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ABSTRACT

Learning-based dynamic power management (DPM) techniques,
being able to adapt to varying system conditions and workloads, have
attracted lots of research attention recently. To the best of our knowl-
edge, however, none of the existing learning-based DPM solutions are
dedicated to power reduction in multi-core processors, although they
can be utilized by treating each processor core as a standalone en-
tity and conducting DPM for them separately. In this work, by in-
cluding task allocation into our learning-based DPM framework for
multi-core processors, we are able to manipulate idle periods on pro-
cessor cores to achieve a better tradeoff between power consumption
and system performance. Experimental results show that the proposed
solution significantly outperforms existing DPM techniques.

I. INTRODUCTION

Dynamic power management (DPM) for electronic systems, which
trades off performance for power savings in a controlled fashion, is
one of the most successful techniques used for energy-efficient com-
puting [1]. To be specific, by taking system workloads into account,
DPM reduces power dissipation via selectively shutting down (or low-
ering the performance of) inactive system components. For example,
a microprocessor can be put in sleep mode for power reduction when
it is idle for some time and it is waken up when new tasks arrive.

State transitions in DPM, however, involve non-trivial performance
penalty and power cost, and an eager power management policy that
turns off system components as soon as they are idle may even in-
crease the system power dissipation and degrades its performance at
the same time. Consequently, how to optimize the DPM policy, the
procedure that takes decision on the state of the system components, is
a rather complex constrained optimization problem, especially consid-
ering the fact that a component may have multiple operational modes
with different power benefits and transition costs1.

Because it is very difficult, if not impossible, to choose the op-
portune moment to turn off inactive components without knowing the
actual workloads of the system in advance, the key issue in DPM pol-
icy optimization is how to efficiently utilize/predict the idle periods
of system components to obtain power saving without much perfor-
mance degradation. Earlier work in this domain tries to characterize
the system workloads first and then derive an optimal policy for the
system (e.g., [2]). Stochastic modeling for workloads such as Markov
decision process were also used for complicated systems (e.g., [1, 3]).
The effectiveness of the above techniques, however, relies heavily on
the accuracy of their workload models, which are not guaranteed dur-
ing the off-line optimization process. Recently, several learning-based
DPM techniques have been presented in the literature (e.g., [4–6,12]).
By online learning the workload characteristics and adjusting DPM
policy on-the-fly, learning-based solutions can adapt to varying system

1For example, a processor in deep sleep state has lower power consumption but
requires more transition time and transition power when waken up, compared
to that in light sleep state.

conditions and workloads and hence are potentially able to achieve
better power/performance tradeoff than those off-line solutions.

Today, multi-core processors are widely used in electronic systems.
Since the system behavior gets more complicated as the number of
processor cores increases, building an effective off-line DPM solution
may involve long trial-and-error iterations for workload modeling and
learning-based solutions seem to be a natural choice. To the best of
our knowledge, however, none of the existing learning-based DPM
solutions are dedicated to power reduction in multi-core processors,
although they can be utilized by treating each processor core as a stan-
dalone entity and conducting DPM for them separately.

In multi-core processors, global power management solutions can
outperform those solutions that manage power per-core locally. This is
because, given the same workloads, various task allocation strategies
may lead to significantly different idle periods on each processor core,
and hence have a significant impact on the efficiency of DPM policies.
From a different perspective, even though the workloads are still un-
known, the idle periods on processor cores become partially control-
lable in multi-core processors. Motivated by the above, we develop a
novel learning-based DPM framework for multi-core processors that
judiciously allocate tasks on processor cores to achieve a better trade-
off between power consumption and system performance. To be spe-
cific, we use Q-learning, a kind of reinforcement learning technique,
to learn the system behavior and determine proper processor power
state transitions. As the solution space increases exponentially with
the increase of processor cores, we use neural network in our learn-
ing framework to speed up the training process. Experimental results
show that our proposed power manager for multi-core processors sig-
nificantly outperforms existing DPM techniques.

The remainder of this paper is organized as follows. In Section II,
we survey related work in this area and motivate our work. The pro-
posed learning-based DPM framework and the corresponding learning
algorithms are then detailed in Section III and Section IV, respectively.
Next, Section V presents our experimental results. Finally, Section VI
concludes this paper.

