follows that the
above probability is upper bounded by 6/(t − 6q), so the probability that IDf ,Vf (z) ever makes a positive
query to Vf is at most 2−m + 6q/(t − 6q) ≤ 2−m + 12q/t. !

We now prove the main theorem of this section.

Proof of Theorem 5. Let p denote the probability that the inverter succeeds on a random y, namely

p = Pr[IDf ,Vf (y) = f−1(y)]

where the probability is taken over y, f , and the randomness of the distinguisher. Let 0 be the oracle that
always outputs zero. By the inclusion-exclusion principle, we have

1 ≥ Pr[IDf ,0(y) = f−1
i (y) for some i]

≥
∑

1≤i≤t
Pr[IDf ,0(y) = f−1

i (y)] −
∑

1≤i<j≤t
Pr[IDf ,0(y) = f−1

i (y) and IDf ,0(y) = f−1
j (y)].

We now lower bound every term of the first type, and upper bound every term of the second type. For terms
of the first type, by symmetry of the fis, we have that

Pr[IDf ,0(y) = f−1
i (y)] = Pr[IDfi

,0(y) = f−1
i (y)] = Pr[IDf ,0(y) = f−1(y)].

By Claim 2,

Pr[IDf ,0(y) = f−1(y)] ≥ Pr[IDf ,Vf (y) = f−1(y)] − Pr[Vf is queried (x, f(x))]
≥ p − (2−m + 12q/t).

For terms of the second type,

Pr[IDf ,0(y) = f−1
i (y) and IDf ,0(y) = f−1

j (y)] ≤ Pr[f−1
i (y) = f−1

j (y)] = 2−m
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so it follows that
1 ≥ t · (p − (2−m + 12q/t)) −

(
t

2

)
· 2−m

From t = 2m/2, it follows that p ≤ (12q +3)/t+2−m = n−ω(1). Since a random permutation f is one-way
with overwhelming probability, it follows that there exists a one-way f such that

Pry∼{0,1}m [IDf ,Vf (y) = f−1(y)] = n−ω(1)

contradicting the correctness requirement of I . !
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