
Lower Bounds for Testing Bipartiteness in Dense Graphs

Andrej Bogdanov∗ Luca Trevisan†

Abstract

We consider the problem of testing bipartiteness

in the adjacency matrix model. The best known algo-

rithm, due to Alon and Krivelevich, distinguishes be-

tween bipartite graphs and graphs that are ε-far from

bipartite using Õ(1/ε2) queries. We show that this

is optimal for non-adaptive algorithms, up to poly-

logarithmic factors. We also show a lower bound of

Ω(1/ε3/2) for adaptive algorithms.

1. Introduction

The problem of testing bipartiteness in the ad-

jacency matrix model asks for a randomized algo-
rithm with the following properties. The algorithm
is given oracle access to the adjacency matrix of an
undirected graph G = (V, E) and is also given a pa-
rameter ε > 0; the algorithm is required to accept
with probability at least 3/4 if the graph G is bi-
partite, and to reject with probability at least 3/4
if the graph G is ε-far from bipartite, meaning that
one has to remove more than ε

(

|V |
2

)

edges from G
in order to make it bipartite. There is no require-
ment on the algorithm when the given graph G is
not bipartite but it can be made bipartite by re-
moving less than ε

(

|V |
2

)

edges. If the algorithm ac-
cepts bipartite graphs with probability 1, then we
say that it has one-sided error.

Goldreich, Goldwasser and Ron [2] introduced
this problem, as a special case of their general frame-
work of graph property testing, and showed that it
can be solved by a one-sided error algorithm in time
polynomial in 1/ε and independent of the size of the

∗ adib@cs.berkeley.edu. Computer Science Division, Uni-
versity of California, Berkeley.

† luca@cs.berkeley.edu. Computer Science Division, Uni-
versity of California, Berkeley. Work supported by NSF
grant CCR 9984703, an Okawa Foundation Grant, and a
Sloan Research Fellowship.

graph. Their algorithm simply picks a random in-
duced subgraph with Õ(1/ε2) vertices and checks
whether the subgraph is bipartite. Notice that the
algorithm not only has one-sided error, but is also
non-adaptive, that is, it decides all at once which en-
tries of the adjacency matrix to inspect.

Alon and Krivelevich [1] improve the result of
Goldreich et al. by showing that, in fact, it is enough
to look at a random subgraph with Õ(1/ε) ver-
tices. Thus the algorithm looks at Õ(1/ε2) entries
of the adjacency matrix and runs in time Õ(1/ε2).
This algorithm, too, has one-sided error and is non-
adaptive.

In the same paper, Alon and Krivelevich show
that there are graphs that are ε-far from bipartite
but such that the algorithm that chooses o(1/ε) ver-
tices at random and looks at the subgraph induced
by them sees a bipartite subgraph with high proba-
bility. On the other hand, Goldreich and Trevisan [4]
prove that if there is an algorithm for testing bipar-
titeness1 having query complexity q, then it also
works to just pick 2q vertices at random and check
whether they induce a bipartite graph.

Together, these results imply that any one-sided
algorithm for testing bipartiteness must have query
complexity (and thus, running time) at least Ω(1/ε).
Notice that there is a quadratic gap between this
lower bound and the performance of the algorithm
of Alon and Krivelevich. Furthermore, the case of
algorithms with two-sided error is not addressed.

We show that any non-adaptive algorithm for
testing bipartiteness must have query complexity
Ω(1/ε2) and any algorithm, adaptive or not, must
have query complexity Ω(1/ε1.5). Our “hard in-
stances” for this problem are random graphs where
every edge exists with probability 2ε + o(1). With
high probability, such graphs are ε-far from being

1 Their result holds for any graph property testing problem
in this model, but for simplicity we state here only the ap-
plication to bipartiteness.

bipartite.
Consider now the simplest case, that of a one-

sided error non-adaptive algorithm, and let us see
what happens for a fixed randomness of the algo-
rithm and over the choices of the random graph. The
algorithm looks at q pairs of vertices, and each pair
is going to be connected by an edge with probabil-
ity 2ε. Basically, the view of the algorithm is a fixed
graph with q edges, from which each edge is being
deleted independently with probability 1 − 2ε, and
kept with probability 2ε. We are able to argue that if
we start from an arbitrary graph with q = o(1/ε2)
edges, then, after the deletions, the graph is very
likely to become a forest, and, therefore, to be bi-
partite.