II. RELATED WORK AND MOTIVATION

A. Related Work

There are numerous related works in dynamic power management
in the literature. In this work, we focus on how to conduct effective
power state transitions. From this aspect, generally speaking, existing
DPM policies can be classified into two categories [4]: heuristic poli-
cies and stochastic policies. Time-out policy [7] is one of the most
widely-used heuristic policies, which simply turns off a component
when the duration time, for which the component has been in idle pe-
riod, exceeds a pre-defined time interval. Time-out policies are simple
and robust, but they may be too fast or too slow to react. Stochastic
policies, on the other hand, model system state changes and request ar-
rivals as stochastic processes. Markov decision process [1] and Semi-
Markov decision process [3] are often adopted to derive an optimal
DPM policy according to these models.



Fig. 1. Motivational Example

In the above works, DPM policies are determined at design stage
and they may not work well with varying workload characteristics and
environment conditions. Learning-based DPM solutions are thus at-
tractive since they are able to adapt to varying system conditions and
workloads. Srivastava et al. [8] explored a shutdown mechanism to
predict the length of idle time based on real-life traces and recent com-
putation history. In [2], Hwang et al. predicted the current idle period
length using exponential average approach based on previous idle pe-
riods. In [6], Steinbach proposed reinforcement learning-based DPM
policy to perform mid-level power management in wireless network
cards. Theocharous et al. [9] considered user annoyance as a per-
formance constraint and presented a user-based adaptive power man-
agement technique. In [4], Dhiman and Rosing proposed to dynam-
ically select the best DPM policy from a set of candidate policies.
In [12], Tan et al. presented an approach for system-level power man-
agement in a partially observable environment, based on model-free
constrained reinforcement learning.

There are also some recent works that consider DPM in multi-core
processors, which can be categorized into per-core approach [5,10,11]
and chip-wide approach [13, 14]. In [10], Canturk et al. proposed an
approach to set the power mode of each core to meet a power bud-
get. Jung et al. [5, 11] presented a supervised learning-based DPM
framework for multi-core processors. Their approach, however, deter-
mines power management actions for each core based on their indi-
vidual workload prediction and hence is not a “true” multi-core power
management scheme. In [13], Sebastian et al. utilized a control the-
ory based controller to apply DVFS technique, but the task-to-core
allocation is fixed in their approach. In [14], Mohammad et al. pro-
posed a hierarchical DPM framework under given throughput con-
straint, which employs core consolidation, coarse-grained DVFS and
task allocation at the CMP level and fine-grained DVFS based on
closed-loop feedback control at the individual core level. This work
required to obtain task characteristic a priori for task allocation.

B. Motivation

As discussed earlier, in multi-core processors, we have the flexibil-
ity to assign a task to any processor core and hence the idle periods on
processor cores become partially controllable, which can be exploited
for power savings. Note that, for the sake of simplicity, we assume
that each task is executed on only one core and there is no depen-
dency between tasks. In addition, we mainly consider dynamic power
consumption for task execution in this work.

Fig. 1 presents the motivational example for our work. In this 4-
core processor, when taskn+1 arrives, allocating it to different cores
for processing may lead to very different results. Suppose the task
is assigned to core 2. Since this core has been idle for some time, it
might be in sleep mode at this time point, and we have to wake it up
to process this task, causing extra power dissipation and performance
penalty. If, however, the task is assigned to core 1, we are able to save
the above cost without incurring much performance penalty since it is
about to finish the task assigned to it earlier. Ideally, if we can assign
a new task to a processor core that has just finished its earlier-assigned
task at that time point, we do not need to suffer from any cost.

Motivated by the above, we develop a novel learning-based DPM
framework for multi-core processors that judiciously allocate tasks on
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Fig. 2. Abstract Structure of DPM System Model ������
Fig. 3. Q-learning Cycle [15]

processor cores to achieve a better tradeoff between power dissipation
and system performance, as discussed in the following sections.

