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Abstract

We establish new hardness amplification results for one-way functions in which each
input bit influences only a small number of output bits (a.k.a. input-local functions).
Our transformations differ from previous ones in that they approximately preserve
input locality and at the same time retain the input size of the original function.

Let f : {0, 1}n → {0, 1}m be a one-way function with input locality d, and suppose
that f cannot be inverted in time exp(Õ(

√
n · d)) on an ε-fraction of inputs. Our main

results can be summarized as follows:

• If f is injective then it is equally hard to invert f on a (1− ε)-fraction of inputs.

• If f is regular then there is a function g : {0, 1}n → {0, 1}m+O(n) that is d +
O(log3 n) input local and is equally hard to invert on a (1− ε)-fraction of inputs.

A natural candidate for a function with small input locality and for which no sub-
exponential time attacks are known is Goldreich’s one-way function. To make our
results applicable to this function, we prove that when its input locality is set to be
d = O(log n) certain variants of the function are (almost) regular with high probability.

In some cases, our techniques are applicable even when the input locality is not
small. We demonstrate this by extending our first main result to one-way functions of
the “parity with noise” type.
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1 Introduction

In this paper we are interested in amplifying the hardness of inverting a one-way function.
Our goal is to do so without significantly deteriorating the function’s parallel complexity
and/or efficiency. To the best of our knowledge, these objectives are not simultaneously
achieved by any of the previous methods for amplifying hardness.

Our results assume the function is regular, and sub-exponentially hard to invert. They
crucially rely on it being input-local, meaning that each input bit affects only a small number
of output bits. Under these assumptions we show how to amplify hardness while preserv-
ing the function’s input length and input locality. In some cases we achieve this without
modifying the function altogether.

1.1 Hardness Amplification

The problem of hardness amplification can be described as follows: given a one-way function
f(x), construct a function, g(y), so that if f(x) is hard to invert on an ε fraction of inputs,
then g(y) is hard to invert on some 1 − δ > ε fraction of inputs. Amplification of hardness
is established by exhibiting a reduction from the task of inverting f to the task of inverting
g. The overall quality of the amplification is determined by: (1) the complexity of the
construction (in particular, the relationship between |x| and |y|), (2) the complexity of the
reduction, and (3) the exact asymptotic relationship between ε and 1− δ.

The most basic method for amplifying hardness is due to Yao [18]. It consists of inde-
pendently evaluating the function f(x) many times in parallel. Using this transformation, it
is essentially possible to obtain an arbitrary level of amplification. However, this comes at
the cost of significantly blowing up the input size. For instance, if we wish to amplify from
error ε > 0 to error 1−δ > ε, evaluating g(y) will involve applying f(x) to O((1/ε) log(1/δ))
small pieces of y, each of size |x| (resulting in |y| = O(|x| · (1/ε) log(1/δ))).

A better tradeoff between security and efficiency is achieved by Goldreich et al (GILVZ),
for the special case of regular one-way functions [11]. In their construction, the evaluation of
g(y) consists of repeatedly applying f in sequence, where every two successive applications
are interleaved with a randomly chosen step on an expander graph. The starting point of
g’s evaluation is an input x to f , and intermediate steps on the graph are determined by
an auxiliary random string whose total length is O((1/ε) log(1/δ)). This results in |y| =
|x|+O((1/ε) log(1/δ)), but renders the evaluation of g(y) inherently sequential.

A related transformation was analyzed by Haitner et al (HHR), also for the case of regular
functions [13, 12]. Their transformation sequentially iterates the function with intermediate
applications of a hash function, and has the advantage of not requiring knowledge of the
regularity of f . Similarly to the GILVZ transformation, it is sequential in nature.

One last category of amplification results relies on random self-reducibility. It applies
to functions that allow an efficient mapping from f(x) to f(y), where y is a random value
from which one can efficiently retrieve x. When satisfied, random self-reducibility enables
very simple worst-case to average-case hardness amplification, without having to modify the
original function. However, it is generally not known to be satisfied by one-way functions.
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1.2 Highly Parallelizable One-Way Functions

Applebaum, Ishai and Kushilevitz (AIK) give strong evidence for the existence of one-way
functions that can be evaluated in as little as constant parallel time. They first present
one-way functions with constant output locality, meaning that each output bit depends on a
most a constant number of input bits [3]. These functions are constructed using randomized
encodings, a tool that allows them to transform well known candidate one-way functions that
have low parallel complexity (more generally, one-way functions computable in logspace) into
ones with constant output locality. They then go on and show that, in some specific cases, the
functions resulting from their randomized encodings also satisfy constant input locality [4].

An alternative source for candidate one-way functions with small input and output lo-
cality is given by Goldreich [10]. These candidates are arguably more natural than the ones
resulting from the AIK transformations. They also seem to offer a more attractive tradeoff
between input length and security (as in many cases randomized encodings necessitate a
significant blow up in the input size of the original function). Goldreich’s constructions are
quite general, and allow flexibility in the choice of the function, both in terms of the way
in which inputs are connected to outputs, as well as in the choice of the predicates used to
compute the function’s output bits. To date, no sub-exponential time inversion algorithm is
known for these functions (as long as the output length is linear in the input length).

Known hardness amplification methods are not well suited for functions of the above
sort. Being inherently sequential, the GILVZ and HHR transformations do not preserve
parallelism. Yao’s transformation, on the other hand, does not increase parallel time, but
it does incur a significant loss in efficiency (cf. Lin et al. [17]). This presents us with the
challenge of coming up with efficient hardness amplification methods that are well suited for
parallelizable functions. Our approach to the problem will be to utilize properties implied
by the highly parallel structure of the function, and specifically small input-locality.

1.3 Main Results

Let f : {0, 1}n → {0, 1}m be a one-way function with input locality d, and suppose that f
cannot be inverted in time exp(Õ(

√
n · d)) on an ε-fraction of inputs. Our first main result

falls into the category of self-amplification, meaning that the hardness amplification does not
require modifying the underlying function.

Theorem 3.1 (Self-amplification for injective functions): Suppose that f is injective.
Then, f cannot be inverted in time exp(Õ(

√
n · d)) on a (1− ε)-fraction of inputs.

Based on the ideas used in the proof of Theorem 3.1, we prove an analogous theorem for
functions of the “parity with noise” type. Specifically, consider a family, {Mn}, of m(n)× n
matrices with entries in {0, 1} and let p ∈ [0, 1] be a parameter. Define a function family
fn : {0, 1}n → {0, 1}m as fn(x, e) = Mnx+ e (mod 2), where x is a vector chosen uniformly
at random from {0, 1}n, and e ∈ {0, 1}m is a vector of hamming weight at most 2pm chosen
from the following distribution: Each entry of e is chosen independently from a p-biased
distribution, conditioned on e having hamming weight at most 2pm.
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We assume that {fn} is one-way against randomized time exp(Õ(
√
m)) on some ε fraction

of inputs. We also require that the functions fn are 1-1. This happens when Mn is a generator
matrix of a code of minimum distance 4pm. In such a case, the input locality of fn will be
as large as Ω(n). Nevertheless, we can prove the following analogue of Theorem 3.1.

Theorem 4.1 (Self-amplification for parity with noise): Suppose that {fn} is injective.
Then, (under appropriate constraints on parameters) {fn} cannot be inverted in randomized
time exp(Õ(

√
m)) on a (1− ε)-fraction of inputs.

To make our results applicable to a wider class of functions, we also consider a gen-
eralization of Theorem 3.1 to the case where the function we wish to amplify is regular
(every output has the same number of preimages). As before, we assume that the func-
tion f : {0, 1}n → {0, 1}m has input locality d, and that f cannot be inverted in time
exp(Õ(

√
n · d)) on an ε-fraction of inputs. This time, however, we are not able to prove

self-amplification and settle for some increase in output length and input locality, while still
preserving input length.

Theorem 5.1 (Amplification for regular functions): Suppose that f is regular. Then,
there is a function g : {0, 1}n→{0, 1}m+O(n) that is d+O(log3 n) input local and that cannot
be inverted in time exp(Õ(

√
n · d)) on a (1− ε)-fraction of inputs.

A natural candidate for a function with small input locality and for which no sub-
exponential time attacks are known is Goldreich’s one-way function [10]. Given a bipartite
graph G with n vertices on the left, m vertices on the right, and regular right-degree dout
and given a predicate P : {0, 1}dout → {0, 1}, the function fG,P : {0, 1}n → {0, 1}m is defined
by setting the ith bit of fG,P (x) to be equal to P (xΓ(i,1), . . . , xΓ(i,dout)), where Γ(i,j) is the
jth neighbor of right vertex i of G. Goldreich proposed setting m = n and considered dout
ranging from a constant to O(log n). He conjectured that when G is a good expander graph
and P is randomly chosen, with high probability fG,P is one-way when n is sufficiently large.

We consider instantiations of Goldreich’s functions with a certain class of balanced pred-
icates, which we call dout-parity-blowup predicates, and assume that G is chosen at random.

Theorem 6.3 (Amplification for Goldreich’s function): For at least half the graphs
G, if fG,P is hard to invert by circuits of size exp(Õ(

√
n)) on an ε-fraction of inputs, then

fG,P is hard to invert by circuits of size exp(Õ(
√
n)) on a (1− ε)-fraction of inputs.

By observing that parity-blowup predicates can be represented by constant degree poly-
nomials over F2 we can apply the randomized encodings of AIK [3], and obtain a function
with constant output locality and slightly longer input and output length.

