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State-Sensitive X-Filling Scheme for Scan
Capture Power Reduction

Jing-Ling Yang and Qiang Xu

Abstract—Based on the operation of a state machine, this paper
elucidates a comprehensive frame for probability-based primary-input-
dominated X-filling methods to minimize the total weighted switching
activity (WSA) during the scan capture operation. Experimental results
demonstrate that the proposed approach significantly reduces both aver-
age and peak WSAs.

Index Terms—Scan test, sequential circuits, switching activity (SA),
test generation.

I. INTRODUCTION

Full scan is the most utilized test strategy in the semiconductor in-
dustry. Applying a scan test, however, results in the switching activity
(SA) of a circuit under test (CUT) during test mode that is far beyond
that during normal operational mode [1], [2]. Various techniques such
as scan chain reordering, scan chain segmentation, clock gating, and
low-power automatic test pattern generation (ATPG) have been devel-
oped to reduce scan shift power dissipation (e.g., [3]–[7]). Some tech-
niques, including circuit modification [8], ATPG algorithm [9], and
X-filling techniques [10]–[13], focused on scan capture power reduc-
tion. Among these scan capture power reduction methods, X-filling
techniques do not require a modification in the CUT and do not need
to rerun the time-consuming ATPG process and, hence, are widely
accepted.

As well as having no effect on CUT and ATPG, X-filling techniques
are compatible with those shift power reduction techniques that use or
do not use X-bits. Procedures for generating X-bits for all the steps of
the scan test (which are, namely, scan in, scan capture, and scan out)
can be found in [10]. Examples of X-filling capture power reduction
techniques that are compatible with non X-filling shift power reduction
techniques can be found in [13].

Sankaralingam and Touba [10] introduced unspecified values
(X-bits) in the scan vector and reassigned them to reduce scan peak
power, which may be caused by scan-in, scan capture, and/or scan-out
problems. To decrease scan peak power, first, X-bits are introduced
in the scan vector and then reassigned to minimize the number of
state changes in the scan flip-flops (SFFs) between two consecutive
operation steps. For scan capture peak power reduction, incremental
fault-free simulations are used in the procedure.
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Wen et al. [11] developed an X-filling approach in which X-bits
are set in the test cubes to decrease the number of transitions at the
outputs of SFFs in capture operation. Repeated simulations of incre-
mentally updated test cubes and the application of line justification and
implications are utilized in the procedure.

Remersarol et al. [12] developed a probability-based X-filling pro-
cedure to fill X-bits in SFFs in one step instead of iterative incremental
fill and simulation. This work is based on the two-pattern launch off
test. Its object is to minimize the Hamming distance between the two
consecutive test patterns.

Wen et al. [13] developed an incremental approach to fill the X-bits
in a test cube in a one-by-one manner to minimize gate transitions.

In summary, existing lower capture power (LCP) X-filling tech-
niques take three broad approaches: 1) reducing the Hamming distance
between before- and after-capture SFFs [10], [11]; 2) reducing the
Hamming distance between two consecutive test cubes in a two-pattern
launch off test [12]; and 3) reducing the number of gate transitions
using an incremental filling method [13].

The effectiveness of previous LCP X-filling techniques is still not
very satisfactory. First, the target of LCP optimization is the total
weighted switching activity (WSA) under the capture operation rather
than the Hamming distance between the before- and after-capture
SFFs or the Hamming distance between two consecutive test cubes
in a two-pattern launch off test. Second, the operation of a state
machine is based on the state transfer graph; therefore, the adopted
X-filling approaches and their associated calculations must be based
on state operations rather than state line operations. These state lines
are correlated with each other. Such spatial relations are not well
addressed. In [10]–[13], X-bits in SFFs are incrementally filled, and
hence, the filling order significantly affects the effectiveness of the
methods; whereas in [12], the X-bits in SFFs are considered to be
independent during probability calculation. Third, the running of a
sequential circuit, given an initial state, is controlled by primary inputs
(PIs). Accordingly, setting X-bits in PIs is critical to the results of LCP
X-filling methods. However, this issue has not been systematically
considered in the cited works [10]–[13]. These observations motivate
this work.

In this paper, by addressing the aforementioned problems, we
first derive a probability-based WSA model for capture operation
and then present an effective and efficient SSF scheme that targets
the transitions of both SFFs and internal gates. Experimental results
show a significant reduction in both average and peak capture power
consumption.

