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Abstract. Markov random fields are often used to model high dimen-
sional distributions in a number of applied areas. A number of recent
papers have studied the problem of reconstructing a dependency graph
of bounded degree from independent samples from the Markov random
field. These results require observing samples of the distribution at all
nodes of the graph. It was heuristically recognized that the problem of
reconstructing the model where there are hidden variables (some of the
variables are not observed) is much harder.
Here we prove that the problem of reconstructing bounded-degree models
with hidden nodes is hard. Specifically, we show that unless NP = RP,
– It is impossible to decide in randomized polynomial time if two mod-

els generate distributions whose statistical distance is at most 1/3
or at least 2/3.

– Given two generating models whose statistical distance is promised
to be at least 1/3, and oracle access to independent samples from one
of the models, it is impossible to decide in randomized polynomial
time which of the two samples is consistent with the model.

The second problem remains hard even if the samples are generated
efficiently, albeit under a stronger assumption.

1 Introduction

We study the computational complexity of reconstructing a Markov random
field of bounded degree from independent and identically distributed samples at
a subset of the nodes.

The problem of reconstructing Markov random fields (MRF) has been re-
cently considered as Markov random fields provide a a very general framework
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for defining high dimensional distributions. Much of the interest emanates from
the use of such models in biology, see e.g. [1] and a list of related references [2].

Reconstructing Markov random fields where the generating model is a bounded-
degree tree is one of the major computational problems in evolutionary biology,
see e.g. [3, 4]. For tree models the problem of sampling from a given model or cal-
culating the probability of observing a specific sample for a given model are well
known to be computationally feasible using simple recursions (also termed “dy-
namic programming” and “peeling”). Moreover, in the last decade it was shown
that the problem of reconstructing a tree model given samples at a subset of
the nodes is computationally feasible under mild non-degeneracy conditions, see
e.g. [5–7] for some of the best results of this type. (These results often assume
that the samples are observed at the leaves of the tree, but they easily extend
to the case where some of the observables are internal nodes.)

Following extensive experimental work, Abbeel et al. [8] considered the prob-
lem of reconstructing bounded-degree (non-tree) graphical models based on fac-
tor graphs, and proposed an algorithm with polynomial time and sample com-
plexity. The goal of their algorithm was not to reconstruct the true structure,
but rather to produce a distribution that is close in Kullback-Leibler divergence
to the true distribution.

In a more recent work [9], it was shown that the generating graph of maximal
degree d on n nodes can be efficiently reconstructed in time nO(d) under mild non-
degeneracy conditions. Other results on reconstructing the graph have appeared
in [10].

Note that all of the results for non-tree models assume that there are no hid-
den variables. This is consistent with our results described next which show that
the problem of reconstructing models with hidden variables is computationally
hard.

1.1 Definitions and Main Results

Fix an alphabet Σ. An undirected model M over Σn consists of an undirected
graph G with n vertices and a collection of weight functions we : Σ2 → R≥0, one
for each edge e ∈ E(G). The degree of the model is the degree of the underlying
graph. To each undirected model M we associate the probability distribution
µM on Σn given by

PrX∼µM
[X = a] =

∏
(u,v)∈E(G) w(u,v)(au, av)

ZM
(1)

where ZM is the partition function

ZM =
∑

a∈Σn

∏
(u,v)∈E(G)

w(u,v)(au, av).

This probability distribution µM is called the Markov Random Field of M .
(Throughout, we will only work with models where ZM 6= 0 so that µM is
well-defined.)



As an example, consider the special case that Σ = {0, 1} and all the weight
functions are the NAND function. Then an assignment a has nonzero weight iff
it is the characteristic vector of an independent set in the graph, ZM counts the
number of independent sets in the graph, and µM is the uniform distribution
on the independent sets in the graph. For even this special case, it is NP-hard
to compute ZM given M is NP-hard, even approximately [11] and in bounded-
degree graphs [12]. Due to the close connection between approximate counting
and sampling [13], it follows that given a bounded-degree model M , it is in-
feasible to sample from the distribution µM (unless NP = RP). Here, we are
interested in computational problems of the reverse type: given samples, deter-
mine M . Nevertheless, our techniques are partly inspired by the line of work on
the complexity of counting and sampling.