Finally, we state a result that applies in the setting where dout is constant and m ≥ Dn,
where D = D(dout) is a sufficiently large constant. Invoking a recent result of Bogdanov and
Qiao [7], we prove that for any P and with high probability over the choice of G if fG,P is
hard to invert on an ε fraction of inputs in time exp(Õ(

√
n)), then fG,P is hard to invert on

a 1− ε fraction of inputs in time exp(Õ(
√
n)).
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1.4 Applicability

Generally speaking, our results are not applicable to functions that are obtained via the
randomized encodings of AIK. This is because these encodings typically incur at least a
quadratic blow up in the input size. Thus, even if the original function is exponentially hard
to invert, we cannot hope to prove that the resulting function is more than exp(O(

√
n)) hard

to invert (at least not based on the hardness of the original function).
It is conceivable that in some specific cases the randomized encodings can be performed in

a way that does not significantly increase the input length of the original function. However,
even if such cases exist, we are currently not aware of any natural candidate one-way function
that would potentially satisfy Theorem 3.1’s hypothesis. While AIK give several injective
functions with constant output locality, none of these seems to have small input locality, and
moreover they are all known to be invertible in time less than exp(Õ(

√
n)) (e.g., ones that are

based on the hardness of factoring and of finding discrete-logarithms). Other, presumably
harder to invert, candidates are not known to be injective (though they may be regular,
making Theorem 5.1 applicable).

Nevertheless, we feel that Theorem 3.1 is worth stating and proving. First of all, the fact
that we could not think of any appropriate example does not mean that such does not exist.
Secondly, the proof of the theorem contains the core ideas behind our reductions, and gives
us the opportunity to present them without any irrelevant complications. Finally, and most
importantly, using the main ideas of the theorem, we are able to prove an analogous result
for functions of the ”parity with noise” type, which are generally not known to be invertible
in less than exp(O(n/ log n)) time [6].

As we mentioned above, there is no known sub-exponential time algorithm that succeeds
in inverting Goldreich’s function on a non-negligible fraction of inputs. Applebaum, Barak,
and Wigderson [2] prove that, when based on d-parity blowup predicates, the output of
Goldreich’s function is pseudorandom against linear functions, low-degree polynomials, and
constant-depth circuits. In light of this, it currently seems reasonable to conjecture that no
algorithm can invert such variants of the function on a small ε = ε(n) fraction of inputs in
time exp(Õ(

√
n · d)). Under this assumption, we obtain a function with poly-logarithmic

input locality and constant output locality that cannot be inverted by algorithms with com-
parable running time on a significantly larger, (1− ε), fraction of inputs.

Even though not stated explicitly in Section 1.3, our reductions offer a concrete tradeoff
between the running time of the reduction and the error ε = ε(n) we are able to amplify
from. The actual overhead incurred by the reduction is exp(O(

√
n · log(1/ε)·d·log n)). Thus,

assuming that the original function is hard to invert in roughly this time, we can amplify
starting from errors as small as say ε(n) = 2−n

O(1)
. Note that previous amplification methods

are not applicable for such ranges of parameters, even if we assume sub-exponential hardness.
This is because the input lengths of the functions resulting from their transformations grows
proportionally to Ω̃(1/ε).
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1.5 Ideas and Techniques

Our self-amplification result is based on the following simple idea. Suppose f is a 1-1 function
with input locality d and x and x′ are two inputs that differ in one coordinate. Suppose we
can invert f(x). Then with a little bit more work we can invert f(x′): By input locality,
f(x) and f(x′) can differ in at most d coordinates. We change d coordinates of f(x′) until
we find f(x), recover x, and change x in one coordinate to recover x′.

By repeating this argument r times, we can invert f(x′) where x and x′ are within distance
r using O(ndr) invocations to the original inverter. So if we can invert f at x, we can also
invert f at any x′ within distance r of x. Therefore, assuming f is easy to invert on some
set that covers an ε-fraction of {0, 1}n, we can also invert f at any input within distance r
of this set. By setting r = O(

√
n), we obtain Theorem 3.1, the self-amplification result for

1-1 functions.

Amplifying regular functions. The assumption that f is 1-1 is important in this ar-
gument. If f was not 1-1, the inverter could return some other preimage which is very
far from x and therefore also far from x′. In Theorem 5.1 we show that if the function
f : {0, 1}n → {0, 1}m is not 1-1 but regular (i.e. K-to-1 for some K), then there exists a new
function f ′ : {0, 1}n → {0, 1}m′ , m′ = m+O(n) such that if f is hard on a small fraction of
inputs, then f ′ is hard on almost all of its inputs.

The transformation from f to f ′ effectively isolates inputs by applying an appropriate
hash function. Hashing is a standard way to reduce a regular function to a 1-1 function [15,
14]. However, applying a pairwise-independent hash increases input locality by Ω(logK) (see
Section 5.1) and makes Theorem 3.1 inapplicable when K is large. In Lemma 5.3 we describe
a new construction of a hash function which increases input locality only by O((log n)3) and
maps most preimages of f to unique values. Combining this hash with Theorem 3.1, we
obtain Theorem 5.1, our amplification result for regular input-local functions.

Parity with noise. In Section 4 we apply our ideas to show self-amplification for functions
of the parity with noise type. Although these functions do not have low-input locality, we
are able to apply our techniques. The reason is that these functions consists of two parts:
A linear component, which is randomly self reducible, and the noise component, which is
input-local. By combining an application of Theorem 3.1 to the noise component with a
random self-reduction on the linear component, we prove Theorem 4.1.

Goldreich’s function. As we explain in Section 6, Goldreich’s function is unlikely to be
1-1 (except in special cases which are easy to invert), so Theorem 3.1 does not apply directly.
However, we show that when m/n is a sufficiently large constant, if f(x1) = f(x2), then x1

and x2 must be substantially correlated. Assuming f can be inverted on an ε-fraction of
inputs, using our self-reduction from Theorem 3.1, for most x′ we can invert f(x) at some x
that is close to x′. The inverse we obtain may not be equal to x, but it will be substantially
correlated to x′. Using a result of Bogdanov and Qiao [7], we then recover an inverse for f(x′).

Our second application concerns functions f : {0, 1}n → {0, 1}m where m = n, but the
degree is O(log n) and the predicate that f is based on is a “parity blowup” predicate (see
Section 6). We prove that such functions are likely to be at most K-to-1 for some constant
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K. We obtain a self-amplification for this function by a simple extension of Theorem 3.1.
Finally, using the randomized encodings of Applebaum et al. [3], we can transform f into
a function with constant output locality at a polylogarithmic cost in the input and output
length.

1.6 Open Questions

We believe it is interesting to investigate if our methods apply to a wider class of candidate
one-way functions. In Section 6 we show that our amplification methods apply to variants
of Goldreich’s function where either (1) the degree is constant but the output to input
length ratio is sufficiently large, or (2) the function is length-preserving, but the degree is
logarithmic (so the function is not output-local) and the predicate is of a special form.

It would be interesting to investigate the range of parameters where the function is length-
preserving and the degree is constant. We conjecture that when the predicate is balanced,
such functions are “almost 2cn-to-1” for some constant c, in the sense that for most x, f(x)
has 2cn±o(n) preimages. If this was the case, we could apply Theorem 5.1 (and Corollary 5.2)
to obtain very hard to invert functions with better locality parameters.

2 Definitions

Let f : {0, 1}n → {0, 1}m be a function. We say that the ith output f(x)i depends on
the jth input xj if there exists a setting of the inputs x1, . . . , xj−1, xj+1, . . . , xn such that
f(x1, . . . , xj−1, 0, xj+1, . . . , xn)i 6= f(x1, . . . , xj−1, 1, xj+1, . . . , xn)i. We define the degree of
the jth input to be the number of outputs that depend on the jth input. We say f has input
locality d if the degree of every input is at most d. We define the degree of an output as the
number of inputs it depends on and the output locality as the maximum degree of an output.

We say that f is K-to-1 if for every x ∈ {0, 1}n, there exist exactly K inputs x′ ∈ {0, 1}n
such that f(x′) = f(x). We say f is regular if it is K-to-1 for some K. We say f is at most
K-to-1 (resp., at least K-to-1) if for every x there are at most K (resp., at least K) x′ such
that f(x′) = f(x). We say f is ε-close to K-to-1 if for at least a (1−ε) fraction of the inputs
x ∈ {0, 1}n, there exist exactly K inputs x′ ∈ {0, 1}n such that f(x′) = f(x).

In this work we consider both uniform and non-uniform constructions of one-way func-
tions. The security of such functions can be defined against deterministic, randomized, and
non-uniform inverters. We do not attempt to state our results in the most general setting.
Instead, we use the definition that is most natural for the proof, in order to avoid distract-
ing technical issues. For our purposes, it will be sufficient to define non-uniform one-way
functions against non-uniform adversaries and uniform one-way functions against uniform
(possibly randomized) adversaries.

In the non-uniform setting, we say f : {0, 1}n → {0, 1}m is invertible by circuit size s on
an α-fraction of inputs if there exists a circuit C of size at most s such that f(C(f(x))) = f(x)
for at least α · 2n inputs x ∈ {0, 1}n.
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In the uniform setting, a function family f = {fn : {0, 1}n → {0, 1}m(n)} is invertible in
(randomized) time t(n) on an α(n)-fraction of inputs if there exists a (randomized) algorithm
A that runs in time t(n) such that fn(A(1n, fn(x))) = fn(x) for at most an α(n)·2n fraction of
inputs x ∈ {0, 1}n (and with probability at most 1/2 over the coin tosses of A) for infinitely
many n. (To simplify notation, we will omit the length parameter 1n as an input to the
inverter in our proofs.)

3 Self-amplification for 1-1 functions

Let f : {0, 1}n → {0, 1}m be any 1-1 function, and let dj be the degree of the jth input. Set
∆ =

∑n
j=1 d

2
j .

