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Abstract 
For current highly-integrated and memory-dominant System-on-
a-Chips (SoCs), especially for graphics and networking SoCs, 
the test/repair area overhead of embedded SRAMs (e-SRAMs) is 
a big concern. This paper presents various approaches to tackle 
this problem from a practical point of view. Without sacrificing 
at-speed testability, diagnosis capability and repairability, the 
proposed approaches consider partly sharing wrapper for 
identical memories, sharing memory BIST controllers for e-
SRAMs embedded in different functional blocks, test responses 
compression for wide memories, and various repair strategies 
for e-SRAMs with different configurations. By combining the 
above approaches, the test/repair area overhead for e-SRAMs 
can be significantly reduced. For example, for one benchmark 
SoC used in our experiments, it can be reduced as much as 10% 
of the entire memory array.1 
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1. Introduction 
One of the trends associated with the System-on-a-Chip (SoC) 
paradigm is that an increasingly large number of small SRAMs 
(up to several thousand currently) are embedded on chips, 
especially for graphics and networking SoCs [1, 4]. Because of 
their extremely high density, these embedded SRAMs (e-
SRAMs) are more prone to manufacturing defects than other 
types of on-chip circuitries and it is important to test them 
thoroughly to certify the quality of the product shipped to 
customers. Since e-SRAMs are usually deeply embedded on-
chip and at the same time need to be tested at-speed, Built-in 
Self-Test (BIST) has become the only practical solution for 
testing e-SRAMs. In addition, with the increasing total size of 
small e-SRAMs, it has been shown in [4] that providing 
repairability for every small e-SRAM can significantly improve 
the SoC yield and result in substantial cost savings when a high 
volume of chips are fabricated.  

Various e-SRAM test and repair strategies have been proposed 
in the literature. A programmable memory BIST architecture 
was introduced in [18] to increase flexibility in applying test 
patterns targeting various memory faults. In [2], the authors 
proposed a multi-level test architecture, which enables 
scalability, in-system programmability and flexibility in test 
scheduling. Low-power memory wrapper, which uses gray-
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code-based address generators and hardware-efficient 
background pattern generators to save test power, was presented 
in [3]. The authors in [7-8] focused on designing efficient test 
architecture for diagnosis purpose. E-SRAMs in test mode can 
consume significant test power, [5] studied the memory test 
scheduling problem given a power constraint. In [6], the authors 
combined memory BIST wrapper and processor-based software 
test strategies for heterogeneous memories. 

The test and repair overhead for small e-SRAMs is relatively 
large because of their small sizes, for instance, the area overhead 
for an unrepaired e-SRAM with a 16 143× configuration is 38% 
when tested with March C- [8]. Therefore, effective e-SRAM 
test and repair architecture needs to minimize the associated 
overhead as much as possible, in terms of both silicon area and 
routing. The serial interfacing technique utilized in [9-12] 
effectively reduced the routing overhead for e-SRAM testing. 
However, the test/diagnosis time is increased dramatically, 
which is not acceptable for production test [13-14]. [4] proposed 
an intelligent test wrapper for small and wide memories using 
the single-bit repair strategy. The key idea of this work is to 
embed intelligent repair analysis algorithms into the memory 
wrappers under a reasonable repair area overhead. 

This paper presents various techniques to reduce e-SRAM test 
and repair overhead from a practical point of view. Without 
sacrificing at-speed testability, diagnosis capability and 
repairability, the improved architecture considers sharing a 
wrapper for multiple identical memories, sharing memory BIST 
controllers for e-SRAMs embedded in different functional 
blocks, test responses compression for wide memories, and 
various repair strategies for e-SRAMs with different 
configurations.  Experimental results on two benchmark SoC 
chips show that the proposed strategy can significantly reduce e-
SRAM test and repair overhead. 

The remainder of this paper is organized as follows.  In Sec. 2, 
we briefly review the test architecture and repair strategies 
proposed for SoCs containing many small e-SRAMs. Sec. 3 
describes the various techniques that we propose to reduce the e-
SRAM test/repair area overhead without sacrificing test quality. 
Next, we present the experimental results for two large industrial 
chips in Sec. 4. Finally, Sec. 5 concludes this paper. 

