
DeTrust: Defeating Hardware Trust Verification with
Stealthy Implicitly-Triggered Hardware Trojans

Jie Zhang, Feng Yuan, and Qiang Xu

CUhk REliable Computing Laboratory (CURE)
Department of Computer Science & Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email: {jzhang, fyuan, qxu}@cse.cuhk.edu.hk

ABSTRACT
Hardware Trojans (HTs) inserted at design time by malicious in-
siders on the design team or third-party intellectual property (IP)
providers pose a serious threat to the security of computing sys-
tems. Researchers have proposed several hardware trust verifi-
cation techniques to mitigate such threats, and some of them are
shown to be able to effectively flag all suspicious HTs implemented
in the Trust-Hub hardware backdoor benchmark suite. No doubt to
say, adversaries would adjust their tactics of attacks accordingly
and it is hence essential to examine whether new types of HTs can
be designed to defeat these hardware trust verification techniques.

In this paper, we present a systematic HT design methodology
to achieve the above objective, namely DeTrust. Given an HT de-
sign, DeTrust keeps its original malicious behavior while making
the HT resistant to state-of-the-art hardware trust verification tech-
niques by manipulating its trigger designs. To be specific, DeTrust
implements stealthy implicit triggers for HTs by carefully spread-
ing the trigger logic into multiple sequential levels and combina-
tional logic blocks and combining the trigger logic with the normal
logic, so that they are not easily differentiable from normal logic.
As shown in our experimental results, adversaries can easily em-
ploy DeTrust to evade hardware trust verification.

We close with a discussion on how to extend existing solutions to
alleviate the threat posed by DeTrust. However, they generally suf-
fer from high computational complexity, calling for more advanced
techniques to ensure hardware trust.

Categories and Subject Descriptors
B.6.2 [Hardware]: Logic Design—Security and Trust

Keywords
hardware Trojan; hardware security; backdoors; implicit trigger

1. INTRODUCTION
With the ever-increasing hardware complexity and the large num-

ber of third-parties involved in the design and fabrication process
of integrated circuits (ICs), today’s IC products are vulnerable to
a wide range of malicious alterations, namely hardware Trojans
(HTs) [1–3]. For example, a hardware backdoor can be intro-
duced into the design by simply writing a few lines of hardware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-2957-6/14/11 ...$15.00.
DOI string from ACM form confirmation .

description language (HDL) codes [4, 5], which leads to functional
deviation from design specification and/or sensitive information
leakages. Skorobogatov and Woods [7] found a “backdoor” in a
military-grade FPGA device1, which could be exploited by attack-
ers to extract all the configuration data from the chip and access/-
modify sensitive information. Liu et al. [28] demonstrated a silicon
implementation of a wireless cryptographic chip with an embedded
HT and showed it could leak secret keys. HTs thus pose a serious
threat to the security of computing systems and have called upon
the attention of several government agencies [8, 9].

HTs can be inserted into an IC product at any stage, e.g., specifi-
cation, register-transfer level (RTL) design, IP integration, physical
design, and fabrication. Generally speaking, the likelihood of HTs
being inserted at design time is usually much higher than that being
inserted at manufacturing stage, because adversaries do not need to
access foundry facilities to implement HTs and it is also more flex-
ible for them to implement various malicious functions.

In recent years, several techniques have been proposed to pro-
tect hardware designs against certain type of HTs inserted at de-
sign time [10–14]. Among them, some techniques [10–12] oper-
ate at runtime and try to de-activate suspicious circuitries. These
techniques, however, require to modify the original design to in-
clude runtime protections, and hence incur runtime overhead and
increase design complexity. Performing verification for hardware
trust without necessarily modifying the design is therefore quite
appealing. Hicks et al. [10] made the first attempt and formulated
the HT detection problem as an unused circuit identification (UCI)
problem. However, due to the relatively simple definition of “un-
used circuit", it could only cover a small set of HTs. Later, Zhang et
al. [5] and Sturton et al. [15] presented how to automatically con-
struct HTs that are able to evade UCI detection algorithm. Based on
the observation that HT trigger inputs are redundant to circuit nor-
mal functions when HTs are not activated during functional verifi-
cation, Zhang et al. [13] proposed a so-called VeriTrust technique,
which focused on HT trigger identification. Recently, Waksman et
al. [14] presented a static HT detection technique based on Boolean
functional analysis, namely FANCI. Both [13] and [14] showed that
they were able to flag all the suspicious HTs implemented in the
Trust-Hub hardware backdoor benchmark suite [6].

HT design and HT identification techniques are like arms race,
wherein designers update security measures to protect their system
while attackers respond with more tricky HTs. With state-of-the-art
hardware trust verification techniques such as VeriTrust and FANCI
being able to effectively identify existing HTs, no doubt to say,
adversaries would adjust their tactics of attacks accordingly and
it is hence essential to examine whether new types of HTs can be
designed to defeat these hardware trust verification techniques.

1The company responded that the hidden super key is used for failure anal-
ysis. However, it exactly matches the definition for backdoor given by the
dictionary: "Backdoor - an undocumented way to get access to a computer
system or the data it contains".

1.1 Threat Model
We follow the same threat model and assumptions used in [10,

13]. That is, a hardware design can be covertly compromised by
HTs inserted into the RTL source code or the gate-level netlist.
These HTs are introduced by one or more rogue designers in the
design team or integrated into the design with third-party IP cores.
Attackers cannot control the suite of tests used for functional verifi-
cation, but they can learn arbitrary information about the test cases.
We assume the verification procedure is trustworthy and HTs man-
ifest themselves as long as they are activated.

Consequently, from the adversaries’ perspective, on the one hand,
HTs should be resistant to functional verification with extremely
low activation probability; on the other hand, they should be re-
sistant to trust verification by hiding as normal logic circuit. This
work aims to devise such an HT design methodology.

1.2 Contributions
In this work, we present a systematic HT design methodology

that is resistant to hardware trust verification, namely DeTrust, by
targeting the weakness of these solutions. To be specific, to make
DeTrust evade FANCI, HT trigger logics are carefully spread among
multiple combinational logic blocks so that Boolean functional anal-
ysis would not flag them as nearly-unused logics. To defeat Ver-
iTrust, we combine HT triggers with circuit original functional logic
and hide them into multiple sequential levels. Such implicit triggers
would not be seen as redundant inputs under non-trigger condi-
tion. In addition, DeTrust also borrows existing stealthy HT design
methodology (e.g., [5]) to hide from conventional functional veri-
fication and UCI techniques. With the above, HT designs can be
performed in a one-off manner to be resistant to trust verification
solutions while still passing functional verification.

To be specific, this work contributes to the field of hardware trust
in the following ways:

• We show that VeriTrust [13] and FANCI [14] have limita-
tions. We design and implement an attack on a processor that
is able to evade these hardware trust verification techniques
while still passing functional verification.

• We present a systematic HT design methodology called De-
Trust that automatically equips HTs with stealthy implicit
triggers to be resistant to all existing hardware trust verifica-
tion techniques in a one-off manner. We analyze the stealth-
iness of the proposed HT designs and present heuristic algo-
rithms to increase its stealthiness.

• We present how to extend VeriTrust and FANCI to alleviate
the threat posed by DeTrust. However, there is no easy fix
to this problem. We analyze why such defenses are not suffi-
cient to defend against DeTrust, even though they do increase
HT design effort.

The remainder of this paper is organized as follows. We first
present the preliminaries related to hardware Trojan design and
identification in Section 2. The proposed HT design methodology,
i.e., DeTrust, is then detailed in Section 3. We validate the effec-
tiveness of DeTrust by introducing practical attacks and analyzing
their stealthiness in Section 4. Next, we present some potential de-
fenses for DeTrust in Section 5. Finally, we survey related works
in Section 6 and conclude this paper in Section 7.

2. PRELIMINARIES
In this section, we first introduce some terms used in this pa-

per. Next, we describe state-of-the-art hardware trust verification
techniques for HTs inserted at design time. Finally, we discuss the
effectiveness of these techniques.

Hardware Trojan

Orignal Circuit

Figure 1: An HT-infected circuit with trigger inputs t1 and t2,
wherein the original logic function fn = d1d2 is compromised
by an HT with malicious function fm = t1t2d2 and the trigger
condition is {t1, t2}= {1,1}.

2.1 Definitions
Generally speaking, an HT is composed of its activation mech-

anism (referred to as trigger) and its malicious function (referred
to as payload). For the ease of discussion, we have the following
definitions:

DEFINITION 1. An HT-affected signal is a signal that the HT
targets to manipulate (e.g., f in Fig. 1).

DEFINITION 2. An HT-related signal is a signal that is driven
by any part of the HT (e.g., t1, t2,h1, f in Fig. 1).

DEFINITION 3. A functional input is an input that is used by
the circuit’s specified normal functionality (e.g., d1,d2 in Fig. 1).

DEFINITION 4. A trigger input is an input that is used in the
condition under which the HT is activated (e.g., t1, t2 in Fig. 1).

Note that, functional inputs can also serve as HT trigger in-
puts [15].

2.2 HT Classification
In [13], the authors classified HTs into bug-based HTs and parasite-

based HTs, according to their impact on the normal functions of
the circuit. A Bug-based HT alters the circuit and causes it to lose
some of its normal functionalities while a parasite-based HT hides
along with the original circuit and does not cause it to lose any
normal functionalities. Generally speaking, when compared with
bug-based HTs, parasite-based HTs are more difficult to be acti-
vated with functional verification tests, since its malicious behav-
ior is not included in the specification. As a result, almost all HTs
appeared in the literature belong to the parasite-based type.