Regarding one-sided error adaptive algorithms,
consider again the view of the algorithm for a fixed
randomness of the algorithm and a random graph.
Every time the algorithm makes a query into the ad-
jacency matrix, it discovers an edge with probability
2ε and it finds out that there is no edge with prob-
ability 1 − 2ε. When the algorithm discovers a cy-
cle, it is because it makes a query (u, v) where u and
v were already discovered to be connected, and then
(u, v) turns out to be an edge. Typically, the algo-
rithm will have to make Ω(1/ε) such attempts be-
fore discovering a cycle. So, by the time a cycle is
discovered, the algorithm must have found enough
edges that there are Ω(1/ε) pairs of connected ver-
tices. Then, the algorithm must have discovered at
least Ω(1/

√
ε) edges to account for so much connec-

tions, and therefore it must have made Ω(1/ε1.5)
queries into the adjacency matrix. We can conclude
that an algorithm that makes o(1/ε1.5) queries is
very likely to see a forest, and, therefore, a bipar-
tite graph.

The analysis of algorithms with two-sided error

is more involved. We need to consider two distribu-
tions of graphs, one made of bipartite graphs and
one made of graphs that are typically ε-far from bi-
partite, and then argue that the distributions are in-
distinguishable for algorithms of small query com-
plexity.

We take again the random graph with edge prob-
ability 2ε + o(1) as one distribution (this one will
typically contain graphs ε-far from bipartite). The
other distribution is sampled as follows: we first ran-
domly partition the vertices of the graphs, and then
each edge crossing the partition is picked indepen-
dently with probability 4ε+o(1), and all other edges
are not picked. By construction, these graphs are al-

ways bipartite.
Roughly speaking, we show that conditioned on

the event of seeing a forest, the views of an algo-
rithm when given oracle access to a graph chosen
from one distribution versus a graph from the other
have statistical distance o(1), and we already know
that the condition holds with probability 1−o(1) for
adaptive algorithms making o(1/ε1.5) queries and
non-adaptive algorithms making o(1/ε2) queries.
(This is just a simplified account of the proof. The
result would hold as stated, and in fact the dis-
tance in the conditional distributions would be zero,
if the “view” of the algorithm were just the set of
edges it discovers. But, in addition, the algorithm
also discovers that certain pairs of vertices are not
connected. To account for that we need some addi-
tional conditioning, and even then we can show that
the distance is o(1) but not zero.)

We note that there is an adaptive algorithm that
discovers odd cycles in time O(1/ε1.5) when given a
random graph with edge probability 2ε. In fact, for
any distribution that we could think of to produce
graphs that are ε-far from bipartite, there is always
an adaptive algorithm that discovers odd cycles in
time O(1/ε1.5). It would be very interesting to come
up with an adaptive algorithm of query complexity
o(1/ε2): Goldreich and Trevisan show that there is
always at most a quadratic gap between the com-
plexity of adaptive versus non-adaptive algorithms,
but there is no natural example that we know of
where an actual gap occurs.2

We also note that our results imply that the prob-
lem of testing whether a graph is a forest has query
complexity Ω(1/ε1.5) for adaptive one-sided error al-
gorithms and Ω(1/ε2) for non-adaptive one-sided er-
ror algorithms, while it is trivially testable in time
O(1/ε) by a non-adaptive two-sided error algorithm.
This gives a separation between the power of one-
sided versus two-sided error algorithms for a natu-
ral problem. Regarding one-sided error algorithms,
it is easy to come up with a O((1/ε2) log 1/ε) non-
adaptive algorithm for finding a cycle in a graph
that is ε-far from being a forest. (A graph that is
ε-far from being a forest has, in particular, at least
ε
(

n
2

)

edges. The algorithm picks at random a set of
t = 64/ε vertices, and queries the adjacency ma-
trix for each pair of vertices, to determine the in-

2 Here, of course, we are referring to the case of graph prop-
erty testing in the adjacency matrix model. It is easy to
come up with huge gaps in the adjacency list model of [3].