We note that in standard definitions of Markov Random Fields, there is
a weight function wC for every clique C in the graph (not just edges), and the
probability given to an assignment a is proportional to the product of the weights
of all cliques in the graph. Our definition corresponds to the special case where all
cliques of size greater than 2 have weight functions that are identically one. This
restriction only makes our hardness results stronger. (Note that in bounded-
degree graphs, there are only polynomially many cliques and they are all of
bounded size, so our restriction has only a polynomial effect on the representation
size.)

Markov Random fields model many stochastic processes. In several applica-
tions of interest one is given samples from the distribution µM and is interested
in “reconstructing” the underlying model M . Often the observer does not have
access to all the vertices of M , but only to a subset V ⊆ {1, . . . , n} of “re-
vealed” vertices. We call this a model with hidden nodes M | V and denote the
corresponding distribution by µM |V .

We are interested in the computational complexity of reconstructing the
model M given samples from µM |V . Of course, the model M may not be uniquely
specified by µM |V (e.g. M may have a connected component that is disjoint from
V ), so one needs to formalize the question more carefully. Since we are interested
in proving hardness results, we take a minimalist view of reconstruction: Any
algorithm that claims to reconstruct M given samples from µM |V should in par-
ticular be able to distinguish two models M and M ′ when their corresponding
distributions µM |V and µM ′|V are statistically far apart.

As a first step towards understanding this question, we consider the following
computational problem:

Problem dDIST

Input: Two models M0 and M1 over Σn of degree d, a set V ⊆ {1, . . . , n}.
Promise: ZM0 and ZM1 are nonzero.

Yes instances: The statistical distance between µM0|V and µM1|V is at most
1/3.

No instances: The statistical distance between µM0|V and µM1|V is at least
2/3.



Here, the statistical distance (a.k.a. total variation distance) between two
distributions µ and ν on a set Ω is the quantity

sd(µ, ν) = maxT⊆Ω |PrX∼µ[X ∈ T ]− PrX∼ν [X ∈ T ]| .

The computational problem dDIST, and all others we consider in this paper,
are promise problems, which are decision problems where the set of inputs are
restricted in some way, and we do not care what answer is given on inputs that
are neither yes or no instances or violate the promise. Languages are special
cases where all strings are either yes or no instances. For more about promise
problems, see the survey by Goldreich [14].

Next, we consider a problem that seems much more closely related to (and
easier than) reconstructing a model from samples. Here, the distinguisher is given
two candidate models for some probabilistic process, as well as access to samples
coming from this process. The goal of the distinguisher then is to say which is
the correct model for this process.

Problem dSAMP
Input: Two models M0 and M1 over Σn of degree d, a set V ⊆ {1, . . . , n}.
Promise: ZM0 and ZM1 are nonzero, and the statistical distance between µ0 =
µM0|V and µ1 = µM1|V is at least 1/3.
Problem: Given oracle access to a sampler S that outputs independent samples
from either µ0 or µ1, determine which is the case.

More precisely, the distinguishing algorithm D is required to satisfy the con-
dition

Pr[DSb(M0,M1, V ) = b] > 2/3 for b ∈ {0, 1} (2)

where Sb denotes the sampler for µb and the probability is taken both over the
randomness of the sampler and the randomness of D.

Our main results are that both of these problems are hard:

Theorem 1. If there is a deterministic (resp., randomized) polynomial-time al-
gorithm for 3DIST, then NP = P (resp., NP = RP). This holds even if we
restrict to models over the alphabet Σ = {0, 1}.

Theorem 2. If there is a randomized polynomial-time algorithm for 3SAMP,
then NP = RP. This holds even if we restrict to models over the alphabet Σ =
{0, 1}.

These characterizations are the best possible: If NP = RP, both DIST and
SAMP have efficient algorithms. See Appendix A.

The proofs of the two theorems are based on the fact that the Markov Ran-
dom Field of a suitably chosen model can approximate the uniform distribution
over satisfying assignments of an arbitrary boolean circuit. By revealing one
node, we can then use an algorithm for either dDIST or dSAMP to distinguish
the case that the first variable is 1 in all satisfying assignments from the case
that the first variable is 0 in all satisfying assignments, which is an NP-hard
problem.