Note that, as a small set of HTs are sufficient for attackers to
compromise a hardware design, we do not attempt to define the
class of all possible HTs that are likely to evade hardware trust
verification techniques in this work, which is very difficult, if not
impossible. In this paper, we consider that a hardware design is in-
serted with one or more parasite-based HTs whose inputs are sepa-
rated into functional inputs and some dedicated trigger inputs. For
the convenience of presentation, HTs mentioned in the rest of the
paper means parasite-based HTs unless otherwise specified.

2.3 Verification for Hardware Trust
Various verification techniques can be employed for HT identifi-

cation, as detailed in the following.

2.3.1 Formal Verification
Theoretically speaking, we can formally prove whether a hard-

ware design contains HTs or not with a given trustworthy high-level
system model (e.g., [16]). In practice, however, full formal verifica-
tion of large circuits is still computationally infeasible. In addition,
the golden model itself may not be available. Consequently, we
usually have to resort to either functional verification or dedicated
trust verification techniques for HT detection.

(a) UCI (c) FANCI(b) VeriTrust

0

00 01 11 10

00

01

11

10

0 1 0

0 0 1 0

0 1 1 0

0 0 1 0

K-map

0

00 01 11 10

00

01

11

10

0 1 0

0 0 1 0

0 0 1 0

K-map

don't cares

Truth Table

Figure 2: HT identification with trust verification techniques

2.3.2 Functional Verification (FV)
Simulation can be used for HT detection, by activating an HT

and observing its malicious behavior. If we were able to walk
through all possible system states, we can catch all HTs with ex-
haustive simulation. In practice, however, due to the sheer volume
of states that exist in even a simple design, FV techniques only
cover a small subset of the functional space of a hardware design.
Considering the fact that attackers have full controllability for the
location and the trigger condition of their HT designs at design
time, which are secrets to functional verification engineers, it is
usually very difficult, if not impossible, to directly activate an HT.

The above has motivated a number of dedicated hardware trust
verification techniques, as discussed in the following.

2.3.3 Trust Verification
Trust verification techniques flag suspicious circuitries based on

the observation that HTs are nearly always dormant (by design)
in order to pass functional verification. Such analysis can be con-
ducted in a dynamic manner by analyzing which part of the cir-
cuit is not sensitized during functional verification, as in UCI [10]
and VeriTrust [13]. Alternatively, static Boolean functional analy-
sis can be used to identify suspicious signals with weakly-affecting
inputs, as in FANCI [14].

In the following, we discuss these trust verification techniques
and use the circuit shown in Fig. 1 to demonstrate how they can be
used for HT identification.

UCI: Hicks et al. [10] first addressed the problem of identify-
ing HTs inserted at design time, by formulating it as an unused
circuit identification problem. They defined “unused circuits” as
follows. Consider a signal pair (s, t), where t is dependent on s. If
t = s throughout the entire functional verification procedure, the
intermediate circuit between s and t is regarded as “unused cir-
cuit”. With the above definition, the UCI algorithm in [10] traces
all signal pairs during verification, and reports those ones for which
the property s = t holds throughout all test cases as suspicious cir-
cuitries. For our example circuit, the signal pair (h2, f) will be al-
ways equal under non-trigger condition and hence it is guaranteed
to be flagged as suspicious if the HT is not activated during func-
tional verification. Whether the other signal pairs will be flagged as
suspicious circuitries depend on the test cases applied during func-
tional verification.

Another way to define unused circuit is based on the code cov-
erage metrics used in verification (e.g., line coverage and branch
coverage) such that those uncovered circuitries are flagged as sus-
picious malicious logic. Surprisingly, such simple analysis is able
to catch a large number of HT designs in the Trust-Hub hardware
backdoor benchmark suite, as demonstrated in [13].

One of the main limitations of UCI techniques is that they are
sensitive to the implementation style of HTs. Later, [5, 15] pre-
sented how to exploit this weakness to defeat UCI detection algo-
rithms.

VeriTrust: VeriTrust [13] flags suspicious circuitries by identi-
fying potential trigger inputs used in HTs, based on the observation
that these inputs keep dormant under non-trigger condition (other-
wise HTs would have manifested themselves) and hence are redun-
dant to the normal logic function of the circuit. For our example
circuit whose K-map is shown in Fig. 2 (b), by setting all entries of
the malicious function as “don’t cares” (i.e., they can be assigned
with logic ‘0’ or logic ‘1’ freely), the trigger inputs (i.e., t1 and t2)
become redundant.

VeriTrust works as follows. Firstly, a tracer traces the activa-
tion history of the circuit in the form of simplified sum-of-products
(SOP) and product-of-sums (POS) (instead of all entries) to save
tracing overhead. Next, by setting all the un-activated entries as
don’t cares, a checker identifies redundant inputs by analyzing those
unactivated SOPs and POSs. These redundant inputs are then flagged
as potential HT trigger inputs for further examination. Note that,
VeriTrust may incur false positives (a false positive would mean
a flagged input is not a true HT trigger input), because functional
simulation is not complete and there are some un-activated entires
belonging to normal function. However, it would not miss any true
trigger inputs.

VeriTrust is shown to be insensitive to the implementation style
of HTs (at least for existing HT designs), and it is able to identify all
HTs implemented in the Trust-Hub hardware backdoor benchmark
suite.

FANCI: FANCI [14] identifies signals with weakly-affecting in-
puts by static Boolean function analysis, based on the observation
that an HT trigger input generally has a weak impact on output sig-
nals. Without running verification tests, [14] proposed to use the
so-called control value (CV) to estimate the impact between an in-
put signal and an output that is driven by it:

CV =
counter
size(T)

, (1)

where counter denotes the total number of patterns under which
flipping this input signal results in the change of the output value,
while size(T) denotes the size of the truth table. For example, as
shown in Fig. 2 (c), there are only two input patterns under which
flipping t1 leads to the change of the output, and hence CV (t1) =
2/24 = 0.125. FANCI examines each state element in the circuit
and obtains a vector of control values V in its fan-in combinational
logic cone. A heuristic metric (e.g., median or mean) on V is then
calculated and compared against a cut-off threshold to determine
whether this signal is HT-related.

Consider our example circuit, as shown in Fig. 2 (c), we have
V = [0.125,0.125,0.375,0.625] and 0.3125 for f with the mean
metric. Therefore, FANCI would flag f as suspicious if the cut-off
threshold is set to be larger than 0.3125. By setting a proper cut-
off threshold value in [14], FANCI is able to identify all HTs from
Trust-Hub [6].

Static/Dynamic Detection Method Runtime False Negatives False Positives
Functional Verification dynamic activate the HT good HTs with rare trigger condition none
UCI by Code Coverage dynamic identify uncovered parts good HTs in [5] few with thorough verification
UCI by [10] dynamic identify equal signal pair fair HTs in [5, 15] some with thorough verification
VeriTrust [13] dynamic identify HT trigger inputs fair unknown some with thorough verification
FANCI [14] static identify weakly-affecting inputs fair possible with low threshold many with high threshold

Table 1: HT Detection with Hardware Functional Verification and Trust Verification

trigger

d1

d2

dn

original circuit

payload

o

(a) An HT-infected circuit (b) The trigger design

tmt2t1

FF FF

combinational
logic

sequential portion

t1
t2

tm

Last stage

FF FF
1

2

3

Figure 3: A structural overview of existing HT designs

2.4 Discussion
Table 1 summarizes the characteristics of existing solutions for

HT detection. Since dynamic trust verification techniques (i.e.,
UCI and VeriTrust) analyze the corner cases of functional verifi-
cation for HT detection, these two types of verification techniques
somehow complement each other. Generally speaking, with more
FV tests applied, the possibility for HTs being activated is higher
while the number of suspicious circuitries reported by UCI and Ver-
iTrust would decrease. As a static solution that does not depend on
verification, one unique advantage of FANCI over the other solu-
tions is that it does not require a trustworthy verification team. On
the other hand, however, adversaries could also validate their HT
designs using FANCI without necessarily speculating the unknown
test cases used to catch them.

All trust verification techniques try to eliminate false negatives
(a false negative would mean an HT is not detected) whilst keeping
the number of false positives as few as possible in order not to waste
too much effort on examining benign circuitries that are deemed as
suspicious. However, their detection capability is related to some
user-specified parameters and inputs during trust verification. For
example, FANCI defines a cut-off threshold for what is suspicious
and what is not during Boolean functional analysis. If this value is
set to be quite large, it is likely to catch HT-related wires together
with a large number of benign wires. This, however, is a serious
burden for security engineers because they have to evaluate all sus-
picious wires by code inspection and/or extensive simulations. If
this value is set to be quite small, on the contrary, it is likely to
miss some HT-related wires. Similarly, if we apply a small num-
ber of FV tests, UCI and VeriTrust would flag a large number of
suspicious wires (all wires in the extreme case when no FV tests
are applied), which may contain HT-related signals but the large
amount of false positives make the following examination proce-
dure infeasible.

From the above, a successful HT design would behave similar to
normal logic, such that a large number of false positives would be
generated when HTs are detected during verification.

3. THE DETRUST METHODOLOGY
In this section, we detail the proposed DeTrust methodology to

construct HTs that are resistant to state-of-the-art hardware trust
verification techniques.