2

duced subgraph. The expected number of edges in
such subgraph is ε

(

t
2

)

, and one can see that the vari-
ance is at most εt3, so that with high probability the
subgraph contains more than t edges, and so it in-
cluded a cycle.) It would be interesting to come up
with a o(1/ε2) adaptive one-sided error algorithm,
which would show a separation between the power of
adaptive versus non-adaptive algorithms. Perhaps
this is an easier question to attack than the design
of a o(1/ε2) adaptive algorithm for bipartiteness.

2. Lower bounds for testers with one-

sided error

In this section we show that any property test-
ing algorithm for bipartiteness with one-sided er-
ror must perform Ω(1/ε3/2) queries. Moreover, if
the algorithm is nonadaptive, then it must perform
Ω(1/ε2) queries.

Let A be a one-sided property testing algorithm
for bipartiteness that performs q queries. Fix the
randomness of A and an input G. Let qi = (xi, yi)
denote the i-th query of A, and Q = {qi : 1 ≤ i ≤ q}
denote the set of all queries of A. Without loss of
generality, we may assume that all queries qi are dis-
tinct, hence |Q| = q. We observe that if A rejects
G, then A must have detected a witness that refutes
the bipartiteness of G; it follows that E(G)∩Q con-
tains an odd cycle. Therefore, to show a one-sided
lower bound of q queries for testing bipartiteness, it
is enough to exhibit a distribution G on n-vertex
graphs such that: (1) With probability 1 − o(1),
graph G ∼ G is ε-far from bipartite, and (2) With
probability 2/3, the set E(G) ∩ Q contains no odd
cycle.

Let G denote the distribution on n-vertex graphs
where each edge is selected independently at ran-
dom with probability p = 2ε + O(1/

√
n). Using a

standard probabilistic argument, we show that with
probability 1 − o(1), a graph chosen from G is ε-far
from bipartite: Let (S, S) be an arbitrary partition
of V (G). The number of pairs of vertices on the same

side of the partition is
(

|S|
2

)

+
(

n−|S|
2

)

≤ 1
2

(

n
2

)

. By
a Chernoff bound, the probability that fewer than
ε
(

n
2

)

edges violate this partition is at most 2−n−ω(1),
so that with probability 1− o(1), no partition is vi-
olated by fewer than ε

(

n
2

)

edges.
We now argue that E(G) ∩ Q is unlikely to con-

tain an odd cycle, whenever q = Ω(1/ε3/2) for adap-
tive algorithms and q = Ω(1/ε2) for nonadaptive al-
gorithms. Call an answer to a query positive if it

reveals an edge of the graph, and negative other-
wise.

Theorem 1. Let A be an adaptive property testing

algorithm, and Q denote the set of queries of A on in-

put G ∼ G, where |Q| = q ≤ 1/24ε3/2. With probabil-

ity 2/3 over the choice of G and the randomness of A,

the graph G′ = (V (G), E(G) ∩ Q) is a forest.

Proof. Let Qt = {q1, . . . , qt} be the set of queries
up to time t, and Gt = (V (G), E(G) ∩ Qt). We call
query qt = (xt, yt) internal if xt and yt belong to
the same connected component of Gt−1. Note that
the first query that reveals a cycle in G′, if such a
query exists, must be internal. We will show that,
with probability 5/6, the number of distinct internal
queries in Q is less than 1/7ε. Since distinct queries
are positive independently with probability p, it fol-
lows that all the internal queries in Q are negative
with probability at least (1 − p)1/7ε > 5/6. There-
fore the probability that G′ contains no cycle is at
least 5

6 · 5
6 > 2

3 .
We now bound the number qI of distinct inter-

nal queries in Q. Let s1, . . . , sk denote the num-
ber of edges of each of the connected components
of G′ that contain at least one edge. The number
of pairs of vertices in the same component of G′

that are not connected by an edge in G′ is at most
S =

∑k
i=1

(

si

2

)

. If query qt = (xt, yt) is internal,
then xt and yt belong to the same connected com-
ponent of G′. It follows that qI ≤ S.