The remainder of this paper is structured as follows. Section II
introduces the terminologies and definitions used in this paper. WSA
models for capture operation from a probability point of view are
described in Section III. Next, Section IV presents our proposed SSF
scheme. Section V presents the experimental results on ISCAS’89
benchmark circuits. Finally, Section VI concludes this paper.

II. TERMINOLOGIES AND NOTATIONS

In this section, we first briefly introduce some terminologies and
definitions used in this paper.

A. Capture Operation

As can be observed in Fig. 1, a scan circuit has PIs and pseudo-
primary inputs (PPIs), PIs are applied directly, and PPIs are applied
through SFFs. The test response of the combinational circuit has
primary outputs and pseudoprimary outputs (PPOs). The capture op-
eration is to load PPOs into SFFs to replace PPIs.

Fig. 1. Simple scan circuit.

B. Test Cube

A test cube is a partially specified input bit combination with at
least one don’t-care bit, whereas a test vector refers to a fully specified
input bit combination without any don’t-care bit. A don’t-care bit is
also called an X-bit. Test cubes can be generated during ATPG.

C. X-Filling

X-filling is the process of assigning logic values to the unspecified
bits (X-bits) in a test cube so as to obtain a fully specified test vector
with a certain characteristic.

D. WSA

The WSA of a signal line is the number of state changes at the line
multiplied by its fanout [1]. The WSA of the entire circuit is obtained
by summing the WSA of all the signal lines in the circuit. In this paper,
WSA is used as a representation of power consumption.

E. Notations

The following notations will be used in this paper.
n Number of PIs.
m Number of SFFs.
t Number of signal lines.
Ik (ik1 , ik2 , . . . , ikn), PIs in the kth test cube, also called the before-

capture PIs of the kth test cube.
Ik+1 (ik+1

1 , ik+1
2 , . . . , ik+1

n ), the after-capture PIs of the kth test
cube.

Sk (sk
1 , sk

2 , . . . , sk
m), PPIs in the kth test cube, also the before-

capture state of the kth test cube.
Sk+1 (sk+1

1 , sk+1
2 , . . . , sk+1

m ), PPOs, also called the after-capture
state of the kth test cube.

T k (Ik, Sk), the kth test cube, composed of kth PIs and PPIs.
Gk (gk

1 , gk
2 , . . . , gk

t ), signal lines under the capture operation
defined by the kth test cube.

fn (fn1, fn2, . . . , fnt), fanout of signal lines 1, 2, . . . , t.

III. WSA MODELS FOR CAPTURE OPERATION

The problem in this section can be formulated as follows: Given a
test cube and the logical structure of a scan circuit, determine the WSA
models under capture operation.

The WSAs of these signal lines under the capture operation are
important parameters that must be optimized because charging and
discharging load capacitances are, by far, the most significant sources
of energy consumption in digital circuits.



1340 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

Because traditional WSA metric [1] can only be applied for test vec-
tors, the probability-based WSA is used in this paper when calculating
capture power for test cubes.

A. Definitions

Because state changes at signal lines depend only on the statistics
for two consecutive time steps, using lag-one Markov chains [16] is
adequate for the estimation of the SA.

The WSA of a signal line x is defined as follows:

WSA(x) = fnx ×
[
p(xt = 0) × p(xt+1 = 1)

+ p(xt = 1) × p(xt+1 = 0)
]

(1)

where p(xt = 0/1) is, at time t, the probability of signal line x having
the 0/1 value, p(xt+1 = 0/1) is, at time t + 1, the probability of signal
line x having the 0/1 value, and fnx is the fanout of signal x.

1) CSA: For a given test cube T , the capture switching activity
(CSA) of signal line g is defined as follows:

CSA(g : T k) = fng ×
[
p(gk = 0) × p(gk+1 = 1)

+ p(gk = 1) × p(gk+1 = 0)
]

(2)

where p(gk = 0/1) is the probability of signal lines g whose before-
capture value is 0/1, p(gk+1 = 0/1) is the probability of signal lines g
whose after-capture value is 0/1, and fng is the fanout of signal g.

2) TCSA: For the kth test cube T , the total capture switching acti-
vity (TCSA) of all signal lines under capture operation is as follows:

TCSA(T k) =

t∑
j=1

CSA(gj : T k). (3)

Because WSA is used to represent power consumption, TCSA(T k)
represents the capture power consumption under the test cube T k.