Theorem 3.1. Let f = {fn : {0, 1}n → {0, 1}m(n)} be a 1-1 function family. Suppose f can
be inverted in time exp(O(

√
r∆ log n)) on a e−r-fraction of inputs (r = r(n)). Then f can

be inverted in time exp(O(
√
r∆ log n)) on a (1− e−r)-fraction of inputs.1

When f is a 1-1 function with input locality d, we get that if f is one-way against time
exp(O(

√
rn · d log n)) for a e−r-fraction of inputs, then the same function is also one-way for

a (1− e−r)-fraction of inputs.
We prove the theorem for deterministic time inverters; the extension to randomized time

inverters is straightforward.
The proof is based on the following idea. For simplicity let us consider the case where the

degree of every input is at most d. Assume that f can be inverted in time exp(O(
√
r∆ log n))

on an e−r-fraction of inputs and let S ′ be the set of inputs on which this inversion algorithm
succeeds. Let us consider all inputs x that are within hamming distance

√
2rn from S ′. By a

standard probabilistic argument (Lemma 3.2, based on Theorem 7.5.3 in [1]) it follows that
at least 1−e−r fraction of inputs x have this property. Now if x and x′ ∈ S ′ differ in at most√

2rn coordinates, then y = f(x) and y′ = f(x′) will differ in at most
√

2rnd coordinates.
Therefore we can invert f at y = f(x) by flipping the given set of

√
2rnd coordinates on

which y and y′ differ, inverting f at y′ to obtain x′, and then moving back from x′ to x by
changing at most

√
2rn coordinates.

We first state and prove the probabilistic inequality which is the technical heart of our
argument.

Lemma 3.2. Consider the space {0, 1}n with the p-biased distribution (i.e., each coordinate
takes value 1 independently at random with probability p) for some p ∈ [0, 1]. Let X ⊆ {0, 1}n
be any set of measure e−r and let d1, . . . , dn be positive numbers. Let

Z =
{
z :
∑

j∈[n] : xj 6=zj
dj ≤

√
2r∆ for some x in X

}
.

where ∆ =
∑n

i=1 d
2
i . Then Z has measure at least 1− e−r.

1Usually, hardness amplification results are stated in terms of two parameters, the initial hardness ε and
the “derived hardness” (1− δ). Since the complexity of our inverter is dictated by the minimum of ε and δ,
without loss of generality we state our results for the special case ε = δ = e−r.
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To prove Theorem 3.1, the special case where all dj equal 1 and p = 1/2 suffices. We will
need the more general form for later applications.

Proof. For z in {0, 1}n equipped with the p-biased distribution, let

d(z) = minx∈S
∑

j∈[n] : xj 6=zj
dj.

We can think of d(z) as the `1 distance between z and the set X, where the distance in
coordinate j is scaled by dj. As we expose the coordinates of z1, z2, . . . , zn one by one, the
sequence E[d(z)],E[d(z) | z1], . . . ,E[d(z) | z1, . . . , zn] defines a martingale with∣∣E[d(z) | z1, . . . , zj]− E[d(z) | z1, . . . , zj−1]

∣∣ ≤ dj

for every j and z1, . . . , zj, since changing zj from 0 to 1 can change d(z) by at most dj. By
Azuma’s inequality (see for instance [9, Theorem 5.1]), for every t > 0

Pr[d(z) ≤ E[d(z)]− t] < e−2t2/∆ and Pr[d(z) ≥ E[d(z)] + t] < e−2t2/∆

Setting t = E[d(z)] in the first inequality we get e−r = Pr[d(z) = 0] < e−2t2/∆, and therefore
E[d(z)] <

√
r∆/2. Setting t =

√
r∆/2 in the second inequality we conclude that

Pr[z 6∈ Z] = Pr[d(z) ≥
√

2r∆] ≤ Pr[d(z) ≥ E[d(z)] +
√
r∆/2] < e−r.

Alternatively, Lemma 3.2 can be easily derived from Talagrand’s inequality.

Proof of Theorem 3.1. Let ε = e−r. We prove the contrapositive. Assume A inverts fn on an
ε-fraction of inputs in time exp(O(

√
r∆ logm)). We construct an algorithm B that inverts

fn on a (1 − ε)-fraction of inputs as follows: On input y, perform the following procedure:
For every set of at most

√
2r∆ coordinates of [m], flip the bits of y in these coordinates to

obtain y′ and compute x′ = A(y′). If any one of these y′ satisfies fn(x′) = y′, take this y′

and flip all possible sets of
√

2r∆ bits of x′ to obtain x. If fn(x) = y, output x. The running
time of B is(

m√
2r∆

)
· (running time of A) +

(
n√
2r∆

)
· (eval. time of fn) = exp(O(

√
r∆ log n)).

We now argue that B inverts f on a (1− ε)-fraction of inputs. Let S ′ be the set of those
x′ such that A(f(x′)) = x′. For each j ∈ [n], let dj denote the degree of the jth input. Now
let

S =
{
x :
∑

j∈[n] : xj 6=x′j
dj ≤

√
2r∆ for some x′ in S ′

}
.

If x′ is in S ′ and x is its closest element in S, then f(x) and f(x′) differ in at most
√

2r∆
coordinates. Moreover, x and x′ can also differ in at most this many coordinates. It follows
that if x is in S, then B successfully inverts f(x′). By Lemma 3.2, S contains at least a 1−ε
fraction of inputs.
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Remark 1. The proof of Theorem 3.1 easily extends to non-injective families, as long
as the preimage size is not too large: If f is at most er-to-one and can be inverted in
time exp(O(

√
r∆ log n)) on an e−r fraction of inputs, then it can be inverted in time

exp(O(
√
r∆ log n)) on an 1− e−r fraction of inputs.

Remark 2. Theorem 3.1 and Remark 1 also generalize to function families that are e−r/2-
close to 1-1. A non-uniform version, where “running time” is replaced by “circuit size”, is
also straightforward. We will use these extensions in our applications in Sections 5 and 6.

Theorem 3.1 gives a non-trivial result only when the sum of the squares of the input
degrees D is at most o(n2/ log n). This assumption could be violated even if there is a single
input of f whose degree is Ω(n). It is natural to ask if the self-amplification argument could
be modified so as to allow for a small number of inputs that have unusually large degree.

We argue that this is unlikely to be the case: In Appendix A, we give an example showing
that if non-trivial self-amplification can be achieved for functions where all but one of their
inputs have degree at most d + 1, then every function of input locality d has a non-trivial
inversion algorithm.

4 Linear functions with noise

We now state a self-amplification result for functions of the “parity with noise” type. We
consider the following type of function. Let {Mn} be a family of m(n) by n matrices with
entries in {0, 1} and p ∈ [0, 1] be a parameter. We define the function family fn : {0, 1}n →
{0, 1}m(n) as follows:

fn(x, e) = Mnx+ e

where x is a vector chosen uniformly at random from {0, 1}n, and e ∈ {0, 1}m is a vector
of hamming weight at most 2pm chosen from the following distribution: Each entry of e is
chosen independently from a p-biased distribution, conditioned on e having hamming weight
at most 2pm. The matrix multiplication and vector addition are performed modulo two.

We will consider functions fn that are 1-1. This happens when Mn is a generator matrix
of a code of minimum distance 4pm. In such a case, the input locality of fn will be as large as
Ω(n). Nevertheless, we can prove an analogue of Theorem 3.1 in this setting. One difference
is that our self-amplification argument here is randomized, so we require that the function
family is hard to invert even for randomized adversaries.

Theorem 4.1. Suppose the function family {fn : fn(x, e) = Mnx+e} is 1-1 and r < pm/10.
If {fn} can be inverted in randomized time exp(O(

√
rm logm)) on a e−r fraction of inputs,

then it can be inverted in randomized time exp(O(
√
rm logm)) on a 1−e−r fraction of inputs.

The idea of the proof is to use the random self-reducibility of fn(x, e) in terms of the first
parameter x. The success of the inverter on an input (x, e) is essentially independent of x: If
for a fixed e the inverter succeeds on a non-negligible fraction of x, by re-randomizing it can
be made to succeed on almost all x. Once x is taken out of consideration, fn(x, e) becomes
an input-local function of e and we can follow the lines of the proof of Theorem 3.1.
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Proof. Let ε = e−r. Let A be an algorithm that inverts {fn} in time exp(O(
√
rm logm)) on

a 1− e−r fraction of inputs with probability 1/2. Without loss of generality, we will assume
that when A(y) fails to output an inverse for y, it outputs the special symbol ⊥. Consider
the following algorithm B for inverting fn:

1 On input y ∈ {0, 1}m(n),

2 For all y′ ∈ {0, 1}m(n) that are within hamming distance
√

2(r + 3)m from y:
3 Repeat the following 8/ε times:
4 Choose a random z ∈ {0, 1}n.
5 If A(y′ +Mnz) = (u, e′) 6= ⊥ and e′ + (y′ + y) has hamming weight

at most 2pm, output (u+ z, e′ + (y′ + y)).
6 Otherwise, output ⊥.

Algorithm B makes O(1/ε) ·
(

m
O(
√
rm)

)
calls to A, from where the running time of B

follows. We now argue that B inverts fn on a 1− ε fraction of inputs with probability 1/2.
For notational convenience we define the following distributions on {0, 1}m. Let R denote
the distribution where each entry is chosen independently at random with probability p, and
let Rc denote the distribution R conditioned on having hamming weight at most 2pm. We
use U to denote the uniform distribution on {0, 1}n.

Let S be the set of pairs (x, e′), where x ∈ {0, 1}n and e′ ∈ {0, 1}m is of hamming
weight at most 2pm, such that A(Mnx + e′) = (x, e′) with probability at least 1/2 over the
randomness of A. By assumption, we have that

Prx∼U ,e′∼Rc [(x, e
′) ∈ S] ≥ ε.