2 Sampling Satisfying Assignments with a Markov
Random Field

In this section, we establish the key lemma that is used in all of our hardness
results — given a boolean circuit C, we can construct a model whose Markov
Random Field corresponds to the uniform distribution on satisfying assignments
of C.

Lemma 1. There is a polynomial-time algorithm R that on input a circuit C :
{0, 1}n → {0, 1} produces an undirected model M of degree 3 over alphabet {0, 1}
with a collection of special vertices v1, . . . , vn such that ZM 6= 0 and if C is
satisfiable, then the statistical distance between a random satisfying assignment
of C and the Markov Random Field of M restricted to v1, . . . , vn is at most 2−n.

This proof is an extension of the standard reduction from circuit satisfiability
to independent set: For each gate in the circuit and every possible assignment
to the wires at this gate we have a vertex in the graph, and we put an edge be-
tween vertices corresponding to inconsistent assignments. (For the output gate,
we remove those vertices corresponding to non-satisfying assignments.) Then the
uniform distribution on maximum independent sets in the graph corresponds ex-
actly to the uniform distribution on satisfying assignments in the circuit. How-
ever, the independent set model also gives weight to independent sets that are
not maximum.

The weight corresponding to maximum independent sets can be magnified
using the “blow-up” technique of [13, 11], where we clone every vertex polynomi-
ally many times and replace each edge with complete bipartite graph between the
clones of the endpoints. However, this results in a graph of polynomially large
degree. In order to obtain a degree 3 model, we use the more general weight
functions allowed in a Markov Random Field to achieve the same blow-up effect
with many fewer edges. Specifically, we can force all clones of a vertex to have
the same value by connecting them in a cycle with appropriate weight functions,
and can also use the weights to magnify the weight of large sets. Then we can
spread out the edges of the original graph among the clones in a way that the
degree increases only by 1.

Proof. Consider the following polynomial-time algorithm that, on input a circuit
C of size s, produces an undirected model M over alphabet {0, 1}. We assume
without loss of generality that each gate has fanin two and that all NOT gates
are at the input level. For each gate g of C, including the input gates, and each
consistent assignment α of values to the wires incident to this gate, the model
M has r = 8s vertices vg,α,1, . . . , vg,α,r. (Note that for each gate g, there are
at most 23 = 8 possible assignments α.) For the output gate, we only consider
assignments consistent with the circuit accepting. For every i, connect the ver-
tices v = vg,α,i and u = vg,α,i+1 by an edge with the following weighted “inner



constraint”:

win(au, av) =


1 if au = av = 0
2 if au = av = 1
0 otherwise.

For any pair of gates g, h where either g = h or g and h are connected, and any
pair of assignments α for g and β for h that are inconsistent, add the following
“outer constraint’ between v = vg,α,i and u = vh,β,j , where i (resp. j) is the first
index that has not been used in any outer constraint for g (resp. h):

wout(au, av) =

{
0 if au = av = 1
1 otherwise.

The first type of constraint ensures that all representatives of the same gate-
assignment pair are given the same value, and favors values that choose the
assignment. The second type of constraint ensures that the assignments to the
vertices of the model are consistent with circuit evaluation.

Assume that C is satisfiable, and look at the distribution induced by the
Markov Random Field of M on the vertices v1, . . . , vn, where vi = vxi,1,1 rep-
resent the inputs of C. For every satisfying assignment α of C, consider the
corresponding assignment α′ of M that assigns value 1 to all vertices represent-
ing gate-assignment pairs consistent with the evaluation of C on input α, and 0
to all others. This gives α′ relative weight 2sr in the Markov Random Field.