B. Calculating CSA(gj : T k)

The capture operation of a scan circuit can be presented as follows:

1) Before capture signal lines G

gk
1 = fg1

(
ik1 , ik2 , . . . , ikn, sk

1 , sk
2 , . . . , sk

m

)
gk
2 = fg2

(
ik1 , ik2 , . . . , ikn, sk

1 , sk
2 , . . . , sk

m

)
gk

t = fgt

(
ik1 , ik2 , . . . , ikn, sk

1 , sk
2 , . . . , sk

m

)
. (4)

2) After capture state S

sk+1
1 = fs1

(
ik+1
1 , ik+1

2 , . . . , ik+1
n , sk+1

1 , sk+1
2 , . . . , sk+1

m

)
sk+1
2 = fs2

(
ik+1
1 , ik+1

2 , . . . , ik+1
n , sk+1

1 , sk+1
2 , . . . , sk+1

m

)
sk+1

m = fst

(
ik+1
1 , ik+1

2 , . . . , ik+1
n , sk+1

1 , sk+1
2 , . . . , sk+1

m

)
. (5)

3) After capture signal lines G

gk+1
1 = fg1

(
ik+1
1 , ik+1

2 , . . . , ik+1
n , sk+1

1 , sk+1
2 , . . . , sk+1

m

)
gk+1
2 = fg2

(
ik+1
1 , ik+1

2 , . . . , ik+1
n , sk+1

1 , sk+1
2 , . . . , sk+1

m

)
gk+1

t = fgt

(
ik+1
1 , ik+1

2 , . . . , ik+1
n , sk+1

1 , sk+1
2 , . . . , sk+1

m

)
. (6)

In (4) and (6), fg1 , fg2 , . . . , fgt are combinational logic functions
of signal lines g1, g2, . . . , gt, respectively. In (5), fs1 , fs2 , . . . , fsm

are sequential logic functions of SFFs s1, s2, . . . , sm, respectively.

The object of the LCP X-filling method is as follows. For a given
test cube T k, find the smallest possible TCSA(T k).

TCSA is the sum of the CSA values of all signal lines under capture
operation, as given by (3). CSA can be calculated from (2) if the
before- and after-capture probabilities of every signal line are known.
The before-capture probability of each signal line can be calculated
from the values of Ik and Sk, which are provided by test cube T k,
based on the combinational logic functions captured in (4); the after-
capture probability of each signal line can also be calculated, given the
values of Ik+1 and Sk+1, based on the combinational logic functions
captured in (6).

Equations (4) and (6) represent combinational logic circuits. That is,
in (4) and/or (6), when the probabilities of Ik, Skand/or Ik+1, Sk/Sk+1

are given, the probability of each signal line can be calculated directly
using the probability calculation method for combinational signal lines
[14], [15]. Once the before-capture probability (under Ik and Sk)
and the after-capture probability (under Ik+1 and Sk+1) have been
determined, the CSA of each signal line is given by (2).

Equation (5), however, represents the state machine, in which the
values of the SFFs are spatially related, as revealed in the following
example.

If a state machine has states 00, 01, 10, and 11, which have state
probabilities p(00) = 1/5, p(01) = 1/3, p(10) = 2/15, and p(11) =
1/3, respectively, and if s1 and s2 are the first and second state lines,
respectively, in a state (s1, s2), the state line probabilities can be
calculated as follows:

p(s1 = 0) = p(00) + p(01) =
1

5
+

1

3
=

8

15

p(s1 = 1) = p(10) + p(11) =
2

15
+

1

3
=

7

15

p(s2 = 0) = p(00) + p(10) =
1

5
+

2

15
=

1

3

p(s2 = 1) = p(01) + p(11) =
1

3
+

1

3
=

2

3
.

Because p(s1 = 0) × p(s2 = 1) = 16/45 is not equal to p(01), s1
and s2 are not spatially independent.

Because state lines are spatially related, deriving the probability
for state lines using the method that is the same as calculating
combinational signal lines, as that in Remersaro et al. [12] and
Wen et al. [13], without addressing the spatial relationships among
the state lines will lead to inaccurate results.