2. Motivation 

2.1 SoC e-SRAM Test Architecture 

Today, the widely-used industrial e-SRAM test architectures 
(e.g., the ones in [2, 8]) are multi-level designs, as shown in 



Figure 1. All the memories are wrapped for test and repair 
purposes and the e-SRAMs within the same functional block are 
clustered to be tested in parallel. The number of BIST controllers 
within each functional block depends on the different memory 
port types. For example, two BIST controllers are required if the 
functional block contains both 1-port memories and 2-port 
register files. The BIST controller and the memory wrappers 
communicate with each other through IEEE Std. 1500 serial 
links [15]. At the system level, these BIST controllers receive 
test primitives through a JTAG/1500 bridge from JTAG bus, 
where they decode and execute test algorithms and control the 
memory wrappers to generate appropriate test patterns (both 
address and data). 

With each memory equipped with a dedicated wrapper and each 
functional block provided with one or more BIST controllers, 
the design for test (DFT) area overhead in this general 
architecture can be quite large when the SoC contains many 

small e-SRAMs. In practice, however, we are able to improve 
the general architecture without sacrificing test quality from 
various aspects. First of all, a major portion of the BIST area is 
the dedicated wrapper for each e-SRAM. Many SoCs, especially 
graphics and networking chips, contain lots of identical e-
SRAMs (same type, width and size). Sharing a single wrapper 
for these memories can significantly reduce BIST overhead (e.g., 
[2, 3]). At the same time, however, we need to share the wrapper 
intelligently in order not to sacrifice at-speed testability, which 
was not addressed in previous work. Secondly, for small and 
wide e-SRAMs, directly storing the entire test responses all at 
once for diagnosis purpose consumes large silicon area. The bit 
test results can be compressed in the temporal dimension without 
losing diagnosis capability. Finally, it is also possible to share 
BIST controllers among multiple functional blocks when they 
are physically close to each other to further reduce BIST area 
overhead. 

 

Figure 1. The General Test Architecture 

2.2 Small e-SRAM Repair Strategies 

Since the repair overhead is quite high for small e-SRAMs and 
the possibility of a particular small e-SRAM being defective is 
usually low, traditionally Built-in Self-Repair (BISR) circuitry 
are not utilized for them. However, as shown in [4], it is 
necessary to provide repairability for these small e-SRAMs 
when their total sizes amount to the Mbits range. In [16], a 
specific repair method is selected for all e-SRAMs 
independently of their sizes. This technique is especially not 
economical for small e-SRAMs due to its complexity. In [4], a 
“smart” wrapper is proposed for small and wide memories with 
single bit or single input/output (I/O) repair schemes, which 
allows at-speed testing with an acceptable BISR overhead. For 
e-SRAMs with medium or small number of I/Os, however, 
single row or single column repair scheme would be more 
appropriate in terms of BISR area. This is not considered in [4].  

It is the above observations in traditional e-SRAM BIST 
architecture and repair strategies that motivate us to take various 
practical issues into consideration in designing our proposed e-
SRAM BIST /R architecture with reduced area overhead without 
sacrificing their test/diagnosis capability, as shown in the 
following section. 

3. e-SRAM Test/Repair Area Reduction 

3.1 Simplifying e-SRAM Test Architecture 
Considering Physical Information 

3.1.1 Partly Share Wrappers for Identical Memories 

It is quite common to have many identical memories on-chip for 
today’s SoC designs, especially for graphical and networking 
chips. Several previous works have proposed to share test 
wrapper for these identical memories to reduce test area 
overhead (e.g., [2, 3]), however, blindly sharing wrapper for all 
identical memories may lead to physical design difficulty and/or 
sacrifice for e-SRAMs’ at-speed testability. Therefore, we need 
to consider the following two important rules in practice. The 
first one is that the layout flexibility for each functional block 
cannot be suffered. In [3], a single wrapper is designed to cover 
all the identical e-SRAMs, even though they might be in 
different functional blocks. Although this method results in 
minimum DFT area overhead, it significantly increases the 
layout difficulty of the design. For the at-speed testability of the 
e-SRAMs, let us take a close look at a typical e-SRAM wrapper 
(shown in Figure 2) that supports the application of the widely-
used March Algorithms [17]. The critical blocks inside the 



wrapper that need to operate at-speed are the address generator 
and the comparator, because the test patterns and test responses 
need to be applied/captured at-speed. For most of existing March 
algorithms where data background is not changing every cycle, 
however, there are enough time for the preparation of data 
patterns and the associated commands before a new March 
element starts. As a result, the data generator and the command 
generator do not need to work at-speed.  In [2], the timing-
critical address generator block is also shared for identical 
memories and hence it is not applicable for testing high-speed e-
SRAMs today [19]. 