We now argue that the combined weight of all other assignments of M cannot
exceed 2−s · 2sr, and the claim follows easily from here. By construction, every
assignment of M with nonzero weight assigns 1 to at most one group of vertices
vg,α,1, . . . , vg,α,r for every gate g, and if the assignment does not represent a
satisfying assignment of C then at least one gate must have no group assigned
1. For each group assigned 1, there are at most 8 ways to choose the assignment
from each group, and each such assignment contributes a factor of 2r to the
weight, so the total weight of non-satisfying assignments is at most

s−1∑
k=0

(
s

k

)
· (8 · 2r)k ≤ 2s · 8s · 2(s−1)r ≤ 2−s · 2sr

by our choice of r. ut

3 Hardness of 3DIST and 3SAMP

In this section we prove Theorems 1 and 2. For both, we will reduce from the
following NP-hard problem.



Problem CKTDIST
Input: A circuit C (with AND, OR, NOT gates) over {0, 1}n.
Promise: C is satisfiable.
Yes instances: All satisfying assignments of C assign the first variable 1.
No instances: All satisfying assignments of C assign the first variable 0.

Lemma 2. If CKTDIST has a polynomial-time (resp., randomized polynomial-
time) algorithm, then NP = P (resp., NP = RP).

Proof. This follows from a result of Even, Selman, and Yacobi [15], who showed
that given two circuits (C0, C1) where it is promised that exactly one is satis-
fiable, it is NP-hard to distinguish the case that C0 is satisfiable from the case
that C1 is satisfiable. This problem is easily seen to be equivalent to CKTDIST
by setting C(b, x) = Cb(x). (The interest of [15] in this problem was the fact
that it is in the promise-problem analogue NP∩ coNP, whereas there cannot be
NP-hard languages in NP ∩ coNP unless NP = coNP.) ut

Now we use Lemma 1 to reduce CKTDIST to 3DIST and 3SAMP.

Proof (of Theorem 1). To prove Theorem 1, let’s assume for sake of contradiction
that there is an efficient algorithm D for 3DIST. For simplicity, we assume that
D is deterministic; the extension to randomized algorithms is straightforward.

Given a satisfiable circuit C, we will to use the distinguishing algorithm D
to distinguish the case that all satisfying assignments assign the first variable
1 from the case that all satisfying assignments assign the first variable 0. First,
using Lemma 1, we turn the circuit C into an undirected model M and let v be
the variable corresponding to the first variable of C. Then µM |{v} is a Bernoulli
random variable that outputs 1 with probability approximately equal (within
±2−n) to the fraction of satisfying assignments that assign the first variable 1.

Next, let M ′ be any model where the node v is always assigned 1 in µM ′ . (For
example, we can have a single edge (u, v) with weight function w(u,v)(au, av) =
auav.)

Then µM |{v} and µM ′|{v} have statistical distance at most 2−n ≤ 1/3 if C is
a NO instance of CKTDIST, and have statistical distance at least 1−2−n ≥ 2/3
if C is a YES instance. Thus, D(M,M ′, {v}) correctly decides CKTDIST, and
NP = P. ut

Proof (of Theorem 2). Similarly to the previous proof, we reduce CKTDIST to
3SAMP: Given a circuit C, define the circuits C0(x1, x2, . . . , xn) = C(x1, . . . , xn)
and C1(x1, x2, . . . , xn) = C(¬x1, x2, . . . , xn). Note that if all satisfying assign-
ments of C assign the first variable value b, then all satisfying assignments to Cb

assign the x1 = 0 and all satisfying assignments to C¬b assign x1 = 1. Now, we
apply Lemma 1 to construct models M0 and M1 corresponding to C0 and C1,
and we reveal only the vertex V = {v1} corresponding to the variable x1. (Note
that µM0|V and µM1|V have statistical distance at least 1−2 ·2−n.) Given a ran-
domized algorithm A for 3SAMP, we run AS(M0,M1) where S is the sampler



that always outputs 0. If all satisfying assignments of C assign x1 = b then S is
2−n-close in statistical distance to Sb ∼ µMb|V . Thus

Pr[AS(M0,M1) = b] ≥ Pr[ASb(M0,M1) = b]− poly(n) · 2−n ≥ 2/3− o(1)

and the construction gives a randomized algorithm for CKTDIST. ut

4 On the samplability of the models

One possible objection to the previous results is that the Markov Random Fields
in question are not required to be samplable. In some of the applications we have
in mind, the model represents a natural (physical, biological, sociological,...)
process. If we believe that nature itself is a computationally efficient entity, then
it makes sense to assume that the models we are trying to reconstruct will be
efficiently samplable. It is natural to ask if the problem of distinguishing Markov
Random Fields remains hard in this setting too.