III. SYSTEM FRAMEWORK

A power-manageable system can be modeled as shown in Fig. 2 [1,
12], which includes three components: service requester (SR), service
queue (SQ) and service provider (SP). SR issues requests as the event
source, while SP processes requests with different power modes. SQ
buffers requests that cannot be processed at once, if SP is too busy.
The power manager observes system states (consisting of SR, SQ and
SP states), and controls the behavior of SP, to achieve power savings
at certain performance penalty. Based on the above, we setup our
Q-learning model for DPM problem in multi-core processors in this
section.

A. Background on Q-Learning

Q-learning, as one of the prevalent reinforcement learning algo-
rithms, has been applied in many scientific and engineering fields.
Since it is also used in our proposed DPM solution, we briefly in-
troduce it in the following.

The basic idea of Q-learning [6, 15] is to decide on what action to
take based on current system state information in order to maximize
the expected reward in the future by mapping states to actions. In stan-
dard Q-learning framework (as shown in Fig. 3), an agent is connected
to its environment via perception and actions. In each step t, the agent
observes the system state st , chooses an action at to perform, and then
receives r(st ,at) from the environment and observes new state st+1.
Formally, the model consists of

• a discrete set of environmental states, S = {st};

• a discrete set of agent actions, A = {at};

• a reward function R={r(st ,at)}: S×A→ R.

In each state, there is a Q-value associated with each action. The
definition of Q-value is the sum of the reinforcements received when
performing the associated action and then following the given policy
thereafter. Given the definition, it is easy to derive the equivalent of
the Bellman equation for Q-learning:

Q(st ,at) = r(st ,at)+ γ ·max
at+1

Q(st+1,at+1) , (1)

which is the objective to be maximized in Q-learning. According to
this definition, when receiving reward in each learning cycle, we up-
date Q-value according to the following equation:

Qnew(st ,at)= Q(st ,at)+µ ·[r(st ,at)+γ ·max
at+1

Q(st+1,at+1)−Q(st ,at)] .

(2)



Here r(st ,at) is the reward received in state st with action at taken;
µ is learning rate; and γ is discount rate. It should be noted that

• the learning rate µ determines what extent the newly acquired
information will override the old information to, while the dis-
count rate γ determines the importance of future rewards;

• the number of possible system states and actions must be finite,
and as the number of states and actions increases, the Q-table
gets bigger and thus the learning accuracy deteriorates quickly;

• if the agent always just takes the action with the highest Q-value
for a given state, it might end up in a local maximum, because
one action might be repeatedly taken without exploring new ac-
tions.

B. State Space

In our Q-learning model, system states are composed of the states
of SQ and SP only, because the state of SR is unknown a priori. To
simplify the problem, we firstly consider how to describe the state
space of a single-core system, and then extend it to multi-core proces-
sors.

For single-core processors, we use a vector with two dimensions to
describe its state (st ,qt). Therein, st stands for the processor power
state, e.g., run mode or sleep mode. qt represents the queue status,
which indicates how many task requests are stored in queue to wait
for processing. Suppose we consider qt = 0, 1, and 2 respectively for
the cases that the number of requests in the queue is 0, 1 and larger
than 1. There are as many as (nc · nq) states, where nc is the number
of power states, and nq is the number of queue states. Let (st+1,qt+1)
represent the next state and at represent the taken action, we have
(st ,qt)

at→ (st+1,qt+1).
To represent system states in multi-core processors with n cores,

we can extend the state vector from two dimensions to 2n dimensions.
Hence, we have the state representation (st1,st2, ...,stn;qt1,qt2, ...,qtn),
wherein sti and qti are the core power state and the waiting queue state
for core i, respectively. With the above representation, however, the
size of the state space increases to (nc ·nq)n. Such a huge state space is
a critical problem for learning-based approaches, because in this case
many more training samples are needed, and learning accuracy dete-
riorates quickly. To solve this problem, we utilize neural network to
approximate Q-values (detailed later in Section IV).