On the other hand, s1 + . . .+sk ≤ |E(G)∩Q|, so
that E[s1 + . . . + sk] ≤ E[|E(G) ∩ Q|] = pq. There-
fore s1 + . . . + sk ≤ 6qp with probability at least
5/6. Finally, with probability 5/6,

S ≤
(

s1 + . . . + sk

2

)

≤
(

6qp

2

)

≤ 1/7ε.

We observe that the bound in the theorem is
tight for the distribution G up to a constant fac-
tor. In fact, there is an adaptive algorithm that
finds a triangle in G with probability 2/3 and
O(1/ε3/2) queries. The algorithm consists of two
phases: In the first phase, the algorithm makes q1 =
O(1/ε3/2) queries of type (v, vi), where v, v1, . . . , vq1

are arbitrary distinct vertices. With probability
5/6, at least O(1/

√
ε) of the answers are positive.

In the second phase, the algorithm makes q2 =
O(1/ε) distinct queries among pairs (vi, vj) such
that (v, vi), (v, vj) ∈ E(G). With probability 5/6,
this phase reveals an edge (vi, vj), and therefore a
triangle v, vi, vj .

3

Theorem 2. Let A be a nonadaptive property test-

ing algorithm, and Q denote the set of queries of A
on input G ∼ G, where |Q| = q ≤ 1/73ε2. With

probability 2/3 over the choice of G, the graph G′ =
(V (G), E(G) ∩ Q) is a forest.

To prove the theorem, we will make use of the
following bound:

Lemma 1. A graph with m edges has fewer than

(2m)l/2/2l simple cycles of length l.

Proof. Let A be the adjacency matrix of a graph
with m edges, and let λ1, . . . , λn denote the eigen-
values of A. We note that the trace of Al counts the
number of rooted directed cycles of length l, which
includes all simple length l cycles 2l times each. By
a standard inequality on monotonicity of moments,

trace(Al) =
∑n

i=1
λl

i ≤
(

∑n

i=1
λ2

i

)l/2

= trace(A2)l/2 = (2m)l/2.

Alternate proof. A slightly weaker (but still per-
fectly adequate) bound can be obtained by the fol-
lowing purely combinatorial argument, due to Kenji
Obata. To demonstrate the idea, let us do the eas-
ier case of even l first, even though this is irrelevant
for our application. Note that a cycle (v1, . . . , vl) of
even length is fully specified by the sequence of l/2
directed edges (v1, v2), . . . , (vl−1, vl). As there are
exactly (2m)l/2 ways to pick such a sequence, the
number of cycles of length l cannot exceed this num-
ber.

For odd l, we use the following “folklore” obser-
vation: If one orders the vertices of a graph by de-
creasing degree, then orients the edges to point in
the direction of this ordering π, each vertex will have
in-degree at most 2

√
m. Now consider an arbitrary

cycle (v1, . . . , vl), where l is odd. By acyclicity, at
least one of the directed edges (v1, v2), . . . , (vl, v1)
has its orientation consistent with π; assume, with-
out loss of generality, that it is the edge (vl, v1). The
cycle is fully specified by the sequence σ of (l−1)/2
ordered pairs (v1, v2), . . . , (vl−2, vl−1), plus the ver-
tex vl. The number of ways to choose the sequence σ
is (2m)(l−1)/2. Now given a particular σ, how many
choices for vl are there? Since σ fixes v1, and we
also know that the edge (vl, v1) points towards v1

in π, we have at most 2
√

m choices for vl. We con-
clude that the number of cycles of length l is at most
(2m)(l−1)/2 · 2√m =

√
2(2m)l/2.

Proof of Theorem 2. We bound the expected num-
ber of cycles of length l in G′. By Lemma 1, the set
of queries determines at most (2q)l/2/2l cycles of
length l; each cycle has probability pl to be present
in G. Therefore the expected number of cycles of
length l in G′ is at most (2q)l/2/2l · pl < 1/3l for
large enough n.