Problem EFFSAMP
Input: Two models M0 and M1 over Σn of degree d, a set V ⊆ {1, . . . , n}, and
a parameter s in unary.
Promise: ZM0 and ZM1 are nonzero, the statistical distance between µ0 =
µM0|V and µ1 = µM1|V is at least 1/3, and both µM0 and µM1 are 2−n-close in
statistical distance to distributions samplable by circuits of size at most s.
Problem: Given oracle access to a sampler S that outputs independent samples
from either µ0 or µ1, determine which is the case.

We have the following hardness result for EFFSAMP. Here CZK is the class
of decision problems that have “computational zero-knowledge proofs”. (See [16]
for a definition.)

Theorem 3. If EFFSAMP has a polynomial-time randomized algorithm, then
CZK = BPP.

A slightly weaker version of this theorem says that if EFFSAMP has a
polynomial-time randomized algorithm, then one-way functions, or equivalently
pseudorandom generators [17], do not exist. (See [16] for definitions of both one-
way functions and pseudorandom generators.) To prove this, we observe that
an algorithm for EFFSAMP can be used to break any candidate pseudoran-
dom generator G: Convert G into an undirected model M0 | V using Lemma 1,
and let M1 | V be a model whose Markov Random Field is uniform. Then
the algorithm for EFFSAMP can be used to tell if a sample came from the
pseudorandom generator or from the uniform distribution, thereby breaking the
generator. Theorem 3 is stronger because it is known that if one-way functions
exist, then CZK = PSPACE 6= BPP [18–20].

To prove the actual theorem, we use a result of Ostrovsky and Wigderson [21],
which says that if CZK 6= BPP then there must exist an “auxiliary-input pseu-
dorandom generator”, which can also be broken by the same argument.



Proof. Suppose that CZK 6= BPP. Then by Ostrovsky and Wigderson [21], there
exists an auxiliary-input one-way function: This is a polynomial-time computable
function f : {0, 1}n × {0, 1}n → {0, 1}n such that for every polynomial p and
polynomial-size circuit C, there exist infinitely many a such that

Prx∼{0,1}n [f(a,C(a, f(a, x))) = f(a, x)] < 1/p(n)

where n is the length of a. By H̊astad et al. [17], it follows that there is also an
auxiliary-input pseudorandom generator: This is a polynomial-time computable
function G : {0, 1}n × {0, 1}n → {0, 1}n+1 such that for every polynomial-size
circuit family D and every polynomial p, there exist infinitely many a such that∣∣Pry∼{0,1}n+1 [D(a, y)]− Prx∼{0,1}n [D(a,G(a, x))]

∣∣ < 1/p(n).

It follows by a standard hybrid argument that for every polynomial-size oracle
circuit D whose oracle provides independent samples from a given distribution
we have that ∣∣Pr[DU (a)]− Pr[DGa(a)]

∣∣ < 1/p(n).

for infinitely many a, where U is (a sampler for) the uniform distribution on
{0, 1}n+1 and Ga is the output distribution of G(a, x) when x is chosen uniformly
from {0, 1}n. We show that if EFFSAMP has a polynomial-time randomized
algorithm A, then for every polynomial-time computable G there is a circuit D
such that ∣∣Pr[DU (a)]− Pr[DGa(a)]

∣∣ > 1/4.

for every a. Fix an a of length n, let Ca(x, y) be the circuit

Ca(x, y) =

{
1 if y = G(a, x)
0 otherwise

Apply Lemma 1 to circuit Ca to obtain a model Ma, and let V be the set of nodes
of Ma corresponding to the input y of Ca. Then the Markov Random Field of Ma

is 2−n close to the distribution Ga. Let M ′ | V be a model whose Markov Random
Field is the uniform distribution over {0, 1}n+1. Then D?(a) = A?(Ma,M ′) is
the desired circuit. ut
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A Converse theorem

Theorem 4. If NP = RP, then for every d there are randomized polynomial-
time algorithms for dDIST and dSAMP.