C. Action Space

In our model, we sample the system state at each time point when
a task request arrives. The power manager then observes the current
system state, and determines an action for SP to operate. As shown
in Fig. 1, when taskn+1 arrives, its arrival time can determine the time
point t2. At that time point, power manager samples system state, and
chooses an action to apply. The action is composed of two compo-
nents: not only the core that taskn+1 is assigned to, but also the power
state of the assigned core after finishing this task. In other words, the
power manager presets the power modes for all the cores. If idle time
slots appear in the cores, they will transfer to the appointed power
modes.

The action can be represented as (coret ,modet ). The variable modet
stands for the preset mode for assigned core, and coret is the core
index to indicate which core to assign this task to. In this case, the
action space size is (nc · n), where nc is the number of power modes
for each core and n is the number of cores.

D. Reward

The objective of DPM techniques is usually to achieve the maxi-
mum power savings at slight performance penalty cost. To achieve a
tradeoff between the two items, the reward function used in our Q-
learning model is expressed as below:

R(~st ,~at) =−(P(~st ,~at)+β ·RT (~st ,~at)) , (3)

Q( 1 … , p, p+1, … , p+q)

w1,1
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Fig. 4. Multi-Layer Sigmoid Approximation Neural Network

where R is reward, P is mean power dissipation, RT is response time
and β is the coefficient to trade off power and performance. If β-
value is changed, the weights of mean power and response time in
reward function are adjusted to satisfy system demand. A larger β-
value means that response time is more important to our concern.

At the time point with system state ~st , the power manager chooses
action ~at . Then the system state transfers from ~st to ~st+1, and corre-
sponding reward value can be received.

IV. PROPOSED LEARNING ALGORITHM

A. Q-Function Approximation

One of the most challenging issues in our work is the huge system
space size ((nc ·nq)n · (nc ·n)), which is exponentially increased with
respect to processor core number n. Q-learning at its simplest version
uses tables to store Q-values. This not only costs insufferable memory,
but also requires a huge amount of training samples to learn the Q-
table accurately. For example, if we describe core with up to 3 power
states and 2 queue states, a 8-core processor would have (3 ·2)8 system
states and (3 · 8) actions. Suppose that 5 training samples are needed
for each table cell, ((3 ·2)8 ·(3 ·8) ·5) = 201,553,920 training samples
are required, which is almost impossible.

To address the above issue, we use neural network (NN) [15] to ap-
proximate the Q-function. Hence, the key task in the Q-learning for
our problem becomes how to estimate the mapping Q(~s,~a) :~s×~a →
Q. We adopt the feedforward neural network to model the mapping
Q(~s,~a) and represent the value function of state-action pair (st , at ).
There are a variety of neural networks that are applicable to func-
tion approximation, and we consider back propagation neural network
(BPNN) [15], one of the most prevailing neural algorithms in dealing
with function approximation.

As shown in Fig. 4, there are three layers in the used neural net-
work, namely, input, hidden, and output layers, respectively. In the
input layer, the input vector is the composite of state vector (~s1,...,~sn)
and action vector ~a. We use binary encoding scheme to denote the
input vectors for every possible system state and action. In the hidden
layer, the hidden nodes Hi employs the following sigmoid function,

H j = 1/(1+ e−∑p+q
i=1 Φi·wi, j ) , (4)

where wi, j and ui are the parameters of neural network, Φi denotes
one bit of binary input, p denotes the bit number of binary input for
system state, while q denotes the bit number of binary input for action.
In the output layer, the approximated Q-value function is given by

Q(~s,~a) =
h

∑
i=1

Hi ·u j . (5)

As a whole, this neural network describes a non-linear mapping
Q(~s,~a). At each time t, the parameters of the network (w1,1,..., wp+q,h;
u1,...,uh) are updated in a gradient manner with the help of the back-
propagation algorithm [15]. The errors propagate backwardly from



the output nodes to the inner nodes to adjust the network’s weights.
When it is applied to Q-learning, the input of back propagation neural
network is the state-action pair and its output is the Q-value corre-
sponding to the state-action pair.

B. Action Selection

The action selection mechanism is an important component of Q-
learning. There are two problems to tackle in our action selection
phase.