 

Figure 2. A Wrapper Enabling At-Speed BIST 

Based on the above analysis, we propose to share the data 
generator and the command generator only for identical e-
SRAMs within a functional block. The memory control signal 
monitor block is used to diagnose the read or write enable 
signals for each memory in case of failures. Therefore, this block 
is specific for each memory and cannot be shared. Fortunately, it 
is very small (several combinational gates and one flip-flop), and 
hence does not affect our simplification. In summary, within a 
functional block, each identical memory will have its own 
address generator, response comparator and memory control 
signal monitor while the data generator and the command 
generator will be shared among all identical memories in our 
BIST architecture. 

The proposed test architecture with partly shared wrapper is 
shown in Figure 3. As can be seen, for those non-identical 
memories within each functional block and identical memories 
for different blocks, their wrappers are maintained. Experimental 
results for the benchmark chips show each wrapper area of those 
identical memories can be reduced by around 50%. 

 

 

Figure 3. Proposed Wrappers for Identical Memories 

3.1.2 Minimize the Number of BIST Controllers 

Since the memory BIST controllers are generally implemented 
at the register transfer level (RTL), every functional block with 
e-SRAMs contains one or more BIST controllers. After entering 
the gate level design stage, the physical information of those 
functional blocks is known and can be utilized to reduce DFT 
area overhead. That is, for the functional blocks that are close to 
each other in floorplan, the memories with the same port type 
(e.g., single-port memories or two-port register files) can share a 
single BIST controller. It is important to note, however, reducing 
the number of BIST controllers by this way might cause routing 
congestion. Therefore, a try-and-error check needs to be done 
after grouping BIST controllers. The proposed flow for sharing 
BIST controllers is shown in Figure 4.  

From Figure 4, the main difference between the general method 
and the proposed method is that we utilize the physical 
information of the functional blocks (including their memories) 
when designing BIST controllers. The procedure is as follows, 
we start by grouping some of the nearby functional blocks and 
re-create a single BIST controller for this group at RTL if their 
memories belong to the same type. Next, we check whether 
routing congestion occurs and the timing of the original design is 
violated. If not, we try to further grouping them in the same way. 

After this round of groupings, the BIST controllers’ number 
usually can be reduced significantly. Experimental results on our 
benchmark chips show that the DFT area overhead after 
reducing the BIST controllers’ number from 24 to 16 is up to 
0.9%. 



 
Figure 4. BIST Controller Number Minimization Flow 

It may be argued that this minimization flow will increase design 
cycle due to multiple times of synthesis, floorplaning and 
routing. However, the design portion which requires 
several rounds of try-and-error checks are only limited to 
those controllers. This is because that all e-SRAM 
wrappers will be maintained during this flow. 

3.2 Test Results Compression w/o Losing 
Diagnosis Capability 

For small wide memories, storing every bit comparison results 
consumes quite a large amount of silicon area (as shown in 
Figure 5(a) for a 128 128× e-SRAM). Compressing them by 
ORing each bit comparison result into a single-bit test signature 
or multiple-bit test signature is proved to be a cost-effective 
approach [20], e.g., compressing each bit comparison result with 
a 4 to 1 OR gate is shown in Figure 5(b). However, this 
approach fails to provide full diagnosis resolution of each e-
SRAM bit. 

 
(a). Storing Each Bit Information with Diagnosis Capability 

 

 
(b) Compressing Bit Information w/o Diagnosis Capability 

Figure 5. Bit Comparison Results Storing Techniques 

To tackle the limitations of both above techniques, we propose 
to compress the test signature in a temporal dimension. That is, 
we use the same design as in Figure 5(b), but at the same time 
we provide more data patterns for diagnosis purpose. For the 
example of a 128 128×  configuration with 4:1 bit compression 
ratio, a total of 16 kinds of data patterns at most are required in 
diagnosing each bit status. Since the general data pattern register 
is 2-bit to cover solid, checkerboard data patterns and their 
reversed ones, the proposed method only requires increasing the 
data pattern register from 2 bits to 4 bits and increasing the 
command register with two extra bits in the wrapper. This 4 bit 
increase of the data pattern register and the command register for 
a 128 128×  e-SRAM is negligible. The only drawback of this 
method is the diagnosis time of this memory has been increased 
by 4 times. Fortunately, not all memories are required to be 
diagnosed. 