It follows that the expected number of cycles of
any length in G′ is at most

∑∞
l=3 1/3l < 1/3. By

Markov’s inequality, G′ has no cycles with proba-
bility at least 2/3.

3. Lower bounds for testers with two-

sided error

In this section we extend the lower bounds from
Theorems 1 and 2 to algorithms for testing bipar-
titeness that may exhibit two-sided error. To prove a
two-sided lower bound of q for testing bipartiteness,
we need to argue that a sequence of q queries cannot
distinguish bipartite graphs from graphs that are ε-
far from bipartite with statistical significance better
than, say, 1/3. A one-sided tester is more restricted
than a two-sided tester in the sense that it must find
evidence of non-bipartiteness in the form of an odd
cycle. The information obtained from negative an-
swers to its queries is not significant in this context.
For two-sided testers, however, absence of evidence
is not evidence of absence.3 A two-sided error tester
may take advantage of the negative queries to in-
fer statistical properties of its input.

The transcript trA(G) of algorithm A on input G
consists of a sequence of queries q = (qi : 1 ≤ i ≤ q)
and answers a = (ai : 1 ≤ i ≤ q), where ai = 1
if qi ∈ G, and ai = 0 otherwise. In adaptive algo-
rithms, the query qi may depend on previous queries
(q1, . . . , qi−1) and answers (a1, . . . , ai−1). To prove
that there is no q query tester for bipartiteness with
success probability δ it is sufficient to produce two
distributions of graph instances G and H with the
following properties:

1. With high probability, a graph selected from G
is ε-far from bipartite.

2. A graph selected from H is always bipartite.

3. For any deterministic algorithm A, the statisti-
cal distance between transcripts of A on input

3 SecretaryofdefenseD.Rumsfeld, onpossible linksbetween
Al Qaeda and Iraq.

4

G ∼ G and G ∼ H is at most δ:

1

2

∑

q,a

∣

∣

∣
Pr

G∼G
[trA(G) = (q, a)]

− Pr
G∼H

[trA(G) = (q, a)]
∣

∣

∣
≤ δ.

We will use the following two distributions of in-
stances: G is the distribution defined in Section 2,
namely random graphs on n vertices with edge prob-
ability p = 2ε + O(1/

√
n). We define H to be the

distribution of random bipartite graphs with edge
probability 2p. More precisely, a graph G ∼ H is
generated as follows: (1) Pick a partition (S, S) of
V (G) uniformly at random; (2) Select each edge
(u ∈ S, v ∈ S) independently at random with prob-
ability 2p.

Say G is consistent with transcript (q, a) if ai = 1
when qi is an edge of G, and ai = 0 otherwise. It is
not difficult to estimate the probability that a graph
G ∼ G is consistent with q, a; this probability de-
pends only on the number of positive answers ai.
When G ∼ H, however, the answers ai are not in-
dependent. For example, the event “There is a path
of length 2 between u and v” biases the probabil-
ity of an edge between u and v. Even though the
structure of H makes direct computations difficult,
we single out a class of “typical” transcripts that
have approximately the same probability in both
distributions. We then argue that a testing algo-
rithm with suitably low query complexity is likely
to produce a typical transcript. To simplify nota-
tion, we ignore constants in our analysis.

For a transcript (q, a), we partition the queries
in q as follows:

1. The set of positive queries Q+ is the set of
queries qi such that ai = 1.

2. The set of negative internal queries Q−
I is the

set of queries qi = (ui, vi) such that ai = 0 and
ui, vi are connected by a path in Q+.

3. The set of negative external queries Q−
E is the

set of queries qi = (ui, vi) such that ai = 0 and
ui, vi are not connected by a path in Q+.

Let us consider, on an intuitive level, the pos-
sible features of the input G that a property test-
ing algorithm could use to distinguish graphs in G
from those in H. We will then define typical tran-
scripts as those that fail to exhibit such features.
What is somewhat surprising is that, in some sense,
there are only three features that a distinguishing
algorithm can rely on, and as long as we can show

that these three features are unlikely to be exhib-
ited by the portion of the input seen by the prop-
erty tester, no tester can succeed on the input with
non-negligible probability.