3.1 Overview
Fig. 3(a) presents the typical structure of an HT-infected design,

which contains its original logic, the HT payload and the HT trig-

ger. The HT payload implements certain malicious function while
the HT trigger activates it under some trigger conditions. Generally
speaking, the stealthiness of HT designs mainly depends on the HT
trigger design and it usually comprises both a combinational por-
tion and a sequential portion, as shown in Fig. 3(b).

Given an HT design, the objective of DeTrust is to revise its trig-
ger design to be resistant to known trust verification techniques
while maintaining its malicious function. The overall flow is as
follows. For a given HT that is not stealthy enough to evade func-
tional verification and/or UCI techniques, we first adopt the HT
design methodology proposed in [5] to defeat them. To be specific,
the trigger condition is carefully selected to be a rare value to resist
FV and the HT is implemented with the code model in [5] to evade
UCI techniques. Next, we carefully redesign the HT trigger to be
resistant to both FANCI and VeriTrust, which is the focus of this
work.

3.2 Defeating FANCI
Since FANCI identifies signals with weakly-affecting inputs within

the combinational logic block, the key idea to defeat FANCI is to
make the control values of all HT-related signals comparable to
those of functional signals.

3.2.1 Motivational Case
Let us start with the case shown in Fig. 4 to illustrate the key idea

of defeating FANCI. Fig. 4 (a) and Fig. 4 (b) present a regular mul-
tiplexer (MUX) and a malicious one with a rare trigger condition,
respectively. FANCI would be able to differentiate the two types
of MUXes and flag the malicious one since the trigger inputs, de-
noted as t0, t1, . . . , t63, have very small control values for the output
o (1

265).
From this example, we can clearly see that, the main reason for

HT-related signals (e.g., o in Fig. 4 (b)) having weakly-affecting
inputs is that it is driven by a number of trigger inputs in its fan-in
combinational logic cone. Consider a signal driven by a combina-
tional logic block with m trigger inputs and n functional inputs. The
size of the truth table for this particular HT-related signal is given
by:

size(T) = 2m+n. (2)

For any trigger input, denoted as ti, those input patterns under which
ti influences the output should meet two requirements: (i) all trigger
inputs other than ti are driven by the trigger values2; (ii) flipping ti

2Trigger values are logic values for trigger inputs to satisfy trigger condi-
tion.

d0

d1

d2

d3

s0 s1

oMUX

d0

d1

d2

d3

s0s1

oMUX

t0 t63

...

...

t0

...

t3

t4

...

t7

t60

...

t63

...
...

FF

FF

FF

...

...
...

...

FF

FF

d0

d1

d2

d3

s0s1

o
MUX

t'3t'0

...

...
...

...
...

(a) A standard MUX (b) A malicious MUX

(c) A malicious MUX with modified implementation

Figure 4: Motivational example for defeating FANCI

results in the change of the output value. There are in total 2n+1 in-
put patterns meeting the first requirement. Among them, how many
further satisfying the second requirement depends on the actual dif-
ference between the malicious function and the normal function,
because they may output the same value under certain functional
inputs. At the same time, they cannot always output the same value
because otherwise there would be no malicious behavior. There-
fore, the number of input patterns satisfying both requirements is
bounded at:

21 ≤ counter ≤ 2n+1. (3)

With Eq. 2 and Eq. 3, the control value of ti on the corresponding
HT-related signal is bounded at:

1
2n+m−1 ≤CV (ti) =

counter
size(T)

≤ 1
2m−1 . (4)

In order to make FANCI difficult to differentiate HT-related sig-
nals and function signals, we should make control values of HT-
related signals to be comparable to those of functional signals. As
indicated by Eq. 4, reducing m has an exponential impact on the
increase of control values. Thus, we modify the implementation of
the malicious MUX by balancing these trigger inputs into multiple
sequential levels (see Fig. 4 (c)). In this way, the number of trigger
inputs is controlled to be no more than four for any combinational
block, rendering the control value of each trigger input comparable
with those of functional inputs.

Motivated by the above, our approach of defeating FANCI is
to reduce the number of trigger inputs in all the combinational
logic blocks that drive HT-related signals, and it can be achieved
by spreading HT trigger inputs among multiple sequential levels.

3.2.2 HT Design against FANCI
For the general HT design shown in Fig. 3, FANCI is likely to

catch HT-related signals in the combinational logic of Ê, Ë and Ì.
Algorithm 1 presents the flow of our defeating method for FANCI.
To reduce the number of trigger signals in a combinational logic,
we consider the combinational logic of Ê and Ë together and then
consider that of Ì, due to the fact that we need to adopt different
methods to handle the extra signal delay of trigger inputs intro-
duced by additional sequential levels.

Algorithm 1: The Flow to Defeat FANCI

/* To increase HT stealthiness */
1 NT = 2;
2 do
3 DefeatFANCI(NT ++);
4 while (The hardware cost is larger than a given constraint.);
/* The procedure used to defeat FANCI */

5 DefeatFANCI(NT)
/* For combinational logic of Ê and Ë

*/
6 foreach The fan-in cone of the input of the flip-flop do
7 if the number of trigger inputs > NT then
8 Balance the trigger in the multiple sequential

levels;
9 end if

10 end foreach
/* For combinational logic of Ì */

11 Find out the maximum number of trigger signals, denoted
as Nmax, within a combinational logic cone;

12 if Nmax > NT then
13 Introduce multiple small FSMs until Nmax ≤ NT ;
14 end if
15 end

For the combinational logic blocks in Ê and Ë, our defeating
method is similar to the one shown in Fig. 4 (c). As can be seen, the
original trigger combinational logic with a large number of trigger
inputs is spread among multiple combinational logic blocks, such
that the number of trigger inputs in each combinational logic block
is no more than NT (a value used to tradeoff HT stealthiness and
overhead). As shown in Algorithm 1 (Lines 6−10), we only exam-
ine the inputs of flip-flops rather than all signals. This is because,
as long as the number of trigger inputs for the inputs of flip-flops
are smaller than NT , the number of trigger inputs for all internal
signals are also smaller than NT .

The sequential part of an HT trigger can be represented by a
finite-state machine (FSM) and the trigger inputs are used to con-
trol state transitions (see Fig. 5 (a)). For the combinational logic
blocks in Ì that sits inside the FSM, we cannot use the above de-
feating method because the additional pipeline delay introduced
in this method would change trigger condition. Instead, we par-
tition the original FSM into multiple small FSMs, e.g., as shown in
Fig. 5 (b), the FSM with 64 trigger inputs is partitioned into eight
small FSMs. By doing so, the number of trigger inputs in each
small FSM is reduced to eight for this example, and it can be fur-
ther reduced by introducing more FSMs. The HT is triggered when
all the small FSMs reach certain states simultaneously.

Note that, the proposed defeating method against FANCI has no
impact on both circuit’s normal functionalities and HT’s malicious
behavior, because DeTrust only manipulates the HT trigger design,
which is separate from the original circuit and the HT payload.

3.2.3 Stealthiness Optimization
Until now, we have described our defeating method against FANCI.

However, as discussed in Section 2, whether an HT is able to evade
FANCI is also influenced by the cut-off threshold that is used to
trade-off false negatives and false positives.

DeTrust tries to maximize the stealthiness of the HT with respect
to FANCI subject to a given constraint in terms of hardware cost.
As the stealthiness of an HT is mainly determined by the number
of trigger inputs in each combinational logic, this is achieved by
finding the value of NT in a greedy manner. That is, as shown in
Algorithm 1, we start with NT = 2 and gradually increase it until
the cost of applying the defeating method is lower than the given
constraint.

S1 S2 S3 Sn

P[0:63] = P1 P[0:63] = P2 P[0:63] = Pn

otherwise otherwise otherwise

S11 S12 S13 S1n

P[0:7] = P11 P[0:7] = P12 P[0:7] = P1n

otherwise otherwise otherwise

S21 S22 S23 S2n

P[8:15] = P21 P[8:15] = P22 P[8:15] = P2n

otherwise otherwise otherwise

S81 S82 S83 S8n

P[56:63] = P81 P[56:63] = P82 P[56:63] = P8n

otherwise otherwise otherwise

(a) The orignal FSM

(b) The multiple small FSMs

Figure 5: The proposed sequential trigger design to defeat
FANCI

3.3 Defeating VeriTrust
As discussed earlier, VeriTrust flags suspicious HT trigger in-

puts by identifying those inputs that are redundant under verifica-
tion. Consequently, the key idea to defeat VeriTrust is to make HT-
affected signals driven by non-redundant inputs only under non-
trigger condition.

3.3.1 Motivational Case
For any input that is not redundant under non-trigger condition,

we have the following lemma.

LEMMA 1. Consider an HT-affected signal whose Boolean func-
tion is f (h1,h2, . . . ,hk). Any input, hi, is not redundant under non-
trigger condition, as long as the normal function, denoted by fn,
cannot be completely represented without hi.

PROOF. Since fn cannot be completely represented without hi,
there must exist at least one pattern for all inputs except hi under
which fn(hi = 0) 6= fn(hi = 1). Therefore, hi is not redundant.