With the proposed method, the bit comparison results storing 
units can be reduced up to 65% for the example in Figure 5. 

3.3 Single-Element Repair Strategies 

Numerous redundancy repair strategies have been proposed in 
the literature, ranging from simple to highly complex. For small 
e-SRAMs, single redundant element repair schemes are 
considered the best approach due to their small area overhead, 
where an element can be a single bit/IO, a single row or a single 
column. In order to select different repair approaches for small 
e-SRAMs with different physical architectures, the following 
terminology is defined. 

Single Row Repair: this approach is similar to the general row 
repair method, i.e., using a spare row to replace a faulty row. 
However, if more than one rows are faulty, the memory is 
unrepairable. It should be pointed out that a single spare row is 
capable of repairing multiple faulty cells as long as all the faulty 
cells are on the same row. 

Single Column Repair: similar to the general column repair 
method, one but only one spare column is designed to repair a 
faulty column. If more than one column are faulty, the memory 
is unrepairable. 

Single Bit Repair: this repair scheme can tolerate up to a single 
faulty bit. If there exist more than one faulty bit, the memory 
cannot be repaired. 

Based on the single element repair method, an important factor 
for determining the repair approach for an e-SRAM is the spare 
element overhead. For a small e-SRAM organized as 
( , )A R C B× bits, where A, B, R, and C represent the address 

space, the number of I/Os, the number of rows and the number 
of columns of the e-SRAM, respectively, the BISR overhead 
when using the three approaches above is shown in Table 1. 

Table 1. Repair Area Overhead Calculations 

Single Element Repair Repair Area Overhead 

Single Row Repair 1/R 

Single Column Repair 1/C 

Single Bit Repair 1/B 



From Table 1, it can be derived that the largest number of a 
small e-SRAM rows, columns and bits/IOs determines the 
optimal redundancy method. 

According to the repair overhead calculated above, a general 
repair approach selection flow for small e-SRAMs is shown in 
Figure 6. 

Since the Single Bit repair approach has been presented and 
demonstrated in [4], this paper only discusses the 
implementation of the Single Row repair and the Single Column 
Repair. Here, we select the Single Row repair approach as the 
example to explain our proposal. 

 

Figure 6. Redundancy Approach Selections 

 
Figure 7. Repair analysis algorithm for e-SRAMs with single-

row repair and 64 addresses space 

When a memory with single row or column repair fails, we need 
to know two pieces of information in order to determine whether 
the memory is repairable and how to repair it, i.e., the row and 
column numbers. For example, for an e-SRAM with single row 
repair, if all failures share the same row address, we declare 
memory as repairable. Otherwise, it is considered as 
unrepairable. If repairable, the test/repair analyzer will provide 
the bad row or column address. 

The RTL implementation for a memory with 64 row addresses 
space using single row repair is shown in Figure 7. The RTL 
code for single-column repair is similar.  

Compared to the single bit test/repair analyzer in [4], the 
hardware costs for the single row repair analyzer are as follows. 
Assuming R and B to be the number of rows and bits in the 

memory, respectively, we estimate the hardware cost in terms of 
flip-flops (FFs), 2-input XOR gates and 2-input OR gates by 
considering the signals used in Figure 7. The detailed analysis 
results are shown in Table 2, where the signal address_counter is 
an overflow flag from the address generator block. 

Table 2. Gates counts of the single row repair analyzer 

Related signals FFs XORs ORs 

DONE 1 1 0 

Data_in 0 B B-1 

REPAIR_STATUS 2 4 2 

faulty_row Log2R Log2R-1 Log2R-1 

address_counter 0 1 0 

Total gate counts Log2R + 3 Log2R + B + 5 Log2R + B 

 

For e-SRAMs with the single row repair approach, B tends to be 
small but R is relatively large. Therefore, the total gates count 
for the single row repair analyzer is low. For example, a wrapper 
for an e-SRAM with R = 64 and B = 16 with a single spare row 
requires only 58 standard cells. 