To prove Theorem 4, we use the following results of Jerrum, Valiant, Vazi-
rani [13].

Theorem 5. Assume NP = RP. Then there exists

1. A randomized polynomial-time sampling algorithm Sample that on input a
satisfiable circuit C : {0, 1}n → {0, 1} and ε > 0 (represented in unary), has
an output distribution that is ε-close in statistical distance to the uniform
distribution on the satisfying assignments of C. and and

2. A randomized polynomial-time sampling algorithm Count that on input a
circuit C : {0, 1}n → {0, 1} and ε > 0 (represented in unary) such that with
high probability

|C−1(1)| ≤ Count(C, ε) ≤ (1 + ε)|C−1(1)|

Now we assume NP = RP and describe algorithms for dDIST and dSAMP.

Algorithm for DIST: Using part (1) of Theorem 5, we can sample from a
distribution close to the Markov Random Field M | V . To see this, consider the
circuit C that takes as inputs an assignment x ∈ Σn, and numbers te ∈ N, one
for each edge e of M and outputs

C(x, e, w) =

{
1, if te ≤ we(xe) for all e

0, otherwise.

Conditioned on C(x, e, w) = 1, for a uniformly chosen triple (x, e, w) the input
x ∼ Σn follows exactly the distribution µM . Using the above theorem, there
is then an algorithm which on input (M,V ) outputs a sample from a distribu-
tion that is 1/9-close (in statistical distance) to µM |V . Let us use CM,V as the
sampling circuit obtained by hardwiring M and V as inputs to the algorithm A.

Now given an input M0,M1, V for dDIST, we produce the circuits C0 =
CM0,V and C1 = CM1,V . Note that if sd(µ0, µ1) > 2/3 then the statistical
distance between the output distributions of these two circuits is > 2/3− 1/9 =
5/9, and if sd(µ0, µ1) < 1/3 then the distance is < 1/3 + 1/9 = 4/9. The
problem of distinguishing circuits with large statistical distance from those with
small statistical distance is known to be in the complexity class AM [22], which
collapses to BPP under the assumption that NP = RP [23].



Algorithm for SAMP: First, we may assume that the statistical distance be-
tween the distributions µ0 and µ1 is as large as 9/10: Instead of working with the
original models, take 40 independent copies of each model; now each sample of
this new model will correspond to 40 independent samples of the original model.
The statistical distance increases from 1/3 to 9/10 by the following inequality:

Claim. Let µ, ν be arbitrary distributions, and µk, νk consist of k independent
copies of µ, ν, respectively. Then

1− exp(k · sd(µ, ν)2/2) ≤ sd(µk, νk) ≤ k · sd(µ, ν).

Using part (2) of Theorem 5, for every partial configuration a ∈ ΣV , we can
efficiently compute approximations p0(a), p1(a) such that

p0(a) ≤ µ0(a) ≤ 2p0(a) and p1(a) ≤ µ1(a) ≤ 2p1(a),

where µi(a) = PrX∼µi
[X = a]. Now consider the following algorithm D: On

input M0,M1, V , generate a sample a from S, output 0 if p0(a) > p1(a) and
1 otherwise. Then, assuming the counting algorithm of Theorem 5 returns the
correct answer, we have:

Pr[DS0(M0,M1, V ) = 0] ≥
∑

a:µ0(a)>2µ1(a)
µ0(a)

≥
∑

a:µ0(a)>µ1(a)
µ0(a)−

∑
a:2µ1(a)≥µ0(a)>µ1(a)

µ0(a).

The first term is at least as large as sd(µ0, µ1) ≥ 9/10. For the second term, we
have ∑

a:2µ1(a)≥µ0(a)>µ1(a)
µ0(a) ≤

∑
a:2µ1(a)≥µ0(a)>µ1(a)

2µ1(a)

≤ 2 ·
∑

a:µ0(a)>µ1(a)
µ1(a)

≤ 2 · (1− sd(µ0, µ1)) = 1/5.

It follows that Pr[DS0(M0,M1, V ) = 0] > 2/3, and by the same argument
Pr[DS1(M0,M1, V ) = 1] > 2/3.