By Markov’s inequality,

Pre′∼Rc

[
Prx∼U [(x, e′) ∈ S] ≥ ε

2

]
≥ ε

2
.

By conditioning, Pre′∼R[E] ≥ Pre′∼Rc [E] · Pre′∼R[wt(e′) ≤ 2pm] for any event E and so

Pre′∼R

[
Prx∼U [(x, e′) ∈ S] ≥ ε

2

]
≥ ε

2
· Pre′∼R[wt(e′) ≤ 2pm] ≥ ε

2
· (1− e−Ω(pm)) ≥ ε

4
,

where the second to last inequality follows by a Chernoff bound for sufficiently large n. We
will say e′ is good if Prx∼U [(x, e′) ∈ S] ≥ ε/2 and the weight of e′ is at most 1.5pm. Using
the Chernoff bound and the assumption r < pm/10, we have that

Pre′∼R[e′ is good] ≥ ε

8
.

We will now argue the following two claims:

1. If e′ is good and y′ = Mnx+ e′, then PrA,z[A(y′ +Mnz) = (x+ z, e′)] ≥ ε/4, and

2. With probability 1−ε, over a choice of e ∼ Rc, e is within hamming distance O(
√
rm)

of some good e′.

11



To put the two parts together, by the second claim a random output y is of the form x+ e,
where e is within hamming distance O(

√
rm) of some good e′. In this case, step 2 of the

algorithm will find y′ = x + e′. By the first claim, a run of the loop 4-5 will succeed in
producing an inverse for A(y′ +Mnz) with probability at least ε/4. Repeating the loop 8/ε
times increases the success probability to 1/2. Since fn is 1-1, if A produces an inverse for
y′ + Mnz, this inverse must be (u, e′) = (x + z, e′). Since y′ + Mnz = Mnu + e′, it follows
that y = Mn(u + z) + e′ + (y′ + y), so step 5 will produce a correct inverse for y, as long
as e′ + (y′ + y) has hamming weight at most 2pm. This follows because e is good (so it has
hamming weight at most 1.5pm) and y′ is within distance O(

√
rm) from y.

The first claim follows by a self-reduction argument. Suppose e′ is good. Since for any
uniformly random z and fixed x ∈ {0, 1}n, x + z is also uniformly random, (x + z, e′) is
in S with probability at least ε/2 over a uniformly random choice of z. It follows that
A(Mn(x + z) + e′) = (x + z, e′) with probability at least ε/2 over the choice of z and 1/2
over the randomness of A, so with probability at least ε/4 altogether.

It remains to prove the second claim. Let S ′ be the set of those e′ that are good. Then
Pre′∼R[e′ ∈ S ′] ≥ ε/8. By Lemma 3.2, it follows that

Pre∼R[e is within hamming distance
√

2(r + 3)m from S ′] ≥ 1− ε/8.

Passing to the distribution Rc, we have that

Pre∼Rc [e is within hamming distance
√

2(r + 3)m from S ′]

≥ 1− ε/8− Pre∼R[wt(e) > 2pm] ≥ 1− ε

by a Chernoff bound since r < pm/10, when n is sufficiently large.

5 Hardness amplification for regular functions

Theorem 3.1 shows how to achieve self-amplification for functions with small input locality
that are 1-1. The assumption that the function is 1-1 was crucial in the argument for the
following reason. Suppose f is a 1-1 function with input locality d and x and x′ are two
inputs that differ in exactly one coordinate. Suppose we can invert f(x). Then with a little
bit more work we can invert f(x′): Since f(x) and f(x′) can differ in at most d coordinates,
we change d coordinates of f(x′) until we find f(x), recover x, and move back from x to x′.

An important point in this argument is that because f is 1-1, the inversion algorithm is
guaranteed to return x and not some other preimage for f(x). If f were not 1-1, the inverter
could return some other preimage which is very far from x and therefore also far from x′.
So in general we do not know how to achieve self-amplification for input-local functions that
are not 1-1.

We now argue that if f : {0, 1}n → {0, 1}m is not 1-1 but regular, then there exists a new
function f ′ : {0, 1}n → {0, 1}m′ , m′ = m+O(n) such that if f is hard on a small fraction of
inputs, then f ′ is hard on almost all of its inputs. Moreover, the input locality of f ′ is not
much larger than the input locality of f .

To simplify notation, let α(d, r, log n) = (d+ r + (log n)3) · (log n).
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Theorem 5.1. For every K-to-1 function f : {0, 1}n → {0, 1}m with input locality d there
exists a function f ′ : {0, 1}n → {0, 1}m+log2 K+O(r), with input locality d + O(r + (log n)3) so
that if f ′ can be inverted by a circuit of size exp(O(

√
rn · α(d, r, log n))) on a e−r fraction

of inputs, then f can be inverted by a circuit of size exp(O(
√
rn · α(d, r, log n)) on a 1− e−r

fraction of inputs. Moreover, if f is computable by a circuit of size s, then f ′ is computable
by a circuit of size s+O(n(log n)3).

The construction of f ′ from f is non-uniform. In fact, our proof provides a randomized
construction but for simplicity we present the argument in the non-uniform setting. We
follow the standard approach of turning a general function into an almost 1-1 function via
hashing [15, 14]. The function f ′ will have the form f ′(x) = (f(x), h(x)), where h is a suitably
chosen hash function that does not increase input locality by much. If f is regular, then f ′

will be almost 1-1 in the sense that for most x, f(x) has a unique preimage. Moreover, if f
has input locality d, then f ′ will have input locality d + O(r + (log n)3). We then amplify
the hardness of f using Theorem 3.1 (and Remark 2).

The construction of f ′ can be combined with the randomized encodings of Applebaum
et al. [3, 4] to obtain a hardness amplification result that preserves output locality, at the
expense of increasing the input length by logarithmic factors.

Corollary 5.2. For every regular function f : {0, 1}n → {0, 1}m with input locality din
and output locality dout ≥ 3 there exists a function f ′ : {0, 1}n′ → {0, 1}m′, where n′ =
O(n(log n)3) and m′ = m + O(n(log n)3) with output locality dout so that if f ′ can be in-
verted by circuits of size exp(O(

√
rn ·α(din, r, log n))) on a e−r fraction of inputs, then f can

be inverted by circuits of size exp(O(
√
rn · α(din, r, log n))) on a 1 − e−r fraction of inputs.

Moreover, if f is computable by a circuit of size s, then f ′ is computable by a circuit of size
s+O(n(log n)3).

We construct and analyze the hash function family with small input locality in Section 5.1
and prove Theorem 5.1 and Corollary 5.2 in Section 5.2.

5.1 A hash with small input locality

A standard way to reduce a K-to-1 one-way function to a 1-1 one-way function is by hashing.
Namely, we would like to define f ′(x) = (f(x), h(x)), where h : {0, 1}n → {0, 1}log2 K+O(1) is a
pairwise independent hash function. However, known constructions of pairwise independent
hash functions have input locality as large as Ω(log2K). This is in fact necessary: Mansour
et al. [16] showed that pairwise independent hash functions have average sensitivity Ω(n).
By averaging, it follows that the input locality of such functions must be Ω(log2K).

We need to construct a function f ′ from f which preserves not only the hardness of f
but also its small input locality. Our function f ′ will also have the form f ′(x) = (f(x), h(x)),
where h is a suitably chosen hash function. However, our hash function h will only be
approximately pairwise independent, chosen in a manner to have small input locality.

We note that Applebaum et al. [4] (Appendix C in the journal version) give a different
construction of an “almost pairwise-independent” hash function. However, the almost pair-
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wise independence property they establish for their construction, while sufficient for their
application, appears too weak to derive Lemma 5.3.

Lemma 5.3. Suppose f : {0, 1}n → {0, 1}m is at most K-to-1, where 2k−1 ≤ K < 2k. Then
there exists a function h : {0, 1}n → {0, 1}k+3r+3 such that the function f ′(x) = (f(x), h(x))
is e−r/2-close to 1-1. Moreover, h is a linear function over Fn

2 with input locality O(r) +
min{k,O((log n)3)}.

To explain our construction, fix some x ∈ {0, 1}n and consider the set S of its siblings x′

such that f(x) = f(x′). Now look at the one-bit linear hash h(x) = a · x, where a ∈ {0, 1}n
and a · x is the inner product of a and x modulo 2. For a random a′, in expectation half of
the x′ in S satisfy h(x′) = 0 and half satisfy h(x′) = 1. If a was uniformly random, pairwise
independence and Chebyshev’s inequality would give that a roughly half-half split occurs
with high probability, and so a random one-bit hash is very likely to halve the size of S. So
after about k independent applications of the one-bit hash, x is likely to be isolated from all
its siblings.

The resulting hash function is not input local because a uniformly random a is likely to
be dense. We would like to choose a to be a sparse random vector instead. In such a case
the pairs (h(x1), h(x2)) where x1, x2 ∈ S will not be independent anymore. However, if S is
sufficiently large and x′1, x

′
2 are “typical”, then they will differ in many coordinates so even

for a random sparse a the values a · x1 and a · x2 will have low correlation, which turns out
sufficient for the application of Chebyshev’s inequality.

A technical side note: As the number of siblings x′ of x shrinks in every application of
the one-bit hash, we gradually increase the density of a as we apply more one-bit hashes.
The cost of this increase in density is a factor of O(log n) in the input locality of h.

We now give details of the probabilistic construction of h and prove Lemma 5.3. Assume
that f is at most K-to-1, where 2k−1 ≤ K < 2k.