In summary, while the single-element repair strategies proposed 
in [4] is effectively for small wide e-SRAMs only, our proposed 
repair analysis circuitry embedded in the wrappers is area-
efficient for all kinds of small e-SRAMs (wide, medium and 
narrow) while still enabling good repair quality. 

4. Experimental Results 
To quantify the benefits of our proposed diverse approaches for 
reducing e-SRAM BIST/R area overhead, we choose two 
benchmark chips [21] for demonstration, where chip 1 has 256 
unrepaired e-SRAMs and chip 2 has 2574 repaired e-SRAMs 
with soft repair configuration. The configurations of these two 
chips are shown in Table 3 and Table 4, where the test/repair 
area overhead is calculated by comparing the total area of the 
DFT logic with the total area of the memories. 

In order to demonstrate the contributions in terms of test area 
reduction for each approach presented in Section 3, we record 
the result after applying each technique. The total area savings 
which are calculated by applying all the proposed approaches are 
also shown in the table. The results for chip 1 are shown in 
Table 5. From this table, we can observe that sharing wrapper 
technique has the most significant impact on test area overhead 
reduction. This is expected because the graphical chips utilized 
in this experiment contain lots of identical memories inside. 

For chip 2, all memories were previously repaired without 
detailed repair analysis. Therefore, the area overhead is rather 
large. However, according to [4], the yield for those small e-
SRAMs when not using the single-element repair strategies is 
not improved significantly. Therefore, besides the low area 
overhead, the single-element repair strategies also provide 
comparable yield level when compared with the general method, 
e.g., the one in [16]. In this experiment, we replace their general 
repair processing method with our single-element repair 
strategies. The test/repair area overhead reduction due to this 
replacement is shown in Table 6. 



Table 3. A Summary of a Benchmark Chip 1 

Total e-SRAM 
amount 

Total 1-port e-
SRAM amount 

Total 2-port e-
SRAM amount 

256 30 226 

Maximum 1-port 
e-SRAM density 

Maximum 2-port 
e-SRAM density 

Total e-SRAM 
density 

170Kbits 32Kbits 1.735Mbits 

Total e-SRAM 
Test Area 
Overhead 

Total 1-port e-
SRAM test area 

overhead 

Total 2-port e-
SRAM test area 

overhead 

9.98% 11.41% 8.81% 

Table 4. A Summary of a Benchmark Chip 2 

 

Total e-SRAM 
amount 

Total 1-port e-
SRAM amount 

Total 2-port e-
SRAM amount 

2574 110 2464 

Maximum 1-port 
e-SRAM density 

Maixmum 2-port 
e-SRAM density 

Total e-SRAM 
density 

120Kbits 16Kbits 3.0Mbits 

Total e-SRAM 
Test Area 
Overhead 

Total 1-port e-
SRAM test area 

overhead 

Total 2-port e-
SRAM test area 

overhead 

19.98% 25.23% 16.44% 

Table 5. Test Area Overhead Reduction Summary for Chip 1 

 

Approaches Reduction % 

Designing partly shared wrappers 2.1% 

Minimizing the number of BIST 
controllers 

0.9% 

Test signature compression without 
losing diagnosis capability 

0.85% 

All combined 3.85% 

Table 6. Test/Repair Area Overhead Reduction Summary for 
Chip 2 

Approaches Reduction % 

Designing partly shared wrappers 5.1% 

Minimizing the number of BIST 
controllers 

2.2% 

Compressing test signature without 
losing diagnosis capability 

0.8% 

Applying single-element repair 
strategies 

2.2% 

All combined 10.3% 

5. Conclusion 
Today’s SoCs contain an increasing number of small e-SRAMs. 
Reducing the test and repair overhead for them is a challenging 
task. This paper presented diverse approaches to tackle this 
problem from a practical point of view, including partly sharing 
wrappers for identical e-SRAMs within a single functional block, 
minimizing the number of BIST controllers for nearby 
functional blocks, compressing wide memory bit test results 
without losing diagnosis capability and various single-element 
repair strategies. Experimental results show that the proposed 
techniques significantly reduced e-SRAM test/repair area 
overhead.  
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