First, if the agent always takes the action with the highest Q-value
for a given state, it might end up in a local maximum, because one ac-
tion might be repeatedly taken without exploring new actions, which
prevents us from finding other solution. In other words, action se-
lection may greatly affect learning effectiveness, due to the tradeoff
between exploitation and exploration. To balance these two aspects,
we employ ε-greedy method for action selection, so that the agent can
reinforce the evaluation of the known actions to be good and also ex-
plore unknown actions, which helps in avoiding local maximum. We
gives the action that owns the highest Q-value a high selected proba-
bility (1-ε), and all the actions equally share the remaining probability
ε. The probability for choosing a certain action ai is presented as be-
low.

Pi =
{

(1− ε)+(ε/num) if the Q value of action ai is the highest;
ε/num otherwise.

(6)
We consider ε = 10% here, and num is action number. That means,

we have the probability of 10% to select another action instead of the
action with highest Q-value, to void local maximum.

Second, since one of the motivations in this work is to reduce un-
necessary power state transitions to avoid transition costs, our algo-
rithm has the trend to allocate tasks successively to certain cores. This
may induce temperature stress on certain cores and cause reliability
concerns. To tackle this problem, our action selection mechanism is
further modified. Each time, if the temperature of the core chosen
is higher than a pre-defined temperature threshold, we would give up
this action and try to select another action from the remaining cores
by ε-greedy again.

C. Overall Flow

To sum up, the proposed Q-learning algorithm is illuminated in
Fig. 5, which starts with initialization (Line 1). The procedure is re-
peated until there are no more episodes. For every episode, the Q-
values are computed via back propagation neural network. We then
select an action in the ε-greedy manner (Line 5), and take the action
to transfer system state from ~s to ~s′ and receive reward value (Line
7). When we get the reward as feedback, we update the parameters
of back propagation neural network using gradient descent algorithm
(Line 8), and update state~s using next state ~s′ (Line 9).

Note that, an off-line training phase with a convergence criterion
(e.g., the normalized error of approximated Q-value is less than 5%)
can be used to improve the solution quality during the beginning of
task execution, if necessary. Proposed solution performs online train-
ing to both Q-learning and neural network by considering each task as
one training sample.

D. Cost Analysis

Our proposed DPM algorithm can be implemented using software
and/or extra hardware. For each task, power manager tries to select the
proper action before its execution, and receives system information to
train the neural network via updating parameters, which induce both
energy and performance costs. Through cost analysis, we can esti-
mate that, for each task, a pure-software implementation needs O(n2)
multiplication and addition operations. For example, in 4-core pro-
cessors with CPU frequency 1GHz, assuming multiplication needs 4
CPU cycles and addition needs 1 CPU cycle, the mean allocation time
for each task is in the order of 10µs, which is usually not a big concern
as the average task execution time is much higher (e.g., in the order of

1. Initialization()
2. Set neural network parameters to random values

between 0 and 1.0
3. Initialize system state~s

4. Repeat for each step of the current episode
5. Select action ~a using ε-greedy
6. Take action ~a
7. Observe next state and receive reward R
8. Update back propagation neural network parameters

using gradient descent algorithm
9. Set system state~s ← ~s′
10. Until there are no more episodes

Fig. 5. Proposed Q-learning Algorithm Based on Back Propagation
Neural Network.

1. Repeat for each task arrival
2. if (there are idle cores, not executing tasks)
3. Select one of them to execute current task
4. else
5. Select the running core with least task number in queue
6. if (its task number ≤ pre-defined parameter H)
7. Use this core to execute current task
8. else
9. Wake up a sleep core to execute current task
10. Set the selected core into sleep mode when idle period ≥ Tbe
11. Until there are no more tasks

Fig. 6. Heuristic DPM Approach as Baseline Solution

10ms). Note that, with an increasing number of processor cores, the
cost would increase quadratically, and not be negligible any longer.
To tackle this problem, we can easily change our current DPM model
to classify cores with similar state into groups, redefine the actions to
select a certain group, and then choose a core in the selected group
hierarchically.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the effectiveness of proposed DPM solution, we imple-
ment a simulator for multi-core processors to obtain the power dis-
sipation and performance index. Hotspot [16] is integrated into our
simulator to acquire the operational temperature for processor cores
and we set the threshold to avoid allocating task onto a processor core
as 85◦C. Hypothetical homogeneous 4-core processor and 8-core pro-
cessor are used in our experiments, wherein all processor cores have
the same execution time for a certain task, based on power and thermal
features of Intel Atom Processor N450 [17].