Construction of h. The function h has the form h(x) = (ha(x), hb(x)) where

ha(x) = (ak · x, ak−1 · x, . . . , ak0+1 · x)

hb(x) = (b1 · x, b2 · x, . . . , b3r+k0+3 · x).

and k0 = min{8(log n)2, k}. (In particular, if k < 8(log n)2, h only consists of the hb part.)
To generate a random h, we choose the vectors ai, bi ∈ {0, 1}n from the following dis-

tributions: Each ai is chosen independently at random from the pi-biased distribution over
{0, 1}n, where pi = 4(log n)2/i < 1/2. Each bi is chosen independently at random from the
uniform distribution over {0, 1}n.

We now argue that if f is regular, then with probability at least 1/2 over the choice of
h, f ′ is regular over all but an e−r/2 fraction of its inputs.

The proof will have two stages. In the first stage, we argue that for all but an e−r/8
fraction of inputs x, there are at most 2r+k0 inputs x′ such that (f(x), ha(x)) = (f(x′), ha(x

′)).
In the second stage, we finish the proof by showing that hb hashes all but an e−r/8 fraction
of those inputs x uniquely.
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The first stage. If k0 = k, the conclusion of the first stage is vacuous, so let us assume
that k0 < k. Let us fix an input x and let S = {x′ : f(x) = f(x′)}. Without loss of generality,
we may assume that 2k−1 ≤ |S| < 2k. (If |S| is smaller, we disregard the effect of the first
few hashes in ha.) We consider the following sequence of random sets defined recursively:
Sk = S, Ti = {x′ ∈ Si : ai · x′ = ai · x)} and

Si−1 =

{
Ti, if (1− 1/n)|Si|/2 ≤ |Ti−1| ≤ (1 + 1/n)|Si|/2
Si, otherwise.

Here is the intuition for this definition: We want to think of the ith hash ai as “successful”
if it decreases the size of siblings of x by roughly a factor of two (not much more and not
much less). If all but r of the hashes are successful, then the size of S0 can not be much
more than 2r, and so x will not have more than 2r siblings that map to (f(x), ha(x)). It is
sufficient to show that the probability that more than r of the hashes fail to be successful is
quite small.

Notice that by definition of the sets Si, it must be that |Si| ≥ (1− 1/n)k−i · 2i−1 ≥ 2i−3.
So we are left with the following question: Given a set S of size at least 2i−3, how likely is
it to be split successfully at stage i?

Lemma 5.4. Assume |R| ≥ 2i−3. Let a be chosen from the p-biased distribution on {0, 1}n,
where p = 4(log n)2/i < 1/2. Then for n sufficiently large and any ε > 0,

Pr
[
#{y ∈ R : a · y = 0} 6∈ (1± ε)|R|/2

]
≤ 1

n4ε2
.

Applying this lemma with R = Si and ε = 1/n, we have that each hash is successful with
probability at least 1 − 1/n2, and the events are independent of one another. By a union
bound, the probability of having more than r unsuccessful splits is at most

(
n
r

)
· (1/n2)r ≤

n−r < e−r/8. So for any x ∈ {0, 1}n,

Pr
[
|Sk0| ≥ 2k0+r

]
≤ e−r/8.

Proof of Lemma 5.4. Let X =
∑

y∈R(−1)a·y+a′ , where a′ is a uniformly random bit. Notice
that X counts the imbalance between those y ∈ R that are hashed to 0 and 1, respectively.
By linearity of expectation and uniformity of a′, E[X] = 0. We will upper bound the second
moment of X and use Chebyshev’s inequality to argue concentration.

E[X2] =
∑
y,z∈R

E[(−1)a·(y+z)]

≤ |R|maxz

∑
y∈R

E[(−1)a·(y+z)]

= |R|maxz

∑
y∈Rz

E[(−1)a·y]

= |R|maxz

∑
y∈Rz

(1− 2p)|y|
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Here, Rz = {y + z : y ∈ R}, and |y| is the hamming weight of y. By Hölder’s inequality

∑
y∈Rz

(1−2p)|y| =
∑

y∈{0,1}n
1Rz(y)·(1−2p)|y| ≤

( ∑
y∈{0,1}n

1Rz(y)
1

1−1/K

)1−1/K( ∑
y∈{0,1}n

(1−2p)|y|K
)1/K

for every K ≥ 1, where 1Rz is the indicator for Rz. The last expression simplifies to give

∑
y∈Rz

(1− 2p)|y| ≤ |R| ·
(

(1 + (1− 2p)K)n

|R|

)1/K

and so

E[X2] ≤ |R|2 ·
(

(1 + (1− 2p)K)n

|R|

)1/K

Let K = (lnn)/2p. Then

E[X2] ≤ |R|2 ·
(

(1 + 1/n)n

|R|

)1/K

≤ |R|2 ·
( e

|R|

)1/K

≤ |R|
2

n4
,

because p = 4(log n)2/i and |R| ≥ 2i−3. By Chebyshev’s inequality, it follows that

Pr
[
#{y ∈ R : a · y + b = 0} 6∈ (1± ε)|R|/2

]
= Pr

[
|X| > ε|R|

]
≤ 1/n4ε2.

The second stage and conclusion. Now fix an x such that |Sk0| < 2k0+r. We now argue
that by the end of the second stage, x is very likely to have a unique hash:

Pr[∃x′ ∈ Sk0 − {x} : h(x′) = h(x)] ≤
∑

x′∈Sk0
−{x}

Pr[h(x′) = h(x)] < e−r/8

where the probability is over the choice of bi, 1 ≤ i ≤ 3r + k0 + 3. Putting the analysis of
both stages together, it follows that by the end of stage 2, for any specific x,

Prh[∃x′ : f ′(x′) = f ′(x)] ≤ e−r/4.

Averaging over x and applying Markov’s inequality, we get that for at least half the functions
h,

Prx[∃x′ : f ′(x′) = f ′(x)] ≤ e−r/2.

Now let us calculate the locality of a typical function h. For any fixed input bit, say x1,
let Ya and Yb be the number of occurrences of x1 in ha and hb respectively. Then E[Ya] =∑k

i=k0
4(log n)2/i ≤ 4(log n)3 and E[Yb] = (3r + k0 + 3)/2, so E[Ya + Yb] = O((log n)3 + r).

By Chernoff bounds and a union bound, we get that with probability at least 3/4, no input
bit has more than O((log n)3 + r) occurrences in h.

Therefore, there exists a hash function h that has input locality O((log n)3 + r) and such
that f ′ is 1-1 on all but e−r/2 fraction of its inputs.

16



5.2 Proof of Theorem 5.1

We now prove Theorem 5.1. To do so, first we show that the transformation from f to f ′ is
hardness-preserving in the following sense: If f is hard to invert on an e−r-fraction of inputs,
then f ′ is hard to invert on an Ω(e−r)-fraction of inputs. Since f ′ is almost 1-1, we can apply
self-amplification to conclude that f ′ is in fact hard on a 1− e−r fraction of inputs.

Claim 1. Assume f : {0, 1}n → {0, 1}m is K-to-1 where 2k−1 ≤ K < 2k. Let f ′ and h be as
in Lemma 5.3. Assume that f ′ can be inverted on an (1 − e−r/400)-fraction of inputs by a
circuit of size s. Then f can be inverted on a (1− e−r)-fraction of inputs by a circuit of size
O(s · r · 23r).

Before proving Claim 1, let us show how it implies Theorem 5.1 and Corollary 5.2.

Proof of Theorem 5.1. Suppose f : {0, 1}n → {0, 1}m is a regular function with input locality
d which is hard against circuits of size exp(O(

√
rn ·α(d, r, log n))) on a e−r-fraction of inputs.

Let f ′(x) = (f(x), h(x)), where h is chosen as in Lemma 5.3. It is easy to check that f ′ has
the desired input locality and circuit complexity.

Now suppose f ′ can be inverted by a circuit of size exp(O(
√
rn · α(d, r, log n))) on a

e−r fraction of its inputs. By Lemma 5.3, f ′ is e−r/2-close to 1-1. By Theorem 3.1 and
Remark 2, f ′ can be inverted on a (1 − e−r/400)-fraction of inputs by a circuit of size
s = exp(O(

√
rn · α(d, r, log n))). By Claim 1, f can then be inverted on a (1− e−r) fraction

of inputs by circuits of size exp(O(
√
rn · α(d, r, log n))).

Proof of Corollary 5.2. Since h(x) is a linear function, we can apply the randomized encoding
of Applebaum et al. to reduce its output locality at the cost of increasing the input and
output length of f ′. Specifically, we perform the following transformation on f ′ to obtain a
new function f ′′. Suppose the ith output h(x)i has the form

h(x)i = xi1 + xi2 + · · ·+ xiki .

We introduce new inputs ri1, ri2, . . . , ri(ki−1) and replace the output h(x)i by the sequence of
outputs:

(xi1 + ri1, ri1 + xi2 + ri2, . . . , ri(ki−1) + xiki).

It is easy to check that f ′′ has the desired input and output length, and its output locality
is max{dout, 3}.

Applebaum et al. [3, 4] show that if f ′′ can be inverted on an ε-fraction of inputs by
a circuit of size s, then f ′ can be inverted on a Ω(ε)-fraction of inputs by a circuit of size
O(s/ε). Plugging in ε = e−r and s = exp(O(

√
rn ·α(din, r, log n))), the corollary follows.

Proof of Claim 1. Let ε = e−r and let A′ be circuit that inverts f ′ on a (1−ε/400)-fraction of
inputs. We will argue that the following randomized circuit A inverts f on a (1− ε)-fraction
of inputs:
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1 On input y ∈ {0, 1}m(n),
2 Repeat the following O(r · 23r) times:
3 Choose a random z ∈ {0, 1}k+3r+3.
4 If A′(y, z) outputs x such that f ′(x) = (y, z), output x.
5 Otherwise, output ⊥.