(a) (b)

0

00 01 11 10

0

1

0 1 0

1

K-map

Figure 6: Motivational example for defeating VeriTrust

Inspired by Lemma 1, Fig. 6 (a) shows an HT-infected circuit
that is revised according to the circuit shown in Fig. 1, wherein the
HT is activated when {t1, t2}= {1,1}. In this implementation, the
malicious product t1t2d2 is combined with the product t1d1d2 from
the normal function and hidden in the fan-in cones of h1 and h2,
where h1 = t1d2 and h2 = d1 + t2. The K-map of f is shown in
Fig. 6 (b), where entries that cannot be activated under non-trigger
condition are marked as “don’t cares”. For this circuit, VeriTrust,
focusing on the combinational logic, would verify four signals, f ,
h1, h2 and h3. According to the K-map shown in Fig. 6(b), it is
clear that h1, h2 and h3 are not redundant for f under non-trigger
condition. Moreover, h1, h2 and h3, which are not HT-affected
signals, have no redundant inputs as well, since all of their input
patterns can be activated under non-trigger condition. Therefore,
the HT in Fig. 6(a) is able to evade VeriTrust.

By examining the implementation of this motivational case, we
find that the mixed design of the trigger and the original circuit

makes trigger condition for the HT-affected signal not visible for
VeriTrust. In order to differentiate existing HT designs and HTs
like the one shown in Fig. 6 (a), we define two new terms: the
explicitly-triggered HT and the implicitly-triggered HT as follows.

DEFINITION 5. We say an HT is explicitly-triggered if in the
HT-affected signal’s fan-in logic cone, there exists an input pattern
that uniquely represents the trigger condition.

DEFINITION 6. We say an HT is implicitly-triggered if in the
HT-affected signal’s fan-in logic cone, there does not exist any in-
put pattern that uniquely represents the trigger condition.

A careful examination for the HTs from Trust-Hub shows that
they are all explicitly-triggered, and this is the reason why VeriTrust
is able to flag all of them as suspicious. Interested readers can refer
to the code model of HTs from Trust-Hub in [5]. On the contrary,
the HT shown in Fig. 6 (a) is implicitly-triggered, since the trigger
condition is hidden in the h1h2 which also contains certain circuit’s
normal functionalities.

The above observation motivates us to implement implicitly-triggered
HTs to defeat VeriTrust.

3.3.2 HT Design against VeriTrust
For existing HT designs as shown in Fig. 3, VeriTrust is able

to detect HT trigger inputs in the combinational logic block in Ê,
wherein the output is the HT-affected signal. Our proposed defeat-
ing method for VeriTrust therefore focuses on this combinational
logic. According to Lemma 1, our approach to defeat VeriTrust for
DeTrust implements the implicitly-triggered HT with the following
two steps:

• combine all malicious on-set terms3 with on-set terms from
the normal function, and re-allocate sequential elements (e.g,
flip-flops) to hide the trigger in multiple combinational logic
blocks.

• simplify all remaining on-set terms and re-allocate sequential
elements if the remaining on-set terms contain trigger inputs.

Note that, we select on-set terms only, since the circuit can be ex-
plicitly represented by the sum of all on-set terms.

Let us further illustrate our defeating method against VeriTurst
as follows. Consider a circuit with an explicitly-triggered HT, and
its Boolean function can be represented as,

f = ∑
cni∀Cn,

∑
pn j∀Pn,

cni pn j + ∑
cmi∀Cm,

∑
pm j∀Pm

cmi pm j . (5)

where Pn and Pm driven by functional inputs denote the set of all
patterns that make the normal function and malicious function out-
put logic ‘1’, while Cn and Cm driven by trigger inputs denote the
set of non-trigger conditions and the trigger conditions, respec-
tively.

For the sake of simplicity, let us first consider the case where
the malicious function contains only one malicious on-set term,
cm0 pm0 . Suppose cn0 pn0 from the normal function is selected to
combine with cm0 pm0 . Let f ′n be all the on-set terms from the nor-
mal function except cn0 pn0 . Then, f can be given as:

f = f ′n +(cn0 pn0 + cm0 pm0). (6)

Suppose cn0 pn0 and cm0 pm0 have the common literals, cc pc, and
then we have

f = f ′n + cc pc(cr
n0

pr
n0
+ cr

m0
pr

m0
), (7)

3Malicious on-set term defined in [13] is the on-set term in the malicious
function whose adjacent terms in the normal function are off-set. On-set
term and off-set term are terms that make the function output logic ‘1’ and
logic ‘0’, respectively.

where

cn0 = cccr
n0

; pn0 = pc pr
n0

;

cm0 = cccr
m0

; pm0 = pc pr
m0
.

(8)

After that, we re-synthesize the circuit and re-allocate flip-flops,
making f become

f = h1h2 +h3, (9)

where

h1 = cc pc

h2 = cr
n0

pr
n0
+ cr

m0
pr

m0

h3 = f ′n

. (10)

In order to keep the time sequence, we re-allocate the flip-flops and
h1, h2 and h3 are outputs of the new flip-flops.

As can be observed in Eq. 9 and Eq. 10, the key of the defeating
method is to extract common literals from the malicious on-set term
and the on-set term from the normal function and hide the trigger
into different combinational logic. With the above, we find that f ,
h1, h2 and h3 have no redundant inputs under non-trigger condition.
We detail this theoretical proof in Appendix.

When there are multiple malicious on-set terms, we can use the
above method to combine each of them with one on-set term from
the normal function and then hide the trigger in different combina-
tional logic blocks. Finally, we have

f =
k−1

∑
i=0

(h2i+1h2i+2)+h2k+1, (11)

where

h2i+1 = cci pci

h2i+2 = cri
ni

pri
ni
+ cri

mi
pri

mi

h2k+1 = f ′n

. (12)

It is easy to prove h1, h2, . . . , h2k+1 have no redundant inputs un-
der non-trigger condition as well with the theoretical proof in Ap-
pendix. Note that, the HT can be spreaded over multiple sequential
levels by further combining the trigger loigc driving h1, h2, . . . ,
h2k+1 with normal logic.

3.3.3 Stealthiness Analysis and Optimization
Until now, we have presented our defeating approach against

VeriTrust. However, as discussed in Section 2, whether an HT is
able to evade VeriTrust is directly related to the functional verifica-
tion test cases applied to the circuit.

According to Appendix, the HT would evade VeriTrust provided
that statement 1, statement 2, statement 3 and statement 4 (see Ap-
pendix for details) are satisfied during functional verification. Let
Ps1 , Ps2 , Ps3 and Ps4 be the probabilities of statement 1, statement 2,
statement 3 and statement 4 to be satisfied during functional verifi-
cation. The probability for the HT to evade VeriTrust, denoted by
PDeVeriTrust , is given as,

PDeVeriTrust = Ps1 Ps2 Ps3 Ps4 , (13)

where the dependencies between each statement are ignored. Let
P(cni pn j) be the probability of an input pattern, cni pn j , to be acti-
vated. According to Appendix, we approximates Ps1 , Ps2 and Ps3 as
follows:

Ps1 =P(cn0 pn0)×{P({cc
i cr

m0
pc pr

m0
|cc

i ∈Cc,cc
i 6= cc})

+P({cc
i cr

m0
pc

j pr
m0
|cc

i ∈Cc,cc
i 6= cc; pc

j ∈ Fc, pc
i 6= pc})

+P({cc
i cr

n0
pc pr

n0
)|cc

i ∈Cc,cc
i 6= cc})

+P({cccr
n0

pc
j pr

n0
)|pc

j ∈ Fc, pc
j 6= pc})

+P({cc
i cr

n0
pc

j pr
n0
)|cc

i ∈Cc,cc
i 6= cc; pc

j ∈ Fc, pc
j 6= pc})};

(14)

Ps2 =P(cn0 pn0)×{P({cccr
mi

pc pr
m0
|cr

mi
∈Cr,cr

mi
6= cr

m0
})+

P({cccr
mi

pc pr
m j
|cr

mi
∈Cr,cr

mi
6= cr

m0
; pr

m j
∈ Fr, pr

m j
6= pr

m0
})};
(15)

Ps3 =P({ci p j|ci ∈Cn,ci 6= cn0 ; p j ∈ (F−Pn), p j 6= pm0})×
P({ci p j|ci ∈Cn,ci 6= cn0 ; p j ∈ Pn, p j 6= pm0}).

(16)

Ps4 can be calculated if all inputs of h1, h2 and h3 are specified.
By examining Eq. 13-16, we find that PDeVeriTrust is dominated

by the probabilities of some terms, such as cn0 pn0 that is used to
combine with the malicious on-set term cm0 pm0 . We propose the
following three methods to increase the stealthiness of HTs against
VeriTrust:

• Combine simplified malicious products (rather than malicious
on-set terms) with on-set terms from the normal function, so
that fewer terms from the normal function are required to be
activated to evade VeriTrust.

• Choose simplified products from the normal function to be
combined with simplified malicious products, so that any of
the terms in the product from the normal function being acti-
vated can make HT evade VeriTrust.

• Choose those simplified products from the normal function
with high activation probabilities to be combined with mali-
cious products. This method requires the knowledge about
the probability of products from the normal function, which
can be estimated by speculating on the test cases used in
functional verification [5, 15].

Algorithm 2: The Flow to Defeat VeriTrust

/* Focus on combinational logic of Ê */
1 Simplify Boolean function of this combinational logic;
2 Conduct the simulation with tests guessed by attackers to

obtain the probability of each product;
3 foreach simplified malicious product do
4 Greedily combine it with the product from the normal

function with the largest activation probability and hide
the trigger in different combinational logic blocks;

5 end foreach
6 Re-allocate flip-flops for the remaining products;

The flow to defeat VeriTrust is illustrated in Algorithm 2. It first
simplifies the Boolean function of the combinational logic of HT-
affected signals, and then conducts simulation with speculated test
cases to obtain the probability of each product. After that, a loop
is used to hide HT triggers whenever possible. In each iteration,
one malicious product is combined with one product from the nor-
mal function with the largest activation probability and it is hidden
in different combinational logic blocks. At last, flip-flops are re-
allocated for the remaining products.