As discussed earlier, the proposed DPM policy does not require in-
formation about the characteristics of each task, since our concerns
in this work are to reduce unnecessary power state transitions (and
hence avoid transition costs) and set proper power mode for each pro-
cessor core. From this viewpoint, the different power value of each
individual task does not have a high impact on the effectiveness of the
proposed technique. Instead, the task flow in the entire workloads,
characterized by task inter-arrival time and task service time, is the
decisive factor. Consequently, synthetic workloads are used in our ex-
periments, wherein the power value of each task is generated using
PTscalar [18], based on SPEC2000 benchmark programs [19]. The
task arrival to the system is assumed as a Poisson process with arrival
rate λ, which is widely used in prior work [20], while the service time
is an exponential distribution with mean 1/µ in our simulation. By
denoting the processor core number as n, task load ρ for each core
is λ/nµ. A larger ρ-value means that system is running with heavier
workloads. Each task set is composed of 1,000 tasks.

There are numerous prior works in the field of dynamic power man-



Parameter
(1/µ, ρ)

Target
4-Core Processors 8-Core Processors

Oracle Policy in [12]
Proposed ∆(%)

Oracle Policy in [12]
Proposed ∆(%)

β1 β2 β1 β2 β1 β2 β1 β2

(0.1, 0.2)
En. 1.170 2.071 1.722 1.724 -16.88 -16.77 1.121 2.061 1.643 1.686 -20.30 -18.19
RT 0.197 0.283 0.284 0.283 0.41 -0.18 0.189 0.258 0.274 0.259 6.32 0.41

(0.1, 0.4)
En. 1.153 1.990 1.449 1.494 -27.17 -24.91 1.059 1.954 1.311 1.373 -32.88 -29.71
RT 0.204 0.340 0.300 0.290 -11.80 -14.47 0.187 0.268 0.246 0.242 -8.22 -9.79

(0.1, 0.6)
En. 1.121 1.691 1.333 1.381 -21.14 -18.34 1.066 1.536 1.179 1.265 -23.24 -17.66
RT 0.201 0.352 0.316 0.292 -10.42 -17.17 0.191 0.311 0.288 0.277 -7.44 -11.04

(0.1, 0.8)
En. 1.060 1.388 1.210 1.224 -12.84 -11.85 1.079 1.385 1.224 1.254 -11.65 -9.45
RT 0.192 0.356 0.307 0.302 -13.63 -15.17 0.195 0.365 0.293 0.275 -19.79 -24.81

En.: average energy consumption; RT: average response time;
∆: the difference ratio between the policy in [12] and proposed policy.

TABLE I
ENERGY SAVING/RESPONSE TIME COMPARISON BETWEEN THE POLICY IN [12] AND PROPOSED POLICY
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Fig. 7. Energy Consumption with Various Service Times

agement. To the best of our knowledge, however, none of them targets
exactly the same problem for multi-core processors as ours. Hence,
for comparison, we implement the reinforcement learning-based pol-
icy presented in [12], which is the state-of-the-art DPM approach re-
ported in the literature, and used to conduct DPM for each processor
core individually. The comparison to this work can demonstrate the
advantage of manipulating idle periods globally in multi-core proces-
sors, a feature that is not available for single-core processors. In addi-
tion, we construct a global heuristic-based DPM approach for multi-
core processors as described in Fig. 6 to demonstrate the effectiveness
provided by learning. This heuristic-based approach is constructed
based on the observation according to our motivational example in
Fig. 1. If there are idle cores in the system, assigning tasks onto these
cores would not induce any transition costs, hence they should be the
first choices; otherwise, we need to choose between cores in run mode
and sleep mode. There are not an absolute advantage between these
two kinds of cores, hence a pre-defined parameter H is used to decide
the choice through observing task queue state. Moreover, We also
compare the proposed policy to the oracle policy [21], an ideal one
that is obtained assuming the task arrivals are known in advance and
hence induces no performance penalty.