The state line probability of the next capture state can be written as
follows:

P
(
sk+1
1

)
= p

(
fs1

(
ik1 , ik2 , . . . , ikn, sk

1 , sk
2 , . . . , sk

m

))
P

(
sk+1
2

)
= p

(
fs2

(
ik1 , ik2 , . . . , ikn, sk

1 , sk
2 , . . . , sk

m

))
P

(
sk+1

m

)
= p

(
fsm

(
ik1 , ik2 , . . . , ikn, sk

1 , sk
2 , . . . , sk

m

))
(7)

where p(sk+1
i ) is the probability that sk+1

i is one and
p(fsi

(ik1 , ik2 , . . . , ikn, sk
1 , sk

2 , . . . , sk
m)) is the probability that

fsi
(ik1 , ik2 , . . . , ikn, sk

1 , sk
2 , . . . , sk

m) is one.
Because the steady-state probabilities of SFFs are constant [16],

the solution to (7), which is a nonlinear system, yields the required
probabilities of the state lines.

Equation (7) can be solved by using the Picard–Peno iteration
method [16]. The detailed steps are the following: Begin from the
initial probability of (p(Sk+1))0 = p(Sk) and recursively compute
(7) until (p(sk+1

i ))r+1 − (p(sk+1
i ))r is sufficiently small. In practice,

it is observed that with three or four recursions (r = 2 or 3) or so,
good results can be acquired. After the recursions are finished, the
probabilities of the state lines are obtained.
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In summary, CSA(g : T k), including both SFFs and combinational
signal lines, can be calculated using the following steps:

1) Assign probabilities to Ik and Sk according to Table I. Simply,
we can use p(gk) to represent p(gk = 1) and 1 − p(gk) to
represent p(gk = 0).

2) Calculate after-capture state probability p(Sk+1) by (5) using
the Picard–Peno iteration method with p(Ik) and p(Sk) as
inputs.

3) Calculate the before-capture signal line probabilities
p(gk

1 ), p(gk
2 ), . . . , p(gk

t ) by (4) using the probability calculation
method for combinational signal lines introduced in [14] and
[15], given p(Ik) and p(Sk) as inputs.

4) Calculate the after-capture signal line probabilities
p(gk+1

1 ), p(gk+1
2 ), . . . , p(gk+1

t ) by (6) using the probability
calculation method for combinational signal lines introduced in
[14] and [15], given p(Ik+1) and p(Sk+1) as inputs.

5) Calculate CSA(gj : T k), 1 ≤ j ≤ t, of all signal lines using
(2) based on the before- and after-capture signal probabilities
acquired in steps 3) and 4).

C. Lowest TCSA(T k)

The LCP X-filling problem is as follows. For a given T k, find values
(0 or 1) for X-bits in Ik, Sk, and Ik+1 that minimize the TCSA(T k).

Clearly, the smallest TCSA(T k) can be obtained when each signal
line has its smallest WSA

Min
(

TCSA(T k)
)

=

t∑
j=1

Min
(

CSA(gj : T k
)

. (8)

The CSA(gj : T k) of each signal line is the smallest if the Hamming
distance between its before- and after-capture values is the shortest.

To minimize the TCSA(T k), the following relations must be
maintained:

Ik = Ik+1, for all bits in Ik

Sk =Sk+1, for all X-bits in Sk.

The LCP X-filling problem can be rewritten as follows. For a given
T k, which includes Ik and Sk, find values (0 or 1) for X-bits in Ik and
Sk that minimize the TCSA(T k).

Because X-bits in Sk can be filled after Sk+1 values are acquired,
the LCP X-filling method, thus far, can be rewritten as follows.

1) Find a set of X-bits in PIs that yields the smallest TCSA(T k);
fill the X-bits in Ik.

2) Calculate Sk+1 using (7) with the filled Ik and given Sk.
3) Fill the X-bits in Sk by using the probabilities of Sk+1.

IV. PROPOSED LCP X-FILLING METHODS

The LCP X-filling problem can be summarized as follows. For a
given T k, determine the filling Ik and Sk that yield the smallest
TCSA(T k). Because X-bits in Sk can be filled based on the steady
probability of Sk+1 once Ik is given, setting Ik is the only controllable
way to obtain the smallest TCSA(T k).

A. Enumeration Selection Method

Obviously, choosing the smallest TCSA(T k) equals to choosing the
Ik that leads to it; therefore, all the possible combinations of X-bits in
Ik can be exhaustively explored to obtain the smallest TCSA(T k).

TABLE I
PROBABILITY ASSIGNMENTS FOR Ik AND Sk

This method works well for small circuits, but it is not efficient for
circuits with a large number of X-bits in Ik. Thus, an approximate
method that can fill X-bits in Ik both effectively and efficiently needs
to be explored.