The first feature a distinguishing algorithm can
use is the presence of an odd cycle in G, just as
in the case of the less powerful one-sided error al-
gorithms. So our first requirement of typical tran-
scripts will be to rule out odd cycles; for convenience
in the analysis, we will in fact require that typical
transcripts do not show any cycles at all, odd or
even.

In the absence of cycles, what can a distinguish-
ing algorithm do? Say the algorithm has seen two
vertices u and v that it knows are in the same con-
nected component of G. It then queries for the ex-
istence of the edge (u, v), and the answer comes out
negative. Now the probabilities of getting a nega-
tive answer in a graph from G and a graph from
H differ by roughly 2ε. (If u and v are at even dis-
tance, then the probability of an edge is about 2ε
in G, and zero in H. At odd distance, it is 2ε in
G versus 4ε in H.) Seeing one such negative answer
gives the distinguisher statistical advantage roughly
ε; to get constant advantage, the distinguisher needs
Ω(1/ε) queries. So our second requirement of a typ-
ical transcript will be to have o(1/ε) negative inter-
nal queries.

If neither a cycle nor a wealth of negative inter-
nal queries is seen in G, the distinguisher has to rely
on the negative external queries. The intuition here
is similar to the one for the internal queries. To il-
lustrate, let us assume the distinguisher has already
seen four vertices u, v, u′, v′ such that u is connected
to v and u′ is connected to v′, but u, v and u′, v′ lie
in separate connected components. Then the out-
comes of the queries (u, u′) and (v, v′) are indepen-
dent in G, but correlated in H, so the distinguisher
can attempt to take advantage of these correlations.
Our third requirement of a typical transcript will be
that not too many of these correlated pairs are seen
by the distinguisher. In this case, the exact tech-
nical condition that we need is less obvious, but it
comes out rather naturally from the proofs.

We are now ready to formalize this intuition.
Let q+ = |Q+|, q−I = |Q−

I | and q−E = |Q−
E |.

Let C denote the class of connected components of
G+ = (V (G), Q+). For U, V ∈ C, let eUV denote the
number of negative external queries between com-
ponents U and V . That is, eUV = |{(u, v) ∈ Q−

E :
u ∈ U, v ∈ V }|. We call transcript (q, a) typical if

5

the following three conditions hold: (1) G+ is a for-
est, (2) q−I = o(1/ε) and (3)

∑

U,V ∈C e2
UV = o(1/ε2).

The following lemma shows that if algorithm A
produces a typical transcript of length o(1/ε2), then
it cannot determine the distribution of its input.

Lemma 2. For any algorithm A and typical tran-

script (q, a) of length q = o(1/ε2), PrG∼G [trA(G) =
(q, a)] ∼ PrG∼H[trA(G) = (q, a)].

Proof. If G ∼ G, its edges are selected indepen-
dently, so G is consistent with q, a with prob-

ability pq+

(1 − p)q−

I
+q−

E . For G ∼ H, we write
PrG∼H[trA(G) = (q, a)] = P1P2P3, where:

P1 = Pr
H

[Q+ ⊆ E(G)]

P2 = Pr
H

[Q−
I ⊆ E(G)|Q+ ⊆ E(G)]

P3 = Pr
H

[Q−
E ⊆ E(G)|Q+ ⊆ E(G) ∩ Q−

I ⊆ E(G)].

We estimate each of these probabilities. Since Q+

is a forest, P1 = pq+

. The second probability P2 is
a product of q−I terms of value either 1 (for even
length paths) or 1−4ε (for odd length paths). Since

q−I = o(1/ε), P2 ≥ (1− 4ε)q−

I ∼ 1, so that P2 ∼ 1 ∼
(1 − p)q−

I .
For the probability P3, consider a random parti-

tion (S, S) of V (G) that is consistent with Q+. For
every pair U, V ∈ C, let EUV be the number of edges
in Q−

E between U and V that are partitioned by
(S, S). Note that, with respect to the choice of par-
tition, E[

∑

U,V EUV] = q−E/2, as each edge in Q−
E

crosses (S, S) with probability half. Moreover, the
EUV are pairwise independent and

Var
[

∑

U,V
EUV

]

=
∑

U,V
Var[EUV]

≤
∑

U,V
e2

UV = o(1/ε2).