We will argue that for at least a 1 − 3ε/4 fraction of images y of f , A(y) returns an
inverse for y with probability at least 1 − ε/4. By an averaging argument, we can fix the
randomness of A so that it finds an inverse for a 1− ε fraction of ys.

Say an output y ∈ {0, 1}m is bad if the number of hash values of preimages of y that A′

inverts successfully is small:

#{t : t = h(x), f(x) = y, and A′(f ′(x)) ∈ f ′−1(f ′(x)) for some x ∈ {0, 1}n} < 2k−6.

We will first argue that if y is not bad, then A(y) returns an inverse for y with probability
1− ε/4. We will then argue that at most a 3ε/4 fraction of the ys are bad.

If y is not bad, then there exist at least 2k−6 choices of z ∈ {0, 1}k+3r+3 such that
f(A′(y, z)) = y. In such a case, A succeeds in finding an inverse for y. The probability of
choosing such a z in one of the repetitions in round 2 is at least 1−(1−2k−6/2k+3r+3)O(r·23r) >
1− ε/4, as desired.

It remains to argue that at most a 3ε/4 fraction of the ys are bad. To argue this, we
cover the bad ys by two sets Y1 and Y2, and argue that |Y1|+ |Y2| ≤ 3

4
ε · (2n/K). We define:

Y1 = {y : #{t : t = h(x) and f(x) = y for some x} < 2k−5}
Y2 = {y : #{t : t = h(x) and A′(f ′(x)) 6∈ f ′−1(f ′(x)) for some x} ≥ 2k−6}.

If y is bad, then y ∈ Y1 ∪ Y2. We now bound the fraction of ys in each one of these sets.
Suppose y ∈ Y1 and consider the set of x such that f(x) = y. There are at least K such

x, where K ≥ 2k−1. On the other hand, these inputs x can take at most 2k−5 values of h(x).
It follows that for at least K − 2k−5 such x, there exists an x′ 6= x such that f(x) = f(x′)
and h(x) = h(x′). Therefore each y ∈ Y1 gives rise to K − 2k−5 ≥ (15/16)K preimages x
such that f(x) = y and f ′(x) = f ′(x′) for some x 6= x′.

It follows that there are at least (15/16)K · |Y1| values of x on which f ′ is not 1-1. By
Lemma 5.3, f ′ is ε/2-close to 1-1. So it must be that |Y1| ≤ 8

15
ε · (2n/K).

Now suppose y ∈ Y2. For every such y, there are at least 2k−6 values of h(x) such that A′

fails to invert f(x). So there must be at least 2k−6 values of x where f(x) = y for which the
inversion fails. It follows that there are at least 2k−6|Y2| values of x for which the inverter
A′ fails. By assumption, the number of such values is at most (ε/400) · 2n. It follows that
|Y2| ≤ 1

5
ε · (2n/K).

We have that |Y1| + |Y2| ≤ 8
15
ε · (2n/K) + 1

5
ε · (2n/K) ≤ 3

4
ε · (2n/K), concluding the

proof.
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6 Goldreich’s function on a random graph

We now consider two applications of our techniques to the candidate one-way function pro-
posed by Goldreich [10]. Given a bipartite graph G with n vertices on the left, m vertices on
the right, and regular right-degree dout and a predicate P : {0, 1}dout → {0, 1}, the function
fG,P from {0, 1}n to {0, 1}m is defined by

fG,P (x)i = the ith bit of f(x) = P (xΓ(i,1), . . . , xΓ(i,dout))

where Γ(i,j) is the jth neighbor of right vertex i of G.
Goldreich [10] considered such constructions for the setting of parameters m = n and dout

ranges from a constant to O(log n). He conjectured that when G is a good expander graph
and P is a randomly chosen predicate, with high probability fG,P is one-way.

Cook et al. [8] showed that when G is random and P is suitably chosen, fG,P is secure
against adversaries that implement myopic algorithms. Bogdanov and Qiao [7] studied a
variant of Goldreich’s function in the setting where G is random, d is constant, and m = Dn,
where D = D(dout) is a sufficiently large constant. They showed that for a large class of
predicates P (those that correlate with one or a pair of their inputs) and for most G, fG,P can
be inverted on most inputs. It is conceivable that fG,P could be one-way for all predicates
P that are not linear and do not belong to the class ruled out by Bogdanov and Qiao.

We establish two results regarding local hardness amplification of Goldreich’s function.
Informally, we show that

1. In the setting where d is constant and m ≥ Dn, where D = D(dout) is a sufficiently
large constant, for any P and with high probability over the choice of G if fG,P can be
inverted on an e−r fraction of inputs in time exp(O(

√
rn · dout · log n)), then it can be

inverted on a 1− e−r fraction of inputs in time exp(O(
√
rn · dout · log n)).

2. When dout = O(log n) and m = n, for a certain class of predicates P and with
high probability over G, if fG,P can be inverted on a e−r fraction of inputs in time
exp(O(

√
rn) log n)), then it can be inverted on a 1 − e−r fraction of inputs in time

exp(O(
√
rn) log n).

Our result applies to all O(log n)-parity-blowup predicates, which we define as follows.
Let Pc : {0, 1}c → {0, 1} be any balanced predicate, where c is some constant. The
dout-parity-blowup of Pc is the predicate P : {0, 1}dout → {0, 1} which is obtained by
replacing each of the variables in Pc by a parity of bdout/cc inputs, where all the
inputs are distinct. Applebaum, Barak, and Wigderson [2] showed that the output of
Goldreich’s function based on such predicates is pseudorandom against linear functions
and constant-depth circuits.

The random graph G is chosen from the following distribution: For each of the m right
vertices of G, choose all of its dout neighbors independently at random among the n left
vertices of G. We will call such graphs (n,m, dout) random graphs.

19



6.1 Self-reducibility for functions with long output

Theorem 6.1. Let D ≥ 2Kdout where K is a sufficiently large constant, and P : {0, 1}dout →
{0, 1} be any predicate. Let G be an (n,m = Dn, dout) random graph. With probability at
least 1 − o(1) over the choice of G, if fG,P can be inverted by circuits of size exp(O(

√
rn ·

Ddout log n)) on an e−r-fraction of inputs, then fG,P can be inverted by circuits of size
exp(O(

√
rn ·Ddout log n)) on a 1− e−r-fraction of inputs.

We prove Theorem 6.1 by an argument similar to the one used in the proof of Theo-
rem 3.1. The principal obstacle to applying Theorem 3.1 here is that with high probability,
the function fG,P is not 1-1. There are several reasons for this. One reason is that fG,P is
likely to have input bits that do not affect the output. A more important reason is that
unless the predicate P is linear, for most inputs x, it is likely that there is a linear number
of coordinates i such that the ith coordinate does appear in the output, but changing the
value of xi does not change the value of fG,P (x).

We show that although fG,P is unlikely 1-1, with high probability every pair of inputs
that map to the same output is highly correlated (or anticorrelated), that is they agree
(or disagree) in value on most of the coordinates. Using the argument from the proof of
Theorem 3.1, we show that if fG,P can be inverted on an ε-fraction on inputs by a circuit of
suitable size, then for a 1− ε fraction of inputs x, it is possible to find an x′ such that x and
x′ are highly correlated. We then use a result of Bogdanov and Qiao [7] which says that for
most inputs x, given x′ that is correlated with x, we can invert fG,P (x).

Claim 2. Assume that D > 3 ·6dout. Let P : {0, 1}dout → {0, 1} be any nonconstant predicate.
Consider the function fG,P : {0, 1}n → {0, 1}m, where m = Dn. With probability 1 − 2−n

over the choice of G, for any pair of inputs x, x′ ∈ {0, 1}n, if fG,P (x) = fG,P (x′), then x
and x′ either agree on at least a 2/3-fraction of coordinates or they disagree on at least a
2/3-fraction of coordinates.

Theorem 6.2 (Bogdanov and Qiao [7]). Let K be a sufficiently large constant and D >
2−Kdout. Let P : {0, 1}dout → {0, 1} be any predicate. Then there is an algorithm I such that
with probability 1 − o(1) over the choice of G, the following holds. Consider the function

fG,P : {0, 1}n → {0, 1}m, where m = Dn. For a 1−2−n·2
−Ω(dout) fraction of assignments x and

any assignment x′ such that x and x′ agree on at least a 5/9 fraction of coordinates, on input
G,P, f(x) and x′, I outputs an inverse for fG,P (x). The running time of I is polynomial in
2d · n.

We will also make use of the following technical claim concerning the degree distribution
in a random graph. For convenience of notation, from now on we set dout = d.

Claim 3. Let G be an (n,m = Dn, d) random graph. Assume Dd > 6. Let di denote the
degree of left vertex i and ∆ = d2

1 + · · ·+ d2
n. Then

Pr[∆ > 4(Dd)2n] <
2

Ddn
.
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The proofs of Claims 2 and 3 are given at the end of this section. We first show how
together with Theorem 6.2 they imply Theorem 6.1.

Proof of Theorem 6.1. If P is a constant predicate, the conclusion holds trivially, so we
assume that P is non-constant. Also, assume that r < 2−Kdn − 2 for a sufficiently large
constant K, for otherwise the result is trivial.

Let G be a graph for which the conclusions of Claim 2, Theorem 6.2 and Claim 3 hold.
This comprises a 1− o(1) fraction of graphs G.

Let A be a circuit that inverts f = fG,P on an e−r-fraction of inputs and let I be the
inverter from Theorem 6.2.

