A Debug Probe for Concurrently Debugging Multiple Embedded Cores and
Inter-Core Transactions in NoC-Based Systems

Shan Tang and Qiang Xu
Department of Computer Science & Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email: {tangs,gxu}@cse.cuhk.edu.hk

ABSTRACT

Existing SoC debug techniques mainly target bus-based systems. They
are not readily applicable to the emerging system that use Network-
on-Chip (NoC) as on-chip communication scheme. In this paper, we
present the detailed design of a novel debug probe (DP) inserted be-
tween the core under debug (CUD) and the NoC. With embedded con-
figurable triggers, delay control and timestamping mechanism, the pro-
posed DP is very effective for inter-core transaction analysis as well as
controlling embedded cores’ debug processes. Experimental results
show the functionalities of the proposed DP and its area overhead!.

1. INTRODUCTION

Existing system-on-a-chips (SoCs) usually utilize on-chip buses to
connect embedded cores. However, it is well known that functional
bus does not scale well with the shrinking technology feature size, be-
cause of its speed limitation and high power consumption when a large
number of cores are attached to the bus. Network-on-Chip (NoC), as
a promising solution for integrating IPs in the future giga-scale SoCs,
is gaining wide acceptance in both academia and industry (e.g., [5, 6,
9]). A typical NoC contains three parts: network interfaces (NIs) that
connect the IP cores to the NoC and convert transaction messages into
packets, routers that transport packets between NIs according to a pre-
defined protocol, and links that connect routers and provide the raw
bandwidth.

While the NoC facilitates designers to integrate more IP cores on-
chip, the verification problems become more challenging and it is likely
that the NoC-based systems need to go through one or several re-spins
to become bug-free. An efficient and effective silicon debug strategy
for such complex systems is therefore of crucial importance. Existing
silicon debug techniques (e.g., [4, 12, 18]), however, mainly target bus-
based systems and are not readily applicable to NoC-based systems
with a totally different and more complex communication scheme.

In this paper, we show the detailed design of a novel debug probe
(DP), one of the key elements of the debug platform for NoC-based
systems presented in [19]. The proposed DP, inserted between every
core under debug (CUD) and the NI associated to it, not only supports
effective inter-core transaction tracing and analysis, but also provides
full debug access to the CUD through its debug interface (e.g., JTAG
interface). With embedded programmable triggers, delay control and
timestamping mechanism, the DP facilitates multi-core concurrent de-
bug with cross triggering and real-time tracing capabilities. Moreover,
the proposed DP uses the NoC connections to transport debug and
trace data instead of using dedicated wires, which fits better in the
NoC environment. When compared to the monitoring probes attached
to the NoC routers presented in [7, 8] that monitor the NoC only, the
proposed DP is able to debug and trace the activities on both the NoC
and the CUD concurrently at the system-level.

I'This work was supported in part by the Hong Kong SAR RGC Ear-
marked Research Grants 2150503 and 2150558.

The remainder of this paper is organized as follows. Section 2 and
Section 3 overview related work and the NoC debug platform pre-
sented in [19]. The proposed DP design is detailed in Section 4. Sec-
tion 5 gives the simulation results and analyzes the area cost of the
debug probe. Finally, Section 6 concludes this paper.

2. PRIOR WORK

Debugging an SoC (as a blend of hardware and software) is an ex-
tremely complex problem and cannot be tackled without effectively
observing the operations of the design’s internal nodes [11]. While
capturing snapshots through JTAG interface provides basic postmortem
debuggability and are widely utilized in practice [21], the trend is
to embed more design-for-debug (DfD) logics for hardware tracing
difficult-to-find bugs (e.g., [1, 3, 12, 13, 22]). With these techniques,
debugging a single core is a relatively well studied problem (still chal-
lenging though). However, since embedded cores (processors, DSPs,
etc.) have to work together for certain functions, debugging one core
at a time can be ineffective and sometimes misleading [18].

For a complex SoC with a number of embedded cores, since they
communicate with each other during normal operation, concurrently
debugging several cores at a time greatly increase the debug effective-
ness and efficiency. In addition, as the on-chip communication scheme
is an important part of the design, designers often want to see the trans-
actions between cores to identify the root cause of bugs and/or the sys-
tem performance bottleneck. As a result, an effective multi-core debug
solutions should fulfill the following requirements:

e concurrent debug access to multiple embedded cores;

e inter-core transaction tracing and analysis;

e real-time tracing of debug components;

e cross-triggering among debug components;

e low DfD overhead in terms of area, routing and device pins;

Several multi-core debug solutions were proposed by introducing
various on-chip instrumentation (OCI) blocks customized for diverse
processors, logic cores and embedded buses (e.g., First Silicon’s de-
bug solution [12, 18] and ARM CoreSight [4]). The above multi-core
debug solutions for bus-based systems, however, are not readily ap-
plicable for NoC-based SoCs. First of all, the drastic change in the
communication infrastructure affects the debug access mechanism.In
addition, the new inter-core communication scheme (i.e., the NoC) re-
quires new tracing and analysis methods. Moreover, embedded cores
often work asynchronously and this makes the distribution of trigger
events very difficult.

There are also limited works related to the debug of NoC-based sys-
tems. Ciordas et al. [7] proposed to attach dedicated monitoring probes
to the NoC routers, which provides basic observability of the NoC in
the form of bits. Later, to increase debug efficiency, the same authors
[8] improved their monitoring probe to be able to monitor transactions
by reconstructing them from the bit-level monitored data. Although [7,

ocCpP

CuD
JTAG

Trace

Debug ross-Tri

Software y'y
Transaction
Debugger

Debugger
N
| Multi-core Debug Driver |
A

OCP

For Cores

CuD

JTAG

PC Interface

TA A

[

DA

Off-chip Debug Controller

J
T

NoC Configuration

NoC based SoC

rage

Hardware Debug Controller

®C port: Communication Port ®D port: Debug Port

BT port: Trace Port

EMSA: Monitor Service Access

Figure 1: Debug Platform for NoC-based Systems

8] is powerful for finding bugs inside the NoC, it is not suitable for de-
bugging the entire system because an effective debug process should
get all the active parties involved, i.e., the activities on both the NoC
and the cores under debug (CUDs) need to be traced in a unified debug
architecture. In fact, the monitoring service presented in [7, 8] can be
treated as built-in DfD logics for the NoC itself, similar to the debug
functionalities built into an embedded processor (e.g., ARM in-circuit
emulator (ICE) [3]) and logic cores. They can be used to facilitate
to precisely pin-point the exact location of the bugs after determining
whether the bug exists inside the CUD or inside the NoC. The above
observations has motivated us to develop a debug platform suitable for
NoC-based systems [19], as briefly introduced in Section 3.

3. NOC DEBUG PLATFORM OVERVIEW

The debug platform in [19], as shown in Fig. 1, is composed of
three main parts, on-chip debug architecture, including debug probes
(focus of this paper) and a debug agent, off-chip debug controller and
supporting debug software. Debug commands and data are transferred
through NoC connections with guaranteed quality of service (QoS) in
terms of throughput and latency, which is flexible for different debug
applications as we can simply adjust the NoC bandwidth used for de-
bug?. Using NoC connections for debug access also reduces the rout-
ing overhead as no dedicated wires are introduced. For the ease of
discussion, we assume that embedded cores communicate with each
other using the OCP protocol [15]. Note that, however, the debug
platform works with other transaction based communication protocols
(e.g., AXI [2] or DTL [16]) as well.

Supporting Debug Software: The supporting debug software pro-
vides the graphical user interface (GUI) and/or command line interface
for controlling the debug process and displaying the debug results and
other information. The supporting debug software is made up of three
layers of different tools. In the middle, various core specific debuggers
from core providers (e.g., ARM [4]) and a transaction debugger con-
trol and observe corresponding debug entities. Upon these debuggers,
a cross debugger communicates to them at the same time and con-
trols multi-core cross-debug. The bottom layer is a multi-core debug
driver, which forwards the debug requests and collects debug infor-
mation to/from the off-chip debug controller, through a PC peripheral
interface, such as parallel interface or ethernet. Since multiple debug
requests/information may arrive the driver asynchronously, the driver
needs to sort them and add/remove addressing labels to/from them.

Off-chip Debug Controller: The off-chip debug controller serves
as a translation layer between the software debuggers and the on-chip

debug architecture, which builds transparent connections between them.

2We assume that the NoC can be reconfigured through its control in-
terface as in [9].

It receives the debug commands or sends debug data from/to software
debuggers, schedules them and controls the on-chip debug agent (dis-
cussed later) through the system-level JTAG interface. In addition, the
off-chip debug controller uses a TDM (Time Division Multiplexing)
scheme for sharing single chip-level trace port among multiple CUDs
that send out trace data in real-time (detailed in Section 4.3).

On-chip debug architecture: The on-chip debug architecture is the
core of the debug platform. It mainly contains the following compo-
nents:

e a debug probe (DP) between every CUD and its network inter-
face;

e a system-level debug agent (DA) that provides multi-core de-
bug access through a single chip-level JTAG interface and an
optional trace port;

Debug ;
OCP, OCP Chip
Master INF Cg’:g" (> TAP &> G

Trace Chip

N Ch, OCP P . T
Master INF Control > lrace
Port

Figure 2: Block Diagram of Debug Agent

As the DP is the focus of this paper, it will be discussed in detail
in Section 4. Fig. 2 gives an overview of the debug agent. The DA
translates the command sequences on the chip-level JTAG port into
read/write operations of on-chip debug resources. With QoS guar-
anteed NoC channels between the DPs and the DA, we can map all
debug resources (e.g., debug control and status registers inside DPs
or CUDs) to memory-mapped address space as the slave of the DA
and access them in a unified manner. We introduce an extra JTAG
instruction “DEBUG_REG” and the corresponding JTAG data regis-
ter “DEBUG_REG_DATA” for accessing the debug resources with the
following format:

Field Description

WR/RD ‘1’ for write operation; ‘0’ for read operation
ADDR Register address

DATA Register write/read data

READ_VALID | ‘1’ means read data available

The off-chip debug controller can then read or write debug regis-
ters inside the chip through standard JTAG interface, as shown in the
following table.

Off-chip Debug Controller
Write 'DEBUG_REG’ command
into IR;

Debug Agent

Use DEBUG_REG_DATA
register as DR;

Write operation

Shift in *write’ command to DR:
‘WR:ADDR:DATA:-:

Read operation

Shift in ‘read’” command to DR:
:RD:ADDR:-:-:

Do {Shift out the contents of DR;}
While (READ_VALID) !="1";

Write specified register;

Read specified register;

Set READ_VALID when
data is ready;

The DATA field in RD is the
valid data;

The DA also supports the optional chip-level trace port controlled by
the off-chip debug controller, where the software debuggers are able to
access the trace data inside the DPs and CUDs in real-time, if any.

4. DEBUG PROBE

Transaction Trace Buffer

ocP ol .
(Communication g| VTEEE & TMEED
port) [
Ti ion Tracg Modul
h 4
CuD Delay OCP |‘gg= .
Control Slave IF
4 4 Debug
Debug Access Module Connection
JTAG, | | [T JTAG NoC
(Debugport)’ | " |__Control
Core Debug Module
Core Trace Buffer
et nae TN Kl e
1 T |_Trace Slave IF
Trace
Core Trace Module Connection

Figure 3: Debug Probe Block Diagram

From the debug point of view, embedded CUDs have three kinds of
interfaces: the functional communication port (OCP interface here),
debug interface (usually JTAG) and the optional trace port (e.g., for
processors [4, 13]). Therefore, at the CUD side, the role of the DP is
also three-fold: (i) it generates the necessary JTAG signals to control
and observe the CUD; (ii) it traces the OCP transactions with reconfig-
urable trigger conditions; and (iii) it transfers the trace data that come
from the CUD out of the chip for further analysis. On the NoC side,
the DP need two NoC connections: one for debug access and the other
for the trace (if the trace function is needed).

As shown in Fig. 3, the debug probe is composed of four main com-
ponents: transaction trace module, debug access module, core debug
module, and core trace module. Among them, the core trace mod-
ule can be removed for those CUDs that do not have trace interfaces.
In addition, the functionalities of these components can be enhanced
or degraded according to the debug requirements(e.g., adding or re-
moving triggers). With this scalable architecture, designers are able to
trade-off the cost and the functionalities of the DP. We detail the design
of these modules in the following.

4.1 Debug Access Module

The debug access module provides an OCP slave interface as the
service access point of the DP. All debug resource are mapped into
a unified address space and accessed through memory-mapped OCP
read/write operations.

The OCP slave interface decodes the OCP address to distinguish be-
tween the registers and the buffer, and then passes the register access to

the delay control unit. Concurrent debug of multiple cores usually re-
quires synchronizing the debug operations of multiple DPs and CUDs
by ‘delaying’ these operations properly [19]. This is done by first set-
ting appropriate values to the delay counter in the delay control unit
before really issuing debug commands. The delay counter will then
count down on its local clock to zero before the debug operation is
performed. For example, to write a DP’s register after five clock cy-
cles, debugger should set the initial delay value as five before the write
operation (so-called “delayed write”).

4.2 Core Debug Module

The core debug module controls and observes the CUD through
its debug interface (usually JTAG), by translating the debug register
read/write commands from the debug access module into the CUD’s
debug access protocol. For example, our experimental design imple-
ments the JTAG debug protocol used for ARM7TDMI core (i.e., em-
bedded ICE [3]). In this module, the access to CUD’s debug registers
is achieved by certain JTAG sequences. From the external core de-
bugger point of view, these translations are transparent except extra
processing delay.

4.3 Core Trace Module

The core trace module controls the CUDs’ trace port (if any), buffers
the traced data and provides a OCP slave interface for the DA to read
out the buffered data through NoC connections. However, since there
is only one chip-level trace port in most cases, when several CUDs
have data to send out at the same time, the “many-to-one” transfer
may result in contentions. To avoid that problem, a TDM scheme is
used at the chip-level trace port, which is controlled by the off-chip
debug controller. By assigning the time slot to each CUD, it grants
certain amount of tracing bandwidth(as shown in Fig. 4).

Read Read Read
System-level overhead overhead overhead
Trace Port _ > [+ e 0 feee-e- ol
Time Slot 1
CUD1
Time Slot 2
CuD 2
N Time Slot i

CUDi

Figure 4: Assign the Time Slot for Each CUD

Apparently, the sum of the bandwidth assigned to the CUDs can not
exceed the total bandwidth supported by chip-level trace port. As a re-
sult, we may need to limit the trace data generated by the CUD. Given
the bandwidth of the chip-level trace port (B, bps), the number of
traced CUDs (N), the time slot for each core CUD(i) (T'S(i) seconds),
and the necessary interval (read overhead, such as set the read address
etc.) between two read operations (7j,; seconds), the following equa-
tion gives the available bandwidth for CUD(i):

TS(i
Beup(i) :Bchip(m) (bps) (1)

Even if the CUD is assigned with enough trace bandwidth, the DP
still needs to buffer trace data when waiting for its time slot. For
CUD(i), it has to wait for NTy + 3, TS(j) seconds. During this
time, the volume of trace data T D(i) from CUD(i) is as follow:

TD(i) = Beyp(sy (NTine + X3, TS())

= Baip(grrsry) VT + ZN, TS()) (bits) (2)

ocp
Trigger Unit Trace Unit},
Detector 1 o
& [Detector | 5 | Shadow
s 5[E| Buffer
& P Detector2 = =
i ignals 8
2 hl >]
- Detector n 3 ey Records Buffer
= Generation Write
| Trigger Control | Bufer
I T
< Register W/R interface

Figure 5: Transaction Trigger and Trace Unit

In case the time slot for every CUD is the same (7'S), we get:

TD(i) = Banip sy) (N = 1)TS+NTin)

= Benip(TS = 75o7y) (bits) (3)

As the T, is generally much smaller than TS, the trace data for
CUD(i) can be further simplified as follows:

TD(i) = Bip(TS(X5L)) (bits) (4)

As above equations, larger time slot provides more efficient band-
width utilization (larger Bcyp(;)), but requires larger trace buffer be-
cause every core has to wait longer for the next time slot.

4.4 Transaction Trace Module

The transaction trace module monitors inter-core transactions and
records them based on configurable trigger conditions. The key build-
ing block in this module is a transaction trace and trigger unit, as shown
in Fig. 5.

Trigger Unit: The modular trigger unit contains a number of detec-
tors (see Fig. 5) which realize various trigger conditions. The inputs of
these detectors are chosen from the OCP signals with an input switch;
while their outputs are supplied to a MUX to generate the final trigger
signals.

A detector can be a simple two-input comparator, which just com-
pares a set of OCP signals (e.g., command, address or data) to a run-
time configurable value. A more complex detector can be a transac-
tion analyzer that is able to identify transaction errors or certain pat-
terns. The basic function of the transaction analyzer in our experimen-
tal design is to check whether the transactions conform with the OCP
protocol. It detects errors such as ‘wrong command coding’, ‘illegal
address’, ‘no command acceptation’, ‘no response’, and ‘wrong re-
sponse’. It can be extended for different debug requirements and fitted
in the system with well defined interface. For example, by embedding
some counters, it is able to calculate the delay of a transaction (e.g., the
round-trip read delay), for evaluating whether the NoC design achieved
the QoS target.

In addition, multiple detectors can work together to form more com-
plex trigger conditions by supplying one detector’s output to other de-
tectors as part of its inputs or even as the its enable/disable control
signal. As an example, we need a DP to “trigger when the transac-
tion initiator reads address 0x8000xxxx but do not get response data in
20 clock cycles”. We can combine a comparator that checks the OCP
command and address signals and a transaction analyzer which counts
the response time. Instantiating how many detectors is a design-time
decision, but what the trigger conditions can be run-time controlled by
programming them.

Trace Unit: The trace unit is responsible for recording the trans-
actions with predefined format on a trigger event (see Fig. 5). How-
ever, as the trigger event may be activated several clock cycles after the
transaction message starts, if we only store the transactions at the trig-
ger time, some essential information may be already lost. To tackle this
problem, we design a shadow buffer inside the trace unit to store the
“start cycle” of the transaction and its timstamp temporarily. Usually,
this cycle can be identified from the “master command”. In addition,
the “trigger cycle” and its timestamp are also stored for generating the
transaction records.

When the trigger event is activated, part of the data in the shadow
buffer are fetched out to generate a transaction record and then write to
the transaction trace buffer by the transaction records generation unit.
To simplify the record generation process and buffer control mecha-
nism, we use a fixed-length record format as follows:

127 125 77 0

Record Timestamp
Identifier (start cycle)

Payload

The record identifier is a predefined codeword that identifies the
trigger event associated to this record. The width of the record iden-
tifier depends on the number of the detectors. Each bit indicates the
trigger status of one detector. The timestamp represents the time when
the transaction starts. It is the number of clock cycles passed from
the start of the debugging. The payload field contains selected trans-
action data. In most cases, designers only need to see part of the
transaction data(e.g., commands and address) in one debug iteration.
Therefore, the record generation module supports flexibly choosing
part of the OCP signals stored in the shadow bufter by setting a pay-
load mask. Only those signals whose corresponding mask bits are set
will be stored in the payload of the record. By doing so, the length
of the record payload can be effectively reduced without losing de-
bug accuracy. The size of payload is a design-time trade-off between
better observability and smaller area and traffic cost. In our experimen-
tal design, we chose 2-bit record identifier (for two detectors), 48-bit
timestamp and 78-bit payload to build a 128-bit width record.

For example, designer wants to know the round-trip delay when the
CUD reads from address 0x80000010. Then the “read started start”,
which is the timestamp of the “start cycle”, and the “response time”
which is the timestamp of the “trigger cycle” have to be recorded. The
“start cycle” is the cycle where the OCP master command (OCP sig-
nal MCmd) is 3'b010 (’read’ operation) and the master address (OCP
signal MAddr) is 32'h80000010. The “trigger cycle” is detected when
the OCP slave response (OCP signal SRep) is 2°b01 (valid data). So
we set the trigger and payload mask as follows:

1. set trigger condition:

MCmd = 3'b010 A MAddr = 32'h80000010 A SRep = 2/b01
2. set payload mask to enable “OCP MCmd” of start cycle;
3. set payload mask to enable “Timestamp” of trigger cycle;
4. start debug;

With the above settings, when the trigger event is activated, the
“timestamp” and “MCmd” of “start cycle” and the “timestamp” of
“trigger cycle” are fetched from the shadow buffer and then filled in
the “timestamp” and “payload” fields of the record respectively as:

127 125 77 74 26 0

Timestamp

‘ estamp
11
(response cycle)

(start cycle) | MCmd |

[

The transaction records are firstly written to the transaction trace
buffer and then wait for the off-chip debug controller to read it out. A
straightforward method is to fetch the entire trace data out at once after
the debug process terminates. However, it requires that the transaction
trace buffer is large enough to store all the records, whose number

Test Bench

¥ N

»<¢ Communication-p»ie \:‘ IP

+——Debug P> K oDe

——Trace P>
NoC

SoC RTL Model

Figure 6: Simulation Environment

is not even predictable. Another strategy is to fetch the debug data
constantly during debug process before the buffer is full. But, due
to the bandwidth limitation of the debug connections, reading out the
trace data in real-time may be quite difficult. Therefore, as a trade-off,
we use reasonable buffer size with ‘best effort’ read policy, i.e., the
trace data is read out as soon as when no other high-priority operations
(e.g., debug control) uses the same debug connection. Clearly, the
transaction buffer may overflow under this strategy. In this case one
bit in the debug status register is set to indicate the buffer overflow.
We expect designers to set a tighter trigger condition to avoid buffer
overflow in the next debug run in case it happens. Since the debug
process itself is a “try-and-error” process and usually requires multiple
iterations to pinpoint the bug locations, we believe this debug strategy
will not increase the debug time significantly.

4.5 DP Programming Model

By default, the DP is disabled and only debug access module is
listening to the debug commands, so that the power consumption is
reduced in normal functional mode. Under such circumstance, the
DP needs to be configured and enabled first before the debug process
starts.

Most modules can work with default settings and do not need to
be reconfigured frequently except for the Transaction Trace Module,
which should be programmed in the following sequence in one debug
iteration:

1. Select the inputs of the detector and the transaction analyzer from the OCP
signals;

2. Set the trigger output of MUX.

3. Set the operation parameters of the detector and the transaction analyzer;

4. Set the start and stop counters;

5. Set the payload mask for record generation;

6. Set the timestamp counter initial value;

7. Set the ‘enable’ bit in the control register to start the trigger and trace process;

bug connections. It should be noted that we use connections with
pre-defined delays to model the QoS-guaranteed NoC communication
channels. We conduct two simulations to illustrate the functionalities
of the proposed DP, as discussed in the following paragraphs.

Fig. 7 shows a ‘delayed write’ operation to the CUD’s debug con-
trol registers. In the beginning, we set the delay counter register in
the “Debug Access Module” with a pre-defined value (‘5’ in this ex-
ample). Next, we send the address of the target debug control register
inside the CUD and the data to be written into it to the CUD’s JTAG in-
terface. As can be observed from the figure, since the value of the delay
counter is ‘5’, this write operation is delayed for 5 clock cycles. When
the CUD’s JTAG interface unit receives the address and data, they are
transferred to the CUD (with protocol specified in [3]). Finally, the
Debug Control Register is set with expected value after the JTAG se-
quence is complete. Since the JTAG sequence for a specific register
is fixed, we can control the time when the debug commands (by set-
ting debug control register) take into effect with the above method.
Similarly, the debug registers inside the DP can also be written with a
pre-determined delay.

Fig. 8 presents an example on the transaction trace process. In
this experiment, we first program the trigger and trace registers as de-
scribed in Section 4.5.The DP then monitors the CUD’s OCP port con-
tinuously according to the pre-assigned configurations. When one of
the transactions try to read from the specified address, the detector
starts the transaction analyzer (as detailed in Section 4.4). If the trans-
action analyzer find that the delay of the response is larger than the
pre-defined value, it triggers the “Record Generation Unit". Finally,
this transaction is recorded after one clock cycle into the transaction
trace buffer for further analysis.

5.2 Debug Probe Cost Analysis

As introduced in Section 2, the on-chip debug architecture contains
a number of debug probes. Therefore, the area of the proposed DP
should be well controlled to reduce the total DfD area cost. We im-
plement an experimental DP design in a commercial 90nm CMOS li-
brary. A detector for comparing OCP commands and addresses and a
transaction analyzer that detects the read delay are instantiated in our
design. The transaction trace buffer used in the design is an 32 x 128-
bits asynchronous FIFO, in which we can store 32 transaction records,
including 2 bits of the record identifier, 48 bits of the timestamp, 78
bits of the payload. We also implement a 32 x 32-bits core trace buffer.
These two buffers are implemented by general-purpose flip-flops in our
current implementation.

5. EXPERIMENTAL RESULTS
5.1 Functional Simulation

To verify the functionalities of the debug probe described in Section
4, we build a simple yet effective simulation environment, as shown
in Fig. 6. The behavioral model of the CUD implements the debug-
related functions of a processor, which serves as the transaction ini-
tiator that communicates to another IP module (a memory core here)
through a NoC channel. During the simulation, the CUD reads and
writes the IP core randomly, where these transactions are monitored
and recorded by the DP. The debug port is functionally equivalent to
the ARM Embedded ICE JTAG port and the trace port is a NEXUS
auxiliary port [14] that transports messages containing traced data with
predefined throughputs. The off-chip debug controller generates JTAG
debug commands for setting up the DP’s debug registers as described
in Section 4.5. These commands are translated by the DA and then
access the debug resources in the DP or the CUD through NoC de-

Reference Area (um®) | Percentage
Debug Probe Top 188059.0 100.0%
Transaction Trace Module
Trigger and Trace Top 19692.1 10.5%
Input Switch 481.8 0.3%
Detector 543.3 0.3%
Transaction Analyzer 364.4 0.2%
MUX 14.3 0.0%
Record Generation 4629.7 2.5%
Shadow Buffer 9197.9 4.9%
Trigger and Trace Control | 4456.3 2.4%
Transaction Trace Buffer 120689.9 64.2%
Debug Access Module
Delay Control 5384.8 2.9%
OCP Slave INF 2020.7 1.1%
Core Debug Module
JTAG INF 3912.9 2.1%
Core Trace Module
Core Trace INF 3099.6 1.6%
Core Trace Buffer 31225.6 16.6%
OCP Slave INF 2024.0 1.1%

Table 1: DfD Area Cost of the Debug Probe

0 Clock

* OCP register write enable

0 OCP register wiite address
0 OCP register write data

& Delay Counter

v‘ JTAG IMF register write enable
0 JTAG IMF register write address
Q JTAG IMF register write data
0 Core's TCK.

’ Core's THS

0 Core's TDI

0 Core's Debug Control Register

M A A A AU A eI

_|'| write to delay counter with
| expected clock cycle number
1

[le—>| Write operation is delayed

|
i

an
0000005 O00000Z;
Y0000000% 00000000
M
an i [1]
00000000 [jo0000zz
S Ny M
Start JTAG command secquence M

CUD’s debug control register is set i

Figure 7: Simulation Waveform for the Delayed Write Operation

& ok

& Register'witeEnable | |[] Il _—]

& RegisterWite Addiess [0) N - 12]

& Register Wiite Data JO000081 0 \‘ '/ IR o] JFFFFFFOF

& Detector Hit configure the trigger and trace module

detector hit here — il

u’ Tranzaction Snalpzer Hit

transaction analyzer hithere — I

OCP transactions
Q Trace Buffer ‘Write Enable ya

transaction record generated here ——— n

* Trace Buffer ‘Wiite D ata

00000000000000000000000000000000A000.._ 1)

& OCP Master Address 000 {{{oo0 000 /,Tmn {fo00__ 000 Yjooo {000 fooo (o0 [YYooo [Yjooo’ Jioo0 ({000 Y000 YiOoo
& OCP Master Command [T Jjooo | oooe” fooo Jooo jooo jooo fooo ooo [iooo [Yoo [fmooT fnod foon ooo oo
¥ OCP Response (il Y N AT (T (N VD (s (T T N (N (X I (o NI (T T R (X A (1

Figure 8: Simulation Waveform for the Transaction Trace Operation

Table 1 presents the detailed area data of all the blocks shown in Fig.
3. The total area of this design is 188059 um? (about 57k gates). Fur-
ther analysis shows that the two trace buffers occupy most of the area in
the DP (as expected), more than 80 percent. If using SRAMs instead of
registers to form these buffers, their areas can be reduced significantly.
The control logic inside the DP is about 10k gates, which is considered
to be acceptable for giga-scale NoC-based systems. Adding more trig-
gers and core trace modules will not increase the area of control logic
significantly.

The area of the transaction trace buffer depends on the number and
width of the trace records, which differs from one application to an-
other. The core trace buffer size varies with different cores’ debug
requirements and also the time slot sizes as analyzed in Section 4.3.
Generally speaking, our DP design provides the flexibilities for de-
signers to make the best trade-off according to their debug needs.

6. CONCLUSION

In this paper, we present the detailed design and analysis of a novel
debug probe for the NoC-based systems, which is composed of four
main components: transaction trace module, debug access module,
core debug module, and core trace module. The DP is well fitted in
the debug platform presented in [19] to facilitate concurrent debug of
embedded cores and inter-core transactions, at a moderate DfD area
overhead.

7. REFERENCES

[1

Altera Inc. Design Debugging Using the SignalTap II Embedded Logic Analyzer.
http://www.altera.com.

[2] ARM Ltd. AMBA AXI Protocol Specification. http://www.arm.com.

[3]1 ARM Ltd. The ARM7TDMI Debug Architecture, Dec. 1995. ARM DAI 0028A,
http://www.arm.com.

[4]
[5]

[6

(7]

[8

91

[10]

[11]

[12]
[13]

[14]
[15]

[16]

[17]
[18]

[19]
[20]
[21]

[22]

ARM Ltd. How CoreSight Technology Gets Higher Performance, More Reliable
Product to Market Quicker. http://www.arm.com.

L. Benini and G. de Micheli. Networks on chips: A new SoC paradigm. Computer,
12(1):70-78, January 2002.

T. Bjerregaard and S. Mahadevan. A survey of research and practices of
network-on-chip. ACM Comput. Surv., 38(1):1-54, 2006.

C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J. van Meerbergen. An
event-based monitoring service for networks on chip. ACM Transactions on
Design Automation of Electronic Systems, 10(4):702-723, Oct. 2005.

C. Ciordas, K. Goossens, T. Basten, A. Radulescu, and A. Boon. Transaction
Monitoring in Networks on Chip: The On-Chip Run-Time Perspective. In Proc.
IES, 2006.

K. Goossens, J. Dielissen, and A. Rddulescu. The Athereal Network on Chip:
Concepts, Architectures, and Implementations. IEEE Design & Test of Computers,
22(5):21-31, Sept-Oct 2005.

K. Goossens, B. Vermeulen, R. van Steeden, and M. Bennebroek.
Transaction-Based Communication-Centric Debug. In Proc. NOCS, pp. 95-106,
2007.

A. B. T. Hopkins and K. D. McDonald-Maier. Debug Support for Complex
Systems on-Chip: A Review. IEE Proceedings, Computers and Digital
Techniques, 153(4):197-207, July 2006.

R. Leatherman and N. Stollon. An Embedded Debugging Architecture for SOCs.
IEEE Potentials, 24(1):12-16, Feb-Mar 2005.

MIPS Technologies Inc. EITAG Trace Control Block Specification.
http://www.mips.com.

The NEXUS 5001 Forum. http://www.nexus5001.org.

OCP International Partnership. Open Core Protocol Specification.
http://www.ocpip.org.

Philips Semiconductors. Device Transaction Level (DTL) Protocol Specification.
http://www.philips.com.

The International Technology Roadmap for Semiconductors (ITRS): 2003 Edition.
N. Stollon, R. Leatherman, B. Ableidinger, and E. Edgar. Multi-Core Embedded