By Chebyshev’s inequality, almost surely
∣

∣

∣

∑

U,V
EUV − q−E/2

∣

∣

∣
= o(1/ε).

In other words, for almost every partition (S, S),
roughly half of the edges in Q−

E fall across the par-
tition and roughly half fall within the partition.
Therefore,

P3 ∼ (1 − 2p)q−

E
/2±o(1/ε) ∼ (1 − p)q−

E .

It follows that the G is consistent with q, a with
asymptotically identical probabilities according to
G and H.

The next two lemmas justify the use of the word
“typical” to describe transcripts of A. They show
that if A has suitably low query complexity, then it
is likely to produce a typical transcript.

Lemma 3. For any adaptive algorithm A with query

complexity q ≤ o(1/ε3/2) and a graphG ∼ G, the tran-

script trA(G) is typical with probability 1 − o(1).

Proof. Let G+ denote the subgraph of G whose ver-
tices are endpoints of queries in q and with edges
Q+. Let si denote the size of the ith connected
component of G+ containing at least one edge, and
S = s1 + . . . + sk. As in the proof of Theorem 1
we have that, with respect to either distribution,
E[(s1−1)+. . .+(sk−1)] ≤ pq, so that almost surely
S = O(qp) = o(1/

√
ε). Also, the number of inter-

nal queries is o(1/ε), so that almost surely all in-
ternal queries fail and G+ is a forest. On the other
hand, the number of negative internal queries can-
not exceed o(1/ε). This establishes properties (1)
and (2) of typical transcripts.

For property (3), let
∑

U,V ∈C e2
UV = S1+S2+S3,

with S1 =
∑

|U |=|V |=1 e2
UV , S2 =

∑

|U |,|V |≥2 e2
UV

and S3 =
∑

|U |=1,|V |≥2 e2
UV . We bound each of the

sums S1, S2 and S3. In S1, each of the terms is 0
or 1, and the number of terms is at most q. There-
fore S1 ≤ q = o(1/ε3/2). For S2 we note that

∑

|U |,|V |≥2
e2

UV

≤
(

∑

|U |,|V |≥2
eUV

)2

≤
(

S

2

)2

= o(1/ε2).

To compute S3, we let eU =
∑

|V |≥2 eUV . Then
eU ≤ S, and

∑

|U |=1,|V |≥2
e2

UV ≤
∑

|U |=1
e2

U

≤ S
∑

|U |=1
eU ≤ S · q = o(1/ε2).

Lemma 4. For any nonadaptive algorithm A with

query complexity q ≤ o(1/ε2) and a graph G ∼ H, the

transcript trA(G) is typical with probability 1 − o(1).

Proof. Let G′ = (V (G), Q+ ∪ Q−
I ∪ Q−

E). Property
(1) is proved as in Theorem 2. To show (2), for ev-
ery e ∈ Q−

I , let Xel denote the number of paths of
length l between the endpoints of e in G. When-
ever e ∈ Q−

I , it must be that Xel > 0 for some l, so
that

q−I ≤
∑

e∈Q−

I

∑∞

l=1
Xel =

∑∞

l=1

∑

e∈Q−

I

Xel.

6

Every Xel is a sum of indicator random variables
Yc, one for each cycle c of length l + 1 that contains
e, such that Yc = 1 if all edges in c except possibly
e are in Q+. It follows that Pr[Yc = 1] = pl.

E
[

∑∞

l=1

∑

e∈Q−

I

Xel

]

≤ E
[

∑∞

l=1

∑

e∈E(G′)
Xel

]

≤
∑∞

l=1

∑

e∈E(G′)

∑

c3e
|c|=l+1

Pr[Yc = 1]

=
∑∞

l=1

∑

c:|c|=l+1
lpl

≤
∑∞

l=1

(2q)(l+1)/2

2(l + 1)
· lpl

= o(1/ε).