B. Results and Discussion

In Table I and Table II, Column 1 indicates the core load ρ of the
task sets; Column 2 presents the resulting mean energy consumption
(En.) and mean response time (RT) for each task; both 4-core case and
8-core case are included. Each column for presenting proposed pol-
icy has two sub-columns for β1 = 100 and β2 = 1,000, respectively.
Here, β1 and β2 are the parameter values to trade off power dissipa-
tion and response time in Equation 3. The column for heuristic policy
in Table II has three sub-columns, showing the results with different
parameter values (H = 1, 2 and 3).

First of all, as shown in Table I and Table II, our proposed DPM
technique can obtain better energy savings when compared with both
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learning-based policy [12] and heuristic policy in Fig. 6. To be spe-
cific, for the 4-core case with β2, the proposed policy can achieve
24.91% energy savings with 14.47% response time reduction com-
pared to the single-core learning-based policy in [12], and 16.32% en-
ergy savings with 17.19% response time reduction compared with the
simple heuristic policy for multi-core processors with H2 = 2, when
core load ρ = 0.4.

One notable finding from the results is that our DPM technique can
provide more power savings when the core load ρ is moderate. This
is mainly because when the task sequence is too tight/loose, most of
the cores have always been in run/idle mode, thus there are not many
power state transitions that can be manipulated by the proposed policy.
As for the mean response time, the proposed policy can achieve a
considerable decrease in most cases except the case with ρ = 0.2. This
is expected because in the case of low ρ, the improvement space for
response time is limited. If we change heuristic policy parameter H
(from H1 = 1 to H3 = 3), heuristic policy can obtain more energy
savings at the cost of performance loss. When we increase the tradeoff
parameter β (from β1 = 100 to β2 = 1,000), we can find that energy
consumption is increased while the response time is decreased. This is
because a larger β-value means that response time is more important
in the reward function definition (refer to Equation 3). The results
of 8-core processors, shown in Table I and Table II, have the similar
trend with the 4-core case.

Furthermore, to find out the efficacy of our proposed DPM tech-
nique in the cases with various task service times, we keep core load
ρ = 0.2, and vary task service time from 0.04 to 0.4. As Fig. 7 and
Fig. 8 indicate, the proposed policy is the most close to oracle policy
and performs much better than the other two kinds of policies.

Finally, we conduct some experiments to obtain the cost of our
proposed approach, considering software implementation of the DPM
policy. The energy cost is those energy consumed by running our
learning algorithm, while the response time cost is the task allocation
time. As shown in Table III, the cost of our proposed approach is very



Parameter
(1/µ, ρ)

Target
4-Core Processors 8-Core Processors

Heuristic Proposed ∆1(%) ∆2(%) ∆3(%) Heuristic Proposed ∆1(%) ∆2(%) ∆3(%)
H1 H2 H3 β1 β2 β1 β2 β1 β2 β1 β2 H1 H2 H3 β1 β2 β1 β2 β1 β2 β1 β2

(0.1,0.2)
En. 2.234 2.021 1.906 1.722 1.724 -22.92 -22.83 -14.82 -14.71 -9.65 -9.55 2.139 1.95 1.775 1.643 1.686 -23.19 -21.18 -15.77 -13.54 -7.44 -5.01
RT 0.290 0.300 0.313 0.284 0.283 -2.07 -2.41 -5.24 -5.8 -9.27 -9.58 0.27 0.28 0.305 0.274 0.259 1.48 -4.07 -2.09 -7.53 -10.16 -15.08

(0.1,0.4)
En. 1.875 1.785 1.698 1.449 1.494 -22.72 -20.32 -18.84 -16.32 -14.66 -12.01 1.857 1.809 1.8 1.311 1.373 -29.40 -26.06 -27.54 -24.11 -27.17 -23.72
RT 0.308 0.351 0.375 0.300 0.290 -2.60 -5.84 -14.61 -17.19 -20.00 -22.67 0.241 0.244 0.26 0.246 0.242 2.07 0.41 0.67 -1.05 -5.38 -6.92