We will argue that the following algorithm B inverts fG,P on a 1− e−r-fraction of inputs:

On input y ∈ {0, 1}m, for any set of at most
√

2(r + 2)∆ coordinates of [m], flip y in those
coordinates to obtain y∗. If A(y∗) produces an inverse x∗, run I on inputs (G,P, y, x∗) and
(G,P, y, x∗). If either run produces an inverse x for y, output x.

Let S ′ be the set of all x′ such that A(f(x′)) returns an inverse x∗ for f(x′) and

S =
{
x :
∑

j∈[n] : x′j 6=xj
dj ≤

√
2(r + 2)∆ for some x′ in S ′

}
.

We will argue that B successfully inverts f(x) when x is in S. By Lemma 3.2, since |S ′| ≥
e−r ·2n, we get that |S| ≥ (1−e−r/2)·2n. Now let x ∈ S be such that I(G,P, f(x), x∗) returns
an inverse for f(x) whenever x and x∗ agree on at least 5n/9 coordinates. By Theorem 6.2,
all but a 2−2Kdn < e−r/2 fraction of inputs x have this property. Consider such an x. By
definition of S, there exists an x′ ∈ S ′ such that

∑
j∈[n] : x′j 6=xj

dj ≤
√

2(r + 2)∆. Take the x′

that is closest to x. Then x and x′ can differ in at most
√

2(r + 2)∆ coordinates. By Claim 2,
either x′ and x∗ or x′ and x∗ must agree on at least 2n/3 of their coordinates. By the triangle
inequality, it follows that x and either x∗ or x∗ differ on at most 2n/3 +

√
2(r + 2)∆ ≤ 4n/9

of their coordinates. Therefore, at least one of I(G,P, f(x), x∗) and I(G,P, f(x), x∗) is an
inverse for f(x).

Proof of Claim 2. Let f = fG,P . Fix x and x′. Let paa′ be the fraction of coordinates i ∈ [n]
such that xi = a and x′i = a′. The fraction of coordinates on which x and x′ agree is p00 +p11.

We’ll show that if 1/3 ≤ p00 + p11 ≤ 2/3, then PrG[f(x) = f(x′)] ≤ 2−3n. By a union
bound, it will follow that with probability 1−2−n over the choice of G, no pair x, x′ satisfying
1/3 ≤ p00 +p11 ≤ 2/3 (i.e., agreeing on more than n/3 but less than 2n/3 coordinates) maps
to the same output, proving the claim.

Because p00 + p11 ≥ 1/3, one of them, call it paa′ is at least 1/6. On the other hand,
p00 + p11 ≤ 2/3 gives that p01 + p10 ≥ 1/3, so at least one of p01 and p10, call it pbb′ is at least
1/6. Observe that aa′ and bb′ differ in exactly one coordinate.

Without loss of generality, assume that aa′ = 00 and bb′ = 01. Since P is not constant,
there must exist an input z ∈ {0, 1}d such that P (0) 6= P (z). Now let us look at the ith
output of f when G is chosen at random. The probability that (xΓ(i,1), . . . , xΓ(i,d)) = 0d and
(x′Γ(i,1), . . . , x

′
Γ(i,d)) = z is at least (1/6)d, since each of the pairs (0, zk), 1 ≤ k ≤ d, is sampled

with probability at least 1/6. Since every output of G is chosen independently, we have that

PrG[f(x) = f(x′)] ≤ (1− (1/6)d)m ≤ e−(1/6)dm ≤ 2−3n
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as long as m ≥ 3 · 6d · n.

Proof of Claim 3. For vertex i ∈ [n] and candidate edge e ∈ [Ddn], let Xie be an indicator
random variable for the event that edge e is incident to vertex i, so that E[Xie] = 1/n.
Then di =

∑
e∈[Ddn] Xie, and the variables Xie and Xi′e′ are independent whenever e 6= e′.

Therefore for every i,

E[d2
i ] = E[di]

2 + Var[di] ≤ E[di]
2 + E[di] = (Dd)2 +Dd

And so E[∆] ≤ ((Dd)2 + Dd)n ≤ 2(Dd)2n. To bound the deviation from ∆, we apply the
second moment method. We have

Var[∆2] = Var
[∑

i∈[n]

(∑
e∈[Ddn]

Xie

)2]
= E

[ ∑
i,i′,e,e′,f,f ′

XieXifXi′e′Xi′f ′

]
− E

[∑
i,e,f

XieXif

]
E
[ ∑
i′,e′,f ′

Xi′e′Xi′f ′

]
=

∑
i,i′,e,e′,f,f ′

(
E[XieXifXi′e′Xi′f ′ ]− E[XieXif ] E[Xi′e′Xi′f ′ ]

)
,

where i, i′ range over [n], and e, e′, f, f ′ range over [Ddn]. When i 6= i′, the expression inside
the sum is zero or negative. When i = i′, by independence, the only terms in the summation
that may not vanish are those where at least two of e, f, e′, f ′ are equal, or |{e, f, e′, f ′}| < 4.
For any fixed i, There are at most

(
4
t

)
(Ddn)t terms where |{j, k, j′, k′}| ≤ t, and for each

such term
E[XieXifXi′e′Xi′f ′ ] ≤ E[X11]t = n−t

from where

Var[∆2] ≤ n ·
3∑

t=0

(
4

t

)
(Ddn)tn−t ≤ 4(Dd)3 + 6(Dd)2 + 4Dd ≤ 8(Dd)3n.

Applying Chebyshev’s inequality to ∆, we obtain the desired statement.

6.2 Self-reducibility for certain length-preserving functions

Let P : {0, 1}c → {0, 1} be a balanced predicate. The dout-parity-blowup of P is the predicate
obtained by replacing each variable in P by the xor of bdout/cc variables, where all the new
variables are disjoint.

Theorem 6.3. Let c ≥ 3 and dout = max{130cdlog ne, 4c2}. Let P be the dout-parity-blowup
of some balanced predicate on c bits and let G be an (n, n, dout)-random graph. Then

1. For at least half the graphs G, if fG,P can be inverted on a e−r fraction of inputs by
circuits of size exp(O(

√
rn log n)), then it can be inverted on a 1−e−r fraction of inputs

by circuits of size exp(O(
√
rn log n)).
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2. There exist functions f ′G,P : {0, 1}n′ → {0, 1}m′, where n′,m′ = O(n ·dcout), every output
of f ′ depends on at most c + 1 inputs and for at least half the graphs G, if f ′G,P can
be inverted on a e−r fraction of inputs by circuits of size exp(O(

√
rn log n)), then fG,P

can be inverted on a 1− e−r fraction of inputs by circuits of size exp(O(
√
rn log n)).

In Claim 4 we show that the function fG,P is likely to be e−r/4-close to O(er)-to-1. Part
1 of Theorem 6.3 then follows from Remark 1 on Theorem 3.1. To prove part 2, we observe
that parity-blowup predicates can be represented by constant degree polynomials over F2.
Applying the randomized encodings of Applebaum et al. [3] to these polynomials, we obtain
a function with constant output locality and slightly longer input and output length.

Bounding the preimage sizes We now argue that in the setting of parameters considered
in this section, Goldreich’s function is likely to have small preimage size on most of the inputs.
The main techincal tool is the following claim which bounds the collision probability of fG,P .
For convenience of notation, from now on we set dout = d.

Claim 4. Assume P : {0, 1}d → {0, 1} is c-Fourier-sparse and d ≥ 130c log n be an even
multiple of c. Let G be an (n, n, d)-random graph. Then PrG,x,y[fG,P (x) = fG,P (y)] ≤ K ·2−n,
where K is some universal constant.

The notion of c-Fourier sparsity is somewhat technical and is defined below. The d-parity
blowup of any balanced predicate P : {0, 1}c → {0, 1} is c-Fourier-sparse, whenever d ≥ 4c2.

From Claim 4 and Markov’s inequality, it follows that for at least 3/4 of the graphs G,

Prx[#{y : fG,P (x) = fG,P (y)} ≥ 16K · er] ≤ e−r/4 (1)

and so for at least 3/4 of the graphs G, fG,P is e−r/4-close to at most 16Ker-to-1.

Proof of Theorem 6.3. Let G be an (n, n, d) random graph and P be the d-blowup of some
predicate on c bits. By ((1)), with probability at least 3/4 over the choice of G, fG,P is
e−r/4-close to at most 16Ker-to-1. By a Chernoff bound and union bound, with probability
3/4 over the choice of G, fG,P has input locality O(c log n). Putting the two together, we
have that with probability at least 1/2, fG,P has both properties. Part 1 then follows from
Theorem 3.1 and Remarks 1 and 2.

To prove part 2, we apply the randomized encodings of Applebaum et al. [4] to every
output of f to construct the function f ′′. Since P is a dout-parity blowup of a predicate on c
bits, each output bit of f is a F2 polynomial of degree c that depends on dout variables. We
write out each such polynomial fi as a sum of monomials pi = mi1 +mi2 + · · ·+mit. Then
t ≤ d(n)c. We replace each fi by the randomized encoding

(mi1 + ri1, ri1 +mi2 + ri2, . . . , ri(t−1) +mit)

where ri1, . . . , ri(t+1) are new input variables. It is easy to check that f ′ has input and output
length O(n · dcout) and locality c+ 1. By the same argument as the proof of Corollary 5.2, if
f ′ can be inverted on a e−r fraction of inputs by a circuit of size exp(O(

√
rn log n)), then f

can be inverted on a 1−Ω(e−r) fraction of inputs by circuits of size exp(O(
√
rn log n)), and

the conclusion follows from part 1.
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Fourier-sparse predicates We say a predicate P : {0, 1}d → {0, 1} is c-Fourier-sparse
(c ≥ 1) if the following conditions hold:

1. `1(P̂ ) =
∑

S⊆[d]|P̂S| ≤ 2d/8c

2. For every S ⊆ [d] such that P̂S 6= 0, |S| ≥ d/c

3. For every S, T ⊆ [d] such that S 6= T and P̂S, P̂T 6= 0, |S − T | ≥ d/c.

It can be verified that the d-parity-blowup of any balanced predicate P : {0, 1}c → {0, 1} is
c-Fourier-sparse, whenever d ≥ 4c2.