3.4 Discussion
The defeating approach against FANCI and that against Ver-

iTrust in DeTrust do not interfere with each other. On the one hand,
DeTrust for FANCI focuses on reducing the number of trigger in-
puts in the combinational logic blocks used in HT triggers without
changing their logic functions; on the other hand, DeTrust for Ver-
iTrust implements the implicitly-triggered HT without increasing
the number of trigger inputs in any combinational logic.

Moreover, DeTrust for FANCI and VeriTrust would not influence
the stealthiness of HT designs shown in [5] against FV and UCI
techniques. Firstly, DeTrust does not change HT trigger condition
and hence it has no impact on functional verification. For UCI tech-
niques that analyze code coverages, DeTrust for FANCI splits the
HT trigger among multiple sequential levels, which does not affect

Figure 7: Supervisor transition foothold in [15] (Verilog HDL)

each part of the trigger being covered by verification test cases. De-
Trust for VeriTrust could use basic AND, OR and NOT operators to
implement the implicit trigger, avoiding the impact based on code
coverage analysis. For the UCI technique in [10], on the one hand,
the signals introduced by DeTrust for FANCI are within the HT
trigger unit driven by different trigger inputs and they are unlikely
to be always equal during functional verification; on the other hand,
DeTrust for VeriTrust combines parts of the normal functionalities
with the HT trigger and hence is also unlikely to create equal signal
pairs during verification. Note that, the above is a brief discussion
on the impact of DeTrust on earlier stealthy HT design techniques,
please refer to [5] for more details.

With the above, DeTrust is a one-off HT design methodology
to be resistant to all known trust verification techniques while still
passing functional verification.

4. VALIDATION AND DISCUSSION
In this section, we first design and implement a practical attack to

illustrate how to apply DeTrust to construct an HT that is resistant
to FANCI and VeriTrust. Next, we study the stealthiness of HTs
constructed with DeTrust in detail.

4.1 Practical Attack
We adopt the malicious HT used to defeat UCI technique shown

in [15] as the input to DeTrust. This HT, called supervisor tran-
sition foothold, is detailed in Fig. 7, and we implement it on the
OpenRISC processor [17]. Whenever a specific instruction repeats
twice, the HT is triggered and allows attackers to gain the full con-
trol of the system. As shown by a© and b© in Fig. 7, instruct_prev_t
and instruct_curr_t are the two trigger inputs used to indicate whether
previous and current instructions (denoted as instruct_prev and
instruct_curr) are the trigger instructions (denoted as ‘INST RUCT).
The trigger inputs, the payload and the original circuit are then
carefully combined to resist UCI (see c© in Fig. 7).

FANCI is likely to catch instruct_prev_t and instruct_curr_t
considering the small control values of instruct_prev and instruct_curr;
while VeriTrust guarantees to flag the HT-affected signal super
(the supervisor-mode bit), since the inputs of instruct_prev_t and
instruct_curr_t are redundant under non-trigger condition.

The HT implementation shown in Fig. 7 is not stealthy enough.
DeTrust revises the HT design indicated by a©, b© and c© to re-
sist FANCI and VeriTrust, and the revised HT design is shown in
Fig. 8. To resist FANCI at a© and b©, we limit the number of trig-
ger inputs in each combinational logic to be no more than four by
introducing multiple sequential levels, as shown by Fig. 8 (a). By
doing so, the control value of each trigger input is increased to a
level that is close to the control value of functional inputs. Finally,
instruct_prev_t[10] and instruct_curr_t[10] are used to indicate the
occurrence of the previous and current trigger instructions. We do
not apply DeTrust for FANCI at c©, since there are only two trigger
inputs for signal super.

Figure 9: Patterns used to prove that h1, h2 and h3 are not re-
dundant for super, where [resetn,holdn,super] = [1,1,0]

To resist VeriTrust at c©, we carefully re-design the fan-in logic
cone of super whose original Boolean function is shown in Fig. 8(b)
and hide the trigger in the fan-in logic cones of three introduced
signals, h1, h2 and h3, as shown in Fig. 8(c). Note that, in order
to keep the timing of all signals unchanged, h2 and h3 are driven
by previous values of holden and in.super, denoted as holden_in
and in.super_in. We can prove that super, h1, h2 and h3 have no
redundant inputs under non-trigger condition, according to the the-
oretical proof shown in Appendix. For example, as shown in Fig. 9,
h1 can be identified as non-redundant by VeriTrust, since the pat-
terns of [0,1,0] and [1,1,0] for [h1,h2,h3] can be activated under
non-trigger condition, leading to different output values for super.

The HT revised by DeTrust introduces about 80 code lines in the
design file, which is comparable to HTs of [10]. We use the same
environment as in the original experimental setup in FANCI [14]
and VeriTrust [13] to validate the stealthiness of this HT in the
OpenRISC processor, and we find that it successfully evades both
HT identification techniques, which is further discussed in the fol-
lowing subsection.

4.2 The Stealthiness of the HT
Next, we study the stealthiness of the HTs designed with DeTrust

with respect to all known verification techniques for hardware trust,
including the static analysis with FANCI and various dynamic so-
lutions (i.e., FV, UCI and VeriTrust).

4.2.1 Stealthiness in terms of FANCI
The experimental setup to evaluate the stealthiness of HT in terms

of FANCI is set as follows. Experiments are conducted on bench-
mark circuits with various sizes, s15850, s38417, s38584, wb_conmax
and OpenRISC. Only one HT designed by DeTrust is embedded in
each benchmark circuit and it is similar to the one shown in Fig. 8.
All the HTs introduce fewer than 200 gates, as shown in Table 2.
For some of the benchmarks with RTL source code provided, we
insert the HT directly into the RTL source code and then synthesize
the whole design with Synposys Design Complier; for some of the
benchmarks with the netlist provided, we synthesize the HT first
and then insert it into the design netlist. Similar to the experimen-
tal setup in [14], we choose 215 = 32,768 items in the truth table to
calculate the control value. Then, given a cut-off threshold, FANCI
flags those signals with lower control values as suspicious ones.

As shown in Fig. 10 (a), the values of all HT-related signals cal-
culated by the heuristic metric for the benchmark circuits are con-
trolled at around 0.1. Consequently, if the cut-off threshold value
is set as 0.001 as suggested in [14], FANCI would not flag these
HTs designed with DeTrust. On the other hand, if we raise the cut-
off threshold to be 0.1, FANCI is able to catch some HT-related
signals, but it would suffer from a large number of false positives.
Column 5 in Table 2 lists the concrete false positive rate when set-
ting the cut-off threshold to be the lowest value where there is no
false negative.

Figure 8: Supervisor transition foothold implemented by DeTrust (Verilog HDL)

(a) The false positive rate under different cut-off thresholds (b) The number of false positives under different cut-off thresholds

Threashold in
FANCI paper

0 0.010.020.030.04 0.050.060.070.080.09 0.1 0.110.120.130.140.15
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7

Fa
ls
e
P
os
iti
ve
R
at
e

s15850
s38417
s38584
wb_conmx
OpenRisc

HT-affected
signals

0 0.010.020.030.04 0.050.060.070.080.09 0.1 0.110.120.130.140.15
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3
x 10

4

Th
e
nu
m
be
ro
fF
al
se
P
os
iti
ve
s s15850

s38417
s38584
wb_conmx
OpenRisc

The cut-off threshold The cut-off threshold

Figure 10: The result of FANCI

Circuit Size HT Size False Positive
Circuit (No. of gates) (No. of gates) (Ratio %) Rate %
s15850 10369 148 1.43 34.8
s38417 24370 148 0.61 34.2
s38584 21066 148 0.70 30.8

wb_conmax 75352 178 0.24 40.1
OpenRISC 143172 184 0.13 44.1

Table 2: The size of HTs and false positive rates under the cut-
off threshold where HTs are just detected by FANCI.

Even under such optimistic assumptions, FANCI would have
more than 30% false positive rates, which means that designers
need to manually examine more than 30% of signal wires in the en-
tire circuit to finally catch the HT from the candidate list. Fig. 10(b)
present the number of wires for further examination with different
cut-off threshold values for various benchmark circuits.

Based on the above, we conclude that DeTrust is resistant to
FANCI.

4.2.2 Stealthiness in terms of FV, UCI and VeriTrust
We adopt the same experimental environment of [13] to study

the stealthiness of the HT with respect to dynamic verification so-
lutions for HT identification. We conduct the experiment on the
OpenRISC processor, considering the test cases required by these
solutions. We adopt the 17 test cases bundled with the OpenRISC
design for verification. Similar to [5], we use 5 test cases when
implementing the HT and adopt the remaining 12 test cases to val-

idate its stealthiness. The HTs used are listed in Table 3, wherein
the first seven HTs (T1-T7) are from Trust-Hub4 [6] while the last
three HTs (T8-T10) are from some related papers [4,10,15]. All of
the HTs are carefully transplanted from the original circuit to the
OpenRISC design, keeping their trigger conditions and malicious
behavior. Then, we implement them according to DeTrust to resist
FV, UCI and VeriTrust.

The effectiveness of these dynamic verification techniques is closely
related to the quantity and quality of verification test cases. We
therefore show the number of detected HTs and the number of can-
didates reported for further examination with the increasing number
of test cases to illustrate the stealthiness of the HTs designed with
DeTrust. We consider that FV detects an HT if the trigger condition
is satisfied, while UCI and VeriTrust detect an HT if any part of the
HT is reported in the candidate list. Results are shown in Fig. 11.