The last inequality follows from Lemma 1. Now by
Markov’s inequality, q−I = o(1/ε) almost always.

For property (3), given any pair e = (u, v), e′ =
(u′, v′) ∈ Q−

E , let Xee′l denote the number of pairs
of paths (u, v) and (u′, v′) whose lengths sum to l
in G. For a pair of components U, V ∈ C, we can
think of e2

UV as the number of pairs of pairs of ver-
tices (u, v), (u′, v′) ∈ Q−

E (with repetition) such that
u, u′ ∈ U and v, v′ ∈ V . With this in mind, we can
think of a quadruple u, u′ ∈ U, v, v′ ∈ V as “con-
tributing” to e2

UV whenever u and u′ are connected
in G and v and v′ are connected in G, so that

e2
UV ≤

∑

u,u′∈U
v,v′∈V

∑∞

l=1
X(u,v)(u′,v′)l

=
∑∞

l=1

∑

u,u′∈U
v,v′∈V

X(u,v)(u′,v′)l.

Again, we write Xee′l as a sum of indicator random
variables Yc, one for each cycle c of length l+2 that
contains both e and e′. For a fixed c, there are at
most l(l−1) pairs (e, e′) such that Yc is an indicator
for Xee′l.

E
[

∑∞

l=1

∑

U,V ∈C

∑

u,u′∈U
v,v′∈V

X(u,v)(u′,v′)l

]

≤ E
[

∑∞

l=1

∑

e,e′∈E(G′)
Xee′l

]

≤
∑∞

l=1

∑

e,e′∈E(G′)

∑

c3e,e′

|c|=l+2

Pr[Yc = 1]

≤
∑∞

l=1

∑

c:|c|=l+2
l(l − 1)pl

≤
∑∞

l=1

(2q)(l+2)/2

2(l + 2)
· l(l − 1)pl

= o(1/ε2).

By Markov’s inequality, property (3) holds almost
always.

Theorem 3. Any algorithm A for testing bipartite-

ness has query complexity Ω(1/ε3/2). Moreover, if A
is nonadaptive, then it has query complexity Ω(1/ε2).

Proof. Suppose that A is an adaptive tester for bi-
partiteness with query complexity o(1/ε3/2), and G
be an input. By Lemma 3, if G ∼ G, the transcript
of A on G is almost surely typical. This is also the
case if G ∼ H:

PrG∼H[trA(G) is typical]

=
∑

(q,a) typical
PrG∼H[trA(G) = (q, a)]

∼
∑

(q,a) typical
PrG∼G [trA(G) = (q, a)]

= PrG∼G [trA(G) is typical]

= 1 − o(1).

Here the asymptotic equality between the second
and third line follows from Lemma 2. Again by
Lemma 2, a typical transcript is asymptotically
equiprobable for G ∼ G and G ∼ H, and it fol-
lows that

1

2

∑

q,a

∣

∣

∣
Pr

G∼G
[trA(G) = (q, a)]

− Pr
G∼H

[trA(G) = (q, a)]
∣

∣

∣
= o(1).

The analysis for nonadaptive testers is identical.

Acknowledgments

We thank Kenji Obata, Alistair Sinclair, and
Stephen Sorkin for helpful discussions. We also
thank the anonymous referees for comments that
helped clarify our exposition.

References

[1] N. Alon and M. Krivelevich. Testing k-colorability.
SIAM J. on Discrete Mathematics, 15:211–227, 2002.

[2] O. Goldreich, S. Goldwasser, and D. Ron. Property
testing and its connections to learning and approxi-
mation. Journal of the ACM, 45:653–750, 1998.

[3] O.GoldreichandD.Ron. Property testing inbounded
degree graphs. In Proceedings of the 29th ACM Sym-

posium onTheory of Computing, pages 289–298, 1997.

[4] O. Goldreich and L. Trevisan. Three theorems re-
garding testing graph properties. In Proceedings of

the 42nd IEEE Symposium on Foundations of Com-

puter Science, pages 460–469, 2001.

7