Proof of Claim 4 We prove this claim in two steps: First, we argue that the desired
probability does not increase by much if we replace the good predicate Pn by a linear predicate
over d/c inputs. Blömer, Karp, and Welzl calculate this probability in a related random graph
model [5]. We give a self-contained proof for our model.

Proof of Claim 4. Let G = Gn and P = Pn. We rewrite the desired probability as:

PrG,x,y[fG,P (x) = fG,P (y)] = Ex,y[PrG[fG,P (x) = fG,P (y)] = Ex,y[PrI [P (x|I) = P (y|I)]n]

where I is a random sequence of d indices from [n]. Note that the value of the inner
probability only depends on x and y through the number of pairs xiyi of types 00, 01, 10,
and 11. Let nab be the number of pairs xiyi where xi = a and yi = b and pab = nab/n. Then
D = (p00, p01, p10, p11) is a probability distribution over {0, 1}2. Therefore

Ex,y[PrI [P (x|I) = P (y|I)]n] =
1

22n

∑
n00+n01+n10+n11=n

(
n

nD

)
Pruv∼Dd [P (u) = P (v)]n

where u, v are d-bit strings,
(

n
nD

)
is shorthand for

(
n

n00,n01,n10,n11

)
= n!/(n00!n01!n10!n11!), and

Dd is the distribution on pairs of strings (u, v), u, v ∈ {0, 1}d obtained by choosing each
coordinate pair uivi independently from the joint distribution D.

We now divide the summation into two parts: The first part E will consist of those tuples
(n00, n01, n10, n11) such that all nab are at most 5n/6, and the second part F will consist of
the rest. We begin with the first part, so let us assume that nab ≤ 5n/6 for all pairs ab. We
then write Pruv∼Dd [P (u) = P (v)] = Pruv∼Dd [P (u)⊕P (v) = 0] = 1

2
+ 1

2
Euv∼Dd [(−1)P (u)⊕P (v)]

and

Euv∼Dd [(−1)P (u)⊕P (v)] =
∑

S,T⊆[n]

P̂SP̂T Euv∼Dd [χS(u)χT (v)]

=
∑

S,T⊆[n]

P̂SP̂Tβ
|S−T |
1 β

|T−S|
2 β

|S∩T |
12
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where β1 = Eab∼D[(−1)a], β2 = Eab∼D[(−1)b], and β12 = Eab∼D[(−1)a⊕b]. We now decompose
the summation as

Euv∼Dd [(−1)P (u)⊕P (v)] =
∑
S⊆[n]

P̂ 2
Sβ
|S|
12 +

∑
S 6=T

P̂SP̂Tβ
|S−T |
1 β

|T−S|
2 β

|S∩T |
12

≤ β
d/c
12 + `1(P̂ )2 ·maxS,T :P̂S ,P̂T 6=0|β1||S−T ||β2||T−S|.

From the assumption that (n00, n01, n10, n11) is in E, it follows that min{|β1|, |β2|} ≤ 5/6,
and so

`1(P̂ )2 ·maxS,T :P̂S ,P̂T 6=0|β1||S−T ||β2||T−S| ≤ 2d/4c · (5/6)d/c ≤ (0.992)d/c.

Now let L be a linear function on d/c inputs. We just showed that

Euv∼Dd [(−1)P (u)⊕P (v)] ≤ Euv∼Dd [(−1)L(u)⊕L(v)] + (0.992)d/c

whenever (n00, n01, n10, n11) ∈ E, and so∑
E

(
n

nD

)
Pruv∼Dd [P (u) = P (v)]n ≤

∑
E

(
n

nD

)
(Pruv∼Dd [L(u) = L(v)] + (0.992)d/c)n

≤
∑
E

(
n

nD

)
(Pruv∼Dd [L(u) = L(v)] + 1/2n)n

≤
∑
E

(
n

nD

)
e · (Pruv∼Dd [L(u) = L(v)])n

≤ 22ne · PrG,x,y[fG,L(x) = fG,L(y)]

Here, fG,L is Goldreich’s function based on the linear predicate L in d/c inputs. The second
inequality uses the fact that d ≥ 130c log n, and the third inequality follows from the fact
that Pruv∼Dd [L(u) = L(v)] ≥ 1/2 because d/c is even.

We now consider the part of the summation coming from F :∑
F

(
n

nD

)
Pruv∼Dd [P (u) = P (v)]n ≤

∑
F

(
n

nD

)
≤ O(n3) ·maxnD∈F 2nH(D)

where H(D) is the entropy of the distribution D. By definition of F , at least one of the
probabilities in D is at least 5/6. Under this constraint, the entropy is maximized for the
distribution D = (5/6, 1/18, 1/18, 1/18), and H(D) ≤ 0.92. So the summation inside F is
upper bounded by O(n3 · 20.92n).

Summing the contributions from E and F , we obtain that

PrG,x,y[fG,P (x) = fG,P (y)] ≤ e · PrG,x,y[fG,L(x) = fG,L(y)] +O(n3 · 2−1.08n).

To finish the proof, we need to show that PrG,x,y[fG,L(x) = fG,L(y)] = O(2−n). We write

PrG,x,y[fG,L(x) = fG,L(y)] = PrG,x[fG,L(x) = 0] = Ex

[(1

2
+

1

2
(1− 2wt(x)/n)d/c

)n]
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where the first equality follows by the linearity of L, and wt(x) is the hamming weight of x.
Grouping the inputs x according to their hamming weight w and simplifying, we obtain

PrG,x,y[fG,L(x) = fG,L(y)] = 2−2n

n∑
w=0

(
n

w

)
(1 + (1− w/n)d/c)n

= 2−2n

n∑
w,k=0

(
n

w

)(
n

k

)
(1− w/n)kd/c

≤ 2−2n

n∑
w,k=0

(
n

w

)(
n

k

)
n−10wk/n

where in the last line we used that 1− w/n ≤ e−w/n and d ≥ 10c log n.
We divide the sum into two parts. The first part consists of those pairs (w, k) such that

both w and k are at most n/10, and the second part consists of the rest. For the first part
we have

n/10∑
w,k=0

(
n

w

)(
n

k

)
≤ n222H(1/10)n+o(n) ≤ 2n

for n sufficiently large, where H is the binary entropy function. For the second part∑
w ≥ n/10 or k ≥ n/10

(
n

w

)(
n

k

)
n−10wk/n ≤ 2

∑
w≥k,w≥n/10

(
n

w

)(
n

k

)
n−10wk/n

≤ 2
∑
w≥k

(
n

w

)(
n

k

)
n−k

≤ 2 · 2n

n∑
k=0

(
n

k

)
n−k

= 2 · 2n · (1 + 1/n)n = 2e · 2n.

Adding the contribution of the two parts, we conclude that PrG,x,y[fG,L(x) = fG,L(y)] =
O(2−n).
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Appendix

A On the input locality requirement

Theorem 3.1 gives a non-trivial result only when the sum of the squares of the input degrees
D is at most o(n2/ log n). This assumption could be violated even if there is a single input
of f whose degree is Ω(n). It is natural to ask if the self-amplification argument could be
modified so as to allow for a small number of inputs that have unusually large degree.

We argue that this is unlikely to be the case. We show that if non-trivial self-amplification
can be achieved for functions where all but one of their inputs have degree at most d + 1,
then every function of input locality d has a non-trivial inversion algorithm.

We say a family of functions fn : {0, 1}n → {0, 1}m(n) is (t(n), ε(n)) self-amplifying if the
following holds: There exists a constant c such that for every sufficiently large n, if fn can
be inverted on an ε(n) fraction of inputs in time t(n), then fn can be inverted on a 1− ε(n)
fraction of inputs in time t(n)c.

Theorem 3.1 implies that if f has input locality d, then f is (exp(O(
√
rn · d log n)), e−r)

self-amplifying for every r > 0.
The following claim indicates that the input locality requirement is necessary in a strong

sense. We say that f has input locality almost d if all but one of its inputs have degree at
most d.

Claim 5. Suppose that every function with input locality almost d + 1 is (t(n), ε) self-
amplifying for some ε < 1/2. Then every function family with input locality d can be inverted
on a 1− 2ε fraction of inputs in time t(n+ 1)c +O(n) for some constant c.

Proof. Let fn : {0, 1}n → {0, 1}m(n) be a function family with input locality d. We define
f ′n : {0, 1}n+1 → {0, 1}m(n)+1 by

f ′n+1(x, b) =

{
(x, 0), if b = 0

(f(x), 1), if b = 1.

Notice that except for the input b, the degree of every other input in f ′n+1 is larger than the
locality of the corresponding input in fn by at most one. Therefore, f ′n+1 has input locality
almost d+ 1.

By assumption, f ′n+1 is (t(n + 1), ε) self-amplifying. However, f ′n+1 is trivially invertible
on half its inputs. Since ε < 1/2, it follows that f ′n+1 is invertible on a 1 − ε fraction of
its inputs in time t(n)c. But then fn is invertible on a 1 − 2ε fraction of inputs in time
t(n + 1)c + O(n) as follows. Given an inverter I ′ that inverts f ′ on a (1 − ε)-fraction of
inputs, the following inverter I inverts f on a (1−2ε)-fraction of inputs: On input y, output
the first n bits of I ′(y, 1).
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