B. SSF Method

In filling the X-bits in PIs, the following principles should be ap-
plied. First, X-bits in PIs are state dependent; filling individually would
compromise the filling effectiveness. An effective method should be
state based. Second, an effective filling method should guarantee that
TCSA(T k) is as small as possible.

In the following, a novel SSF method is proposed according to the
two aforementioned principles. Two new terms must be introduced
before the details of this new SSF method can be explained.
1) PP: PP(iXj : T k) is a newly defined probability for an X-bit in

Ik(iXj , 1 ≤ j ≤ n). It utilizes the relation between a particular filling
value and its resulting TCSA(iXj : T k) to generate the probability of
iXj being filled with a particular value of 0 or 1.

PP(iXj = 1 : T k), which is simplified as PP(iXj : T k), is derived as
follows:

1) Calculating TCSA(iXj = 0/1 : T k): Assign the Ik and Sk as
follows: set iXj = 0 or 1; set other bits in Ik and Sk according to
Table I; compute TCSA(iXj = 0 : T k) and TCSA(iXj = 1 : T k)
according to (3).

2) Calculating PP(iXj ): For each X-bit in Ik, define

PP
(
iXj : T k

)
=

TCSA
(
iXj =0 : T k

)
TCSA

(
iXj =0 : T k

)
+TCSA

(
iXj =1 : T k

) . (9)

A similar formula could be derived for PP(iXj = 0 : T k), which
is simplified as PP(iXj : T k) or 1 − PP(iXj = 0 : T k).

2) Potential PI: Ik with X-bits initialized with their related poten-
tial probability (PP) values. The general procedure of the SSF method
is described as follows:

1) Calculating PP for all X-bits in Ik.
2) Calculating TCSA(iXj = 0/1 : T k(PP)): Assign the Ik as fol-

lows: set iXj = 0 or 1; set other bits in Ik with their PP values,
and set Sk according to Table I; compute TCSA(iXj = 0 :
T k(PP)) and TCSA(iXj = 1 : T k(PP)) according to (3).

The difference between TCSA(iXj = 0/1 : T k) and
TCSA(iXj = 0/1 : T k(PP)) is that for all these X-bits except
the jth X-bit, TCSA(iXj = 0/1 : T k) uses the probability
values given in Table I, whereas TCSA(iXj = 0/1 : T k(PP))
uses the PP values. TCSA(iXj = 0/1 : T k) is the TCSA under
original test cube T k with its jth X-bit with a value of 0/1;
TCSA(iXj = 0/1 : T k(PP)) is the TCSA under potential test
cube T (PP) with its jth X-bit with a value of 0/1.

3) Selecting filling values: The final filling value for iXj is selected
by the following:

X =

{
1, if TCSA(1) < TCSA(0)
0, if TCSA(0) ≤ TCSA(1).

(10)
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TABLE II
TEST CUBE INFORMATION

TABLE III
CPU TIME OF VARIOUS LCP X-FILLING METHODS (SECONDS)

In the aforementioned equation{
TCSA(1) = TCSA

(
iXj = 1 : T k(PP)

)
TCSA(0) = TCSA

(
jX
j = 0 : T k(PP)

)
.

The advantage of using the SSF method is that, when choosing the
value of a particular X-bit in Ik, the remaining X-bits are assigned with
state-based tight probabilities, thus yielding an effective filling value.

C. Filling X-Bits in Sk

X-bits in S can be filled by using the steady probability of Sk+1.
The probabilities of Sk+1 can be calculated after the X-bits in Ik are

filled. With X-bits in Sk that are set as that in Table I, the probabilities
of Sk+1 can be computed by solving (7) using the Picard–Peno
iteration method.

From the probability point of view, the best X-filling happens if the
filled value of X can make

sk
j =

{
1, if p

(
sk+1

j

)
> 0.5

0, if p
(
sk+1

j

)
≤ 05

, 1 ≤ j ≤ t.

The complete procedure of the SSF method is summarized as
follows.

1) Given test cube T k, which is composed of Ik and Sk.
2) Calculate PP for each X-bit in Ik.
3) Calculate TCSA(iXj = 0 : T k(PP)) and TCSA(iXj = 1 :

T k(PP)) with iXj with 0 and 1, other X-bits in Ik with their PP
values, and X-bits in Sk with the given values. Choose iXj as
the one that results in a smaller TCSA.

4) Calculate Sk+1 using the filled Ik and given Sk.
5) Fill X-bits in Sk with Sk+1 values.