(0.1,0.6)
En. 1.698 1.635 1.628 1.333 1.381 -21.50 -18.67 -18.45 -15.56 -18.12 -15.17 1.583 1.502 1.493 1.179 1.265 -25.52 -20.09 -21.51 -15.80 -21.03 -15.27
RT 0.329 0.345 0.354 0.316 0.292 -3.95 -11.25 -8.58 -15.47 -10.73 -17.51 0.328 0.347 0.345 0.288 0.277 -12.20 -15.55 -17.04 -20.27 -16.52 -19.71

(0.1,0.8)
En. 1.521 1.435 1.430 1.210 1.224 -20.45 -19.53 -15.7 -14.74 -15.38 -14.41 1.548 1.548 1.517 1.224 1.254 -20.93 -18.99 -20.95 -18.98 -19.31 -17.34
RT 0.365 0.412 0.460 0.307 0.302 -15.89 -17.26 -25.45 -26.79 -33.26 -34.35 0.355 0.381 0.39 0.293 0.275 -17.46 -22.54 -22.98 -27.80 -24.87 -29.49

H1, H2, and H3: heuristic policy with parameter H = 1,2, and 3;
∆1, ∆2, ∆3: the difference ratio between heuristic policy H1/H2/H3 and proposed policy.

TABLE II
ENERGY SAVING/RESPONSE TIME COMPARISON BETWEEN HEURISTIC POLICY IN FIG. 6 AND PROPOSED POLICY

ρ
Allocation Cost in 4-Core Processors

Energy Energy Cost ∆1(%) Response Time Time Cost ∆2(%)

0.2 1.722 1.689E-04 0.0098 0.284 3.071E-05 0.0108

0.4 1.449 1.691E-04 0.0117 0.300 3.075E-05 0.0103

0.6 1.333 1.687E-04 0.0127 0.316 3.068E-05 0.0097

0.8 1.210 1.688E-04 0.0140 0.307 3.069E-05 0.0100

ρ
Allocation Cost in 8-Core Processors

Energy Energy Cost ∆1(%) Response Time Time Cost ∆2(%)

0.2 1.643 5.094E-04 0.0310 0.274 9.262E-05 0.0338

0.4 1.311 5.101E-04 0.0389 0.246 9.274E-05 0.0377

0.6 1.179 5.091E-04 0.0432 0.288 9.257E-05 0.0321

0.8 1.224 5.093E-04 0.0416 0.293 9.259E-05 0.0316

ρ, task load for one core; ∆1, energy cost ratio; ∆2, time cost ratio.

TABLE III
ALLOCATION COST IN 4-CORE & 8-CORE PROCESSORS

small and can almost be negligible. In 4-core processors, the mean
energy cost is less than 0.02% of mean energy consumption, while the
response time cost is about 0.01% of mean response time. In 8-core
processors, the cost is also quite small, about 0.04% in both energy
and response time.

VI. CONCLUSION AND FUTURE WORK

Power consumption is a key issue in the design of computing sys-
tems today, especially in portable devices which are more sensitive
to battery life. In this paper, by including task allocation into our
learning-based DPM framework for multi-core processors, we are able
to manipulate idle periods on processor cores to achieve a better trade-
off between power consumption and system performance. Experimen-
tal results based on synthetic workloads prove the effectiveness of our
proposed approach significantly.

Our proposed approach can work quite well in 4-core and 8-core
processors. However, since the cost of our proposed approach is in-
creased quadratically with respect to the number of processor cores,
if the number of cores becomes huge, the allocation cost may not be
negligible. For instance, it can be estimated that the allocation cost is
about 1% for 64-core processors, and about 3% for 100-core proces-
sors. To tackle this problem, we need to work out new definitions of
system states and actions to improve the algorithm scalability in the
future. One possible method is to group cores with the same core state
together and change the action from core selection to group selection.
This approach will be further explored in our future research work.

In addition, for the sake of simplicity, we focus on dynamic power
consumption and assume no dependencies among tasks in this work,
even though our proposed learning-based framework is applicable af-
ter lifting these assumptions. We plan to investigate the impact of
leakage power and task dependencies on our proposed framework in
the future as well.
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