Fig. 11 (a) shows the number of HTs detected with application
of test cases. As can be observed, all HTs are able to evade FV,
UCI and VeriTrust after all verification test cases are applied. For
FV, all HTs evade it because none of these HTs has been activated.
For UCI, all HTs evade it since all parts of the HT are treated as
“useful circuit”. Finally, all HTs evade VeriTrust because none of
trigger inputs are identified as redundant inputs.

By examining the details in Fig. 11 (a), we have the following
interesting observation. UCI and VeriTrust in fact are able to flag

4Trust-Hub HT benchmark suite contains various known HT triggers and
payloads contributed by researchers in the hardware trust domain. For a
detailed description of the code model, please refer to [5].

0 1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

The Number of Test Cases
Th

e
N

um
be

ro
fH

Ts
D

et
ec

te
d

FV
UCI
VeriTrust

(a) The number of HTs detected with test cases (b) The number of candidates with test cases

1 2 3 4 5 6 7 8 9 10 11 12
0

1000

2000

3000

4000

The Number of Test Cases

Th
e

N
um

be
ro

fC
an

di
da

te
s

UCI
VeriTrust

Figure 11: The result of FV, UCI and VeriTrust

Index Circuit Trigger Payload
T1 MC8051 idle mode state activate timer
T2 MC8051 a sequence of instructions disable interrupt
T3 MC8051 a sequence of instructions compromise data
T4 MC8051 a sequence of data compromise stack pointer
T5 RISC the number of instructions compromise memory address
T6 RISC the number of instructions compromise the instruction
T7 RISC the number of instructions manipulate the address
T8 Leon3 a sequence of bus data access any memories
T9 Leon3 a sequence of instructions switch to administrator
T10 Leon3 a sequence of bus data execute malicious codes

Table 3: The summary of HTs used in the experiment for FV,
UCI and VeriTrust

some HTs with fewer test cases (e.g., less then 4 test cases shown
in Fig. 11 (a)). This phenomenon, however, is not useful for HT
identification in practice. This is because, fewer test cases would
result in much more false positives, as shown in Fig. 11 (b), which
leads to much more manual effort for further examination.

With the above, we conclude that DeTrust is also resistant to all
known dynamic verification techniques used for HT identification.

5. POTENTIAL DEFENSES
In this section, we discuss potential defenses against DeTrust.

We first show that, by extending state-of-the-art HT detection tech-
niques such as FANCI and VeriTrust, we can alleviate the threat
posed by DeTrust, but it is not an easy fix due to their associated
computational complexity. Next, we discuss how to defend against
DeTrust from a more practical viewpoint.

5.1 Extending FANCI and VeriTrust
One of the main reasons for DeTrust to be resistant to FANCI and

VeriTrust is that these techniques focus on analyzing the combina-
tional logics only. Thus, to evade FANCI and VeriTrust, DeTrust
spreads HT trigger logic intro multiple sequential levels and com-
bine it with normal logic to make HT become implicitly-triggered.
From this perspective, it is possible to extend FANCI to verify sig-
nals across multiple sequential levels or extend VeriTrust to trace
and verify signals across multiple sequential levels to defend against
DeTrust, wherein the intermediate state elements can be simply
treated as logic wires. The time-frame expansion [18] can be adopted
to construct the combinational circuit that mimics the functionality
of the sequential circuit.

The extensions for FANCI and VeriTrust may facilitate to iden-
tify HTs that could not be caught previously. For example, for the
HT-infected circuit shown in Fig. 4 (c), if the extended FANCI anal-
ysis is conducted at the entire circuit level directly, the output signal
o would be reported to be suspicious with the small control value
of each trigger input as small as about 1

263 . For the example circuit
shown in Fig. 6 (b), the extension for VeriTrust would catch the HT
by verifying the entire circuit, because the implicit trigger condi-
tion is now made explicit and the corresponding logic entries keep
dormant during verification.

The main limitation of the above extension is the associated com-
putational complexity due to the exponential increase space where
HT could be inserted. Without knowing the number of sequential
levels that HT trigger logics cover, both extensions have to enu-
merate all the possibilities (e.g., one-level, two-level, . . .), which is
computationally-infeasible for large circuits. Specifically, for the
extension of FANCI, the total number of analysis for HT-related
signals increases dramatically, and Boolean functional analysis it-
self becomes much more difficult due to the exponential increase of
the truth table size in the multi-level logics; for the extension of Ver-
iTrust, the number of products and sums to be traced and checked
increases exponentially with the size of the sequential logic. In the
worst case, the above extension becomes equivalence to verifying
all states of the circuit, which is therefore inapplicable to the large-
scaled IC design.

Moreover, the above extension would introduce a large num-
ber of false positives. On the one hand, when performing analysis
across multiple sequential levels for FANCI, the control values of
those functional inputs would be also rather small, rendering either
false negatives with small cut-off threshold or a large number of
false positives with relatively high cut-off threshold. On the other
hand, for the extension of VeriTrust, as simulation usually only cov-
ers a small functional space, with the increase of the functional
space for potential HTs to hide with DeTrust, VeriTrust would en-
counter many false positives and flag many functional inputs as
suspicious HT trigger inputs.

5.2 Discussion
From the above, we can conclude that simple extensions of exist-

ing trust verification techniques are not effective to defend against
DeTrust. The main reason is that, with DeTrust, the problem space
for trust verification of the entire circuit is at the same level as ver-
ifying its entire functional space, which is prohibitive for large cir-
cuits.

Consequently, for a specific design, a more practical solution
to alleviate the threat posed by DeTrust is to reduce the problem
space by conducting security analysis and protecting its main as-
sets, based on our knowledge about the design. That is, with a
given design, we first identify the critical components in the sys-
tem, e.g., the cryptographic module. Next, we can adopt infor-
mation flow checking techniques (e.g., [19]) to identify those cir-
cuitries that may affect these critical components. Finally, we run
the extended trust verification techniques as discussed earlier for
HT identification. Note that, if the problem space is still too large,
we can further partition the critical components and focus on each
functional block at a time (e.g., random number generator and key
generator in a cryptographic module). However, care must be taken
to verify the interface between these blocks to ensure the complete-
ness of trust verification.

No doubt to say, the above design-aware HT identification so-
lution significantly reduces computational complexity. However,
how to perform security analysis in terms of HTs is still an open
question.

6. RELATED WORK
In this section, we survey related work in the field of hardware

security and trust.

6.1 Hardware Trust Challenges
Traditionally, the hardware layer of a secure computing system

(e.g., [20–23]) is often implicitly regarded as trustworthy. This is a
rather “naive” assumption, and various hardware Trojans have been
presented in the literature.

King et al. [4] implemented two HTs in general-purpose pro-
cessor, which grants privileged access to the memory elements of
the system. Skorobogatov and Woods [7] found a backdoor in a
military-grade FPGA device. Various HT designs that are able to to
compromise cryptographic device were presented in [24,25]. These
HTs are inserted at the design stage, and DeTrust can be used to en-
hance their stealthiness in terms of trust verification techniques.

HTs can be also inserted at the manufacturing stage. Lin et
al. [26–28] proposed the so-called Trojan side-channels, which are
HTs that can support side-channel attacks. In [29], Wei et al. pre-
sented three types of one-gate HT triggers based on switching power,
leakage power, and delay measurements, respectively. Recently,
Becker et al. [30] implemented a stealthy HT by changing the dopant
polarity of transistors during the manufacturing process.

6.2 Side-Channel Analysis for HT
Identification

Early works in hardware trust field are mainly concerned about
HTs being inserted by a third-party foundry during the manufactur-
ing process, and they rely on side-channel analysis (SCA) for HT
identification. The idea behind is that an HT will affect some side-
channel signatures (e.g., path delay, power consumption or sup-
ply current), even when it is not functionally activated. According
to the signatures, they can be classified into timing-based analy-
sis (e.g., [31]), current-based analysis (e.g., [32]), and power-based
analysis (e.g., [33, 34]). Process variation has a significant impact
on the effectiveness of early works on SCA analysis. Recently,
gate-level characterization [35], multimodal analysis [36], and out-
lier analysis [37] are shown to be resistant to process variation ef-
fects and hence are quite promising.

One common assumption of the above HT detection techniques
is the existence of HT-free golden ICs used as reference, and hence
they are not applicable for identifying HTs inserted at design time.

6.3 Design for Hardware Trust
Ideally, we would like to prevent HTs from ever being inserted

into circuits or ever being triggered at runtime. Some design-for-
trust techniques presented in the literature tried to achieve the above
objectives.

6.3.1 Design Time Prevention
Chakraborty and Bhunia [38] proposed to employ design obfus-

cation such that the circuit operates in two distinct modes, which
dramatically increases the difficulty of HT insertion for attackers.
Potkonjak [39] showed how to prevent untrusted CAD tool to com-
promise the design by checking at every synthesis step. For FPGA-
based design, Huffmire et al. [40] proposed to physically isolate
untrusted IP cores and trusted ones and restrict their communica-
tion, while Dutt and Li [41] adopted error correction coding (ECC)
to detect design tampers that try to change, delete or add logic into
the design.

6.3.2 Run Time Prevention
In [10], Hicks et al. also presented the so-called BlueChip con-

cept to emulate the behavior of the suspicious circuitries at run-
time. However, BlueChip identify suspicious circuitries with UCI
algorithm only, and hence cannot detect HTs designed with De-
Trust. Waksman and Sethumadhavan [11] proposed TrustNet and

DataWatch to detect suspicious malicious behavior in the pipeline
of the processor at runtime. However, they are only effective to cer-
tain pre-defined malicious behavior and their capabilities are lim-
ited by the amount of information to be checked at runtime. Later,
the same authors [12] proposed to disable HTs at runtime by scram-
bling inputs of the hardware units. While effective for computa-
tional units, this technique would fail to disable HTs by DeTrust
embedded in control logic. Dai et al. [42] proposed a specific HT
detection method for Response-Computing Authentication module,
but their approach cannot solve the general HTs designed by De-
Trust.

7. CONCLUSION
IC products are the core components of electronic systems being

used in daily life, and it is essential to ensure that they faithfully
perform their specified functionalities. Hardware Trojans imple-
mented by adversaries, being able to subvert or augment the normal
operation of infected devices, are thus serious threats.

Recently, state-of-the-art hardware trust verification solutions such
as FANCI and VeriTrust are shown to be able to effectively defend
against existing HT designs presented in the literature. Unfortu-
nately, this is not enough because it is expected that adversaries
would adjust their tactics of attacks accordingly. Therefore, we
need to examine whether new types of HTs can be designed to de-
feat these hardware trust verification techniques. In this paper, we
present a so-called DeTrust HT design methodology that is able
to be resistant to all known HT identification techniques, and its
stealthiness has been validated with practical attacks performed on
an OpenRISC processor. Finally, we show that there is no easy fix
to existing solutions against the threat posed by DeTrust, calling for
more advanced future works to ensure hardware trust.

8. ACKNOWLEDGMENTS
This work was supported in part by the Hong Kong SAR Re-

search Grants Council (RGC) under General Research Fund No.
CUHK418111 and No. CUHK418112.

9. REFERENCES
[1] M. Tehranipoor and F. Koushanfar. A survey of hardware trojan

taxonomy and detection. Design and Test of Computers,
27(1):10–25, 2010.

[2] J. Markoff. Old trick threatens the newest weapons. The New York
Times, 27, 2009.

[3] S. Adee. The hunt for the kill switch. Spectrum, IEEE,
45(5):34–39, 2008.

[4] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou.
Designing and implementing malicious hardware. LEET, 8:1–8,
2008.

[5] J. Zhang and Q. Xu. On hardware trojan design and
implementation at register-transfer level. In Proc. IEEE
International Symposium on Hardware-Oriented Security and
Trust (HOST), pp. 107–112, 2013.

[6] Trust-Hub Website.
http://www.trust-hub.org/resources/benchmarks.

[7] S. Skorobogatov and C. Woods. Breakthrough silicon scanning
discovers backdoor in military chip. In Proc. International
Conference on Cryptographic Hardware and Embedded Systems
(CHES), pp. 23–40, 2012.

[8] M. Beaumont, B. Hopkins, and T. Newby. Hardware
trojans-prevention, detection, countermeasures (a literature
review). Technical report, 2011.

[9] U.S.A. Department of Defense. Defense science board task force
on high performance microchip supply. Washington, DC, pp.
2005–02, 2005.

[10] M. Hicks, M. Finnicum, S. T. King, M. K. Martin, and J. M.
Smith. Overcoming an untrusted computing base: Detecting and
removing malicious hardware automatically. In Proc. IEEE
Symposium on Security and Privacy (SP), pp. 159–172, 2010.

[11] A. Waksman and S. Sethumadhavan. Tamper evident
microprocessors. In Proc. IEEE Symposium on Security and
Privacy (SP), pp. 173–188, 2010.

[12] A. Waksman and S. Sethumadhavan. Silencing hardware
backdoors. In Proc. IEEE Symposium on Security and Privacy
(SP), pp. 49–63, 2011.

[13] J. Zhang, F. Yuan, L. Wei, Z. Sun, and Q. Xu. VeriTrust:
verification for hardware trust. In Proc. IEEE/ACM Design
Automation Conference (DAC), Article No. 61, 2013.

[14] A. Waksman, M. Suozzo, and S. Sethumadhavan. FANCI:
Identification of stealthy malicious logic using boolean functional
analysis. In Proc. ACM Conference on Computer and
Communication Security (CCS), pp. 697–708, 2013.

[15] C. Sturton, M. Hicks, D. Wagner, and S. T King. Defeating UCI:
Building stealthy and malicious hardware. In Proc. IEEE
International Symposium on Security and Privacy (SP), pp.
64–77, 2011.

[16] J. Bormann, et al. Complete formal verification of tricore2 and
other processors. In Design and Verification Conference, 2007.

[17] OpenCores Website. http://opencores.org/.
[18] F. Fallah. Binary time-frame expansion. In Proc. IEEE/ACM

International Conference on Computer Aided Design (ICCAD),
pp. 458–464, 2002.

[19] M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood. Complete information flow tracking from the gates
up. In Proc. International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
pp. 109–120, 2009.

[20] J. Szefer and R. B. Lee. Architectural support for
hypervisor-secure virtualization. 40(1):437–450, 2012.

[21] D. Champagne and R. B. Lee. Scalable architectural support for
trusted software. In Proc. Symposium on High Performance
Computer Architecture (HPCA), pp. 1–12. IEEE, 2010.

[22] C. W. Fletcher, M. van Dijk, and S. Devadas. A secure processor
architecture for encrypted computation on untrusted programs. In
Proc. ACM workshop on Scalable Trusted Computing (STC), pp.
3–8, 2012.

[23] TPM Specification Architecture Overview.
http://www.trustedcomputinggroup.org/.

[24] A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno. A
case study in hardware trojan design and implementation.
International Journal of Information Security, 10:1–14, 2011.

[25] Y. Jin, N. Kupp, and Y. Makris. Experiences in hardware trojan
design and implementation. In Proc. IEEE International
Workshop on Hardware-Oriented Security and Trust (HOST), pp.
50–57, 2009.

[26] L. Lin, M. Kasper, T. Güneysu, C. Paar, and W. Burleson. Trojan
side-channels: lightweight hardware trojans through side-channel
engineering. In Proc. International Conference on Cryptographic
Hardware and Embedded Systems (CHES), pp. 382–395, 2009.

[27] L. Lin, W. Burleson, and C. Paar. Moles: malicious off-chip
leakage enabled by side-channels. In Proc. IEEE/ACM
International Conference on Computer-Aided Design (ICCAD),
pp. 117–122, 2009.

[28] Y. Liu, Y. Jin, and Y. Makris. Hardware Trojans in wireless
cryptographic ICs: silicon demonstration & detection method
evaluation. In Proc. IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 399–404, 2013.

[29] S. Wei, K. Li, F. Koushanfar, and M. Potkonjak. Hardware trojan
horse benchmark via optimal creation and placement of malicious
circuitry. In Proc. IEEE/ACM Design Automation Conference
(DAC), pp. 90–95, 2012.

[30] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson. Stealthy
dopant-level hardware trojans. In Proc. International Conference
on Cryptographic Hardware and Embedded Systems (CHES), pp.
197–214, 2013.

[31] Y. Jin and Y. Makris. Hardware trojan detection using path delay
fingerprint. In Proc. IEEE International Workshop on
Hardware-Oriented Security and Trust (HOST), pp. 51–57, 2008.

[32] D. Du, S. Narasimhan, R. S. Chakraborty, and S. Bhunia.
Self-referencing: a scalable side-channel approach for hardware
trojan detection. In Proc. International Conference on
Cryptographic Hardware and Embedded Systems (CHES), pp.
173–187, 2010.

[33] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar.
Trojan detection using IC fingerprinting. In Proc. IEEE
Symposium on Security and Privacy (SP), pp. 296–310, 2007.

[34] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic. Power
supply signal calibration techniques for improving detection
resolution to hardware trojans. In Proc. IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 632–639,
2008.

[35] S. Wei, S. Meguerdichian, and M. Potkonjak. Gate-level
characterization: foundations and hardware security applications.
In Proc. IEEE/ACM Design Automation Conference (DAC), pp.
222–227, 2010.

[36] K. Hu, A. N. Nowroz, S. Reda, and F. Koushanfar.
High-sensitivity hardware trojan detection using multimodal
characterization. In Proc. IEEE/ACM Design, Automation and
Test in Europe (DATE), pp. 1271–1276, 2013.

[37] J. Zhang, H. Yu and Q. Xu. HTOutlier: hardware Trojan detection
with side-channel signature outlier identification. In Proc. IEEE
International Symposium on Hardware-Oriented Security and
Trust (HOST), pp. 55–58, 2012.

[38] R. S. Chakraborty and S. Bhunia. Security against hardware trojan
through a novel application of design obfuscation. In Proc.
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 113–116, 2009.

[39] M. Potkonjak. Synthesis of trustable ICs using untrusted CAD
tools. In Proc. IEEE/ACM Design Automation Conference (DAC),
pp. 633–634, 2010.

[40] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T.
Levin, T. Nguyen, and C. Irvine. Moats and drawbridges: An
isolation primitive for reconfigurable hardware based systems. In
Proc. IEEE Symposium on Security and Privacy (SP), pp.
281–295, 2007.

[41] S. Dutt and L. Li. Trust-based design and check of FPGA circuits
using two-level randomized ECC structures. Transcations on
Reconfigurable Technology and System, 2(1):1–36, 2009.

[42] S. Dai, T. Wei, C. Zhang, T. Wang, Y. Ding, Z. Liang, and W. Zou.
A framework to eliminate backdoors from response-computable
authentication. In Proc. IEEE Symposium on Security and Privacy
(SP), pp. 3–17, 2012.

APPENDIX
In this appendix, we prove that HT designed with DeTrust is able to
evade VeriTrust under all non-trigger conditions. All symbols used
in the following are listed in Tabel 4.

Let us first consider the Boolean function of the HT-affected sig-
nal without DeTrust, wherein there is only one malicious on-set
term cm0 pm0 , given by Eq. 6 (see Section 3.3.2):

f = f ′n +(cn0 pn0 + cm0 pm0)

= f ′n + cc pc(cr
n0

pr
n0
+ cr

m0
pr

m0
),

where

cn0 = cccr
n0
, pn0 = pc pr

n0
,

cm0 = cccr
m0
, pm0 = pc pr

m0
,

cn0 ∈Cn, pn0 ∈ Pn,

cm0 ∈Cm, pm0 ∈ Pm,

and cm0 pm0 denotes a malicious on-set term/product, cn0 pn0 de-
notes a on-set term/product from the normal function, cc pc denotes
the common literals of cn0 pn0 and cm0 pm0 , and f ′n denotes all on-
set terms/products from the normal function except cn0 pn0 . With
DeTrust, we have

f = h1h2 +h3,

where

h1 = cc pc

h2 = cr
n0

pr
n0
+ cr

m0
pr

m0

h3 = f ′n

.

To prove that the above HT implementation is able to evade Ver-
iTrust, we need to prove that f , h1, h2 and h3 have no redundant
inputs under non-trigger conditions. To be specific, we first prove
that h1, h2 and h3 are not redundant for f under non-trigger con-
dition in Statement 1, Statement 2 and Statement 3, and then prove
that h1, h2 and h3 have no redundant inputs under non-trigger con-
dition in Statement 4.

Symbol Meaning
T the set of trigger inputs, T = {t1, t2, . . . , tm}
T c/T r the subset of T , T c ⊂ T ,T r ⊂ T
D the set of functional inputs, D = {d1,d2, . . . ,dn}
Dc/Dr the subsets of D, Dc ⊂ D and Dr ⊂ D
C the set of all conditions driven by all trigger inputs T , C = {c1,c2, . . . ,c2m}
Cn the set of non-trigger conditions, Cn = {cn1 ,cn2 , . . . ,cnx}, Cn ⊂C
Cm the set of the trigger conditions, Cm = {cm1 ,cm2 , . . . ,cmy}, Cm ⊂C, Cm ∪Cn =C Cm ∩Cn =∅
Cc/Cr the set of all conditions driven by T c/T r

F the set of all input patterns driven by all functional inputs D
Pn the subset of F that let the normal function output logic ‘1’, Pn = {pn1 , pn2 , . . . , pny}, Pn ⊂ F
Pm the subset of F that let the malicious function output logic ‘1’, Pm = {pm1 , pm2 , . . . , pmz}, Pm ⊂ F
Fc/Fr the set of all input patterns driven by Dc/Dr

Table 4: List of Notations

To prove that an input is not redundant under non-trigger con-
dition, our idea is to find one pair of input patterns that meet the
following three requirements:

• they are different only at the value of this input;

• they would generate different output values;

• they can be activated under non-trigger condition.

Next, let us present proofs of Statement 1, Statement 2 and State-
ment 3 in the following, respectively.

Statement 1: h1 is not redundant for f under non-trigger condi-
tion.

PROOF. We use input patterns, {1,1,0} and {0,1,0} for {h1,h2,h3},
to prove statement 1. These two input patterns meet the first two
requirements, and next we prove that they can be activated under
non-trigger condition as follows.

The input pattern, {1,1,0}, can be generated by activating cn0 pn0

that belongs to the normal function. With cn0 pn0 , h1 = 1, as cc pc

is activated; h2 = 1, as cr
n0

pr
n0

is activated; h3 = 0, as h3 = f ′n does
not include cn0 pn0 . Note that only cn0 pn0 can generate {1,1,0}.

The input pattern, {0,1,0}, can be generated by activating a set
of input patterns, {cc

i cr
m0

pc pr
m0
|cc

i ∈ Cc,cc
i 6= cc} which are con-

trolled by non-trigger condition. With such input patterns, h1 = 0,
as cc

i pc where cc
i 6= cc is activated; h2 = 1, as cr

m0
pr

m0
is activated;

h3 = 0, as {cc
i cr

m0
pc pr

m0
|cc

i ∈ Cc,cc
i 6= cc}, that is the neighbor of

the malicious on-set term/product of cccr
m0

pc pr
m0

, must be equal to
logic ‘0’, according to [13]. Note that {cc

i cr
m0

pc
j pr

m0
|cc

i ∈ Cc,cc
i 6=

cc; pc
j ∈Fc, pc

j 6= pc}, {cc
i cr

n0
pc pr

n0
|cc

i ∈Cc,cc
i 6= cc}, {cccr

n0
pc

j pr
n0
|pc

j ∈
Fc, pc

j 6= pc}, and {cc
i cr

n0
pc

j pr
n0
|cc

i ∈Cc,cc
i 6= cc; pc

j ∈ Fc, pc
j 6= pc}

are another four sets whose elements are possible to generate {0,1,0},
as long as they are not included into f ′n.

Since f = h1h2+h3, only the pair of input patterns, {1,1,0} and
{0,1,0}, can be used to prove Statement 1.

Statement 2: h2 is not redundant for f under non-trigger condi-
tion.

PROOF. We use input patterns, {1,1,0} and {1,0,0} for {h1,h2,h3},
to prove statement 2. These two input patterns meet the first two
requirements, and next we prove that they can be activated under
non-trigger condition as follows.

The input pattern, {1,1,0}, can be generated by cn0 pn0 , which
has been proved in the statement 1.

The input pattern, {1,0,0}, can be generated by activating a set
of input patterns, {cccr

mi
pc pr

m0
|cr

mi
∈Cr,cr

mi
6= cr

m0
} which are con-

trolled by non-trigger condition. With such input patterns, h1 = 1,
as cc pc is activated; h2 = 0, as both cr

m0
pr

m0
and cr

n0
pr

n0
are not ac-

tivated; h3 = 0, as the activated {cccr
mi

pc pr
m0
|cr

mi
∈Cr,cr

mi
6= cr

m0
},

that is the neighbor of malicious on-set term/product of cccr
m0

pc pr
m0

,
must be equal to logic ‘0’. Note that {cccr

mi
pc pr

m j
|cr

mi
∈Cr,cr

mi
6=

cr
m0

; pr
m j
∈ Fr, pr

m j
6= pr

m0
} is another set of input patterns to possi-

bly generate {1,0,0} as long as cr
n0

pr
n0

= 0 and f ′n = 0.

Since f = h1h2+h3, only the pair of input patterns, {1,1,0} and
{1,0,0}, can be used to prove Statement 2.

Statement 3: h3 is not redundant for f under non-trigger condi-
tion.

PROOF. We use input patterns, {0,0,0} and {0,0,1} for {h1,h2,h3},
to prove statement 3. These two input patterns meet the first two
requirements, and next we prove that they can be activated under
non-trigger condition as follows.

The input pattern, {0,0,0}, can be generated by activating a set
of input patterns, {ci pi|ci ∈ Cn,ci 6= cn0 ; pi ∈ (F −Pn), pi 6= pm0}
which are controlled by non-trigger conditions. With such input
patterns, h1 = 0 and h2 = 0, as cc pc, cr

n0
pr

n0
and cr

m0
pr

m0
are not ac-

tivated; h3 = 0, as f ′n outputs logic ‘0’ due to {pi|pi ∈ (F−Pn), pi 6=
pm0}.

The input pattern, {0,0,1}, can be generated by activating a set
of patterns, {ci pi|ci ∈ Cn,ci 6= cn0 ; pi ∈ Pn, pi 6= pm0} which are
controlled by non-trigger condition. With such input patterns, h1 =
0 and h2 = 0, as it is easy to find an element in this set where cc pc,
cr

n0
pr

n0
and cr

m0
pr

m0
are not activated; h3 = 1, as f ′n outputs logic ‘1’

due to {ci|ci ∈Cn,ci 6= cn0} and {pi|pi ∈ Pn, pi 6= pm0}.
Moreover, Statement 3 can be proven by the {0,1,0} and {0,1,1},

and {1,0,0} and {1,0,1} as well. We do not list all those input pat-
terns, since above is enough to prove Statement 3.

With the above, Statement 1, Statement 2 and Statement 3 to-
gether prove that f has no redundant inputs under non-trigger con-
dition.

Statement 4: h1, h2 and h3 have no redundant inputs under non-
trigger condition.

PROOF. All input patterns of h1, h2 and h3 could be activated
without triggering the HT, since the complete trigger condition does
not exist in their fan-in cones. Therefore, all their inputs are not
redundant under non-trigger condition.

If the malicious function contains more than one on-set terms,
with DeTrust, we have

f =
k−1

∑
i=0

(h2i+1h2i+2)+h2k+1,

where

h2i+1 = cci pci

h2i+2 = cri
ni

pri
ni
+ cri

mi
pri

mi

h2k+1 = f ′n

,

as shown in Eq. 11 (see Section 3.3.2). We are able to follow the
above procedure to prove that h2i+1, h2i+2 and h2k+1 are not re-
dundant for f , and meanwhile h1, h2, . . . , h2k+1 have no redundant
inputs. Consequently, DeTrust is able to successfully evade Ver-
iTrust.