D. Computation Complexity of SSF Method

In the SSF method, X-bits in Ik are filled one by one based on the
potential Ik, X-bits in Sk are filled using steady state probabilities
of Sk+1.

If ts is the time required to calculate the steady-state probability in a
scan circuit, nX is the number of X-bits in the PIs, mX is the number
of X-bits in PPIs, and TSSF is the time required to complete the SSF
process, then

TSSF = (2nx + 1) × tS (11)

which means that filling each X-bit in Ik needs time 2tS and filling all
X-bits in Sk needs time tS .

For comparison, the computation times in [12] and [13], which are
given by T[12] and T[13], respectively, are as follows:

T[12] = tS (12)

T[13] =2(nX + mX)tS . (13)

In (12), almost no time is needed to fill Ik because the solution
proposed by [12] concerns a two-pattern launch off test. The Hamming
distance between PI1 and PI2 is minimized by first filling the unspeci-
fied values in PI1(PI2) to match the specified values in PI2(PI1). After
the first step, all of the remaining unspecified values in PI1 and PI2
are at the same positions. Then, in the second step, randomly fill these
values to have the same specified value.

In (13), filling each X-bit in both Ik and Sk requires time 2tS .
The efficiency of the SSF method is quite high because for a large

circuit, the number of PIs is often negligible in comparison with the
number of PPIs: nX � mX .

V. EXPERIMENT RESULTS

The proposed algorithm was implemented in C language and run
on ten ISCAS’89 benchmark circuits using a Sun Ultra 5/440 machine
with 512-MB memory. Information about test cubes provided by the
authors in [11] and [13] is listed in Table II.

Table III presents the CPU time for the proposed SSF technique and
other LCP X-filling methods. It can be seen that the computational
time of the SSF method is quite small.

Table IV compares the results of the proposed SSF method and the
state-of-art LCP X-filling methods introduced in [12] and [13]. Among
these three methods, SSF has the best performance both in average and
peak power reduction.

In Table IV, TCSA is measured on per test vector basis; the average
TCSA represents the average TCSA over the test vectors, and the peak
CSA represents the highest TCSA among the test vectors. In Table IV,
the results of [13] are provided by their authors; the result of [12]
is implemented again based on the scan capture test using the WSA
defined herein.
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TABLE IV
CSA REDUCTION

VI. CONCLUSION

This paper presents a novel X-filling approach, which is the SSF
scheme. Unlike previous works that do not address the spatial rela-
tionship among state lines, the proposed SSF method first obtains the
potential vector sets and then selects the filling values using a selecting
method that minimizes the number of gate transitions. The benefit of
the proposed approach is that it retains the spatial relation of state lines,
thus guaranteeing the quality of the filling results. Another benefit is
that all the states are filled in parallel, yielding a short execution time.
Experimental results indicate that both average and peak capture power
consumptions were significantly reduced and computational cost was
small.
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A Compositional Method With Failure-Preserving
Abstraction for Asynchronous Design Verification

Hao Zheng, Jared Ahrens, and Tian Xia

Abstract—This paper presents a compositional method with failure-
preserving abstraction for scalable asynchronous design verification. It
combines efficient state-space reductions and novel interface refinement
and can dramatically reduce the complexity of state space while decreasing
the introduction of false failures. This allows much larger designs to be
verified as demonstrated in the experimental results.

Index Terms—Abstraction, asynchronous, compositional, formal verifi-
cation, model checking, refine.

I. INTRODUCTION

Compositional methods are essential to address state explosion in
model checking. A compositional minimization method is described
in [7], where the global minimized state transition system is built by
iteratively minimizing and composing the processes in a finite-state
system. To contain the size of the intermediate results, user-provided
context constraints are required. This may be a problem in that the state
space may be large in the first place. The requirement of user-provided
context constraints may also be a problem in that the constraints may
be overly restrictive, thus resulting in the escape of real design errors.
Similar work is described in [2].

In general, compositional approaches need an approximate en-
vironment for each module of a design under consideration. This
approximate environment should be simple and relatively accurate.
However, coming up with such an environment is a daunting task
and is traditionally done by hand. Lately, some automated approaches
[1], [3], [4], [6] based on machine learning are proposed to generate
environment assumptions for compositional reasoning. Basically, as-
sumptions are generated for a module of a design to eliminate the
counterexamples of that module. Next, assumptions are validated by
checking the rest of the design.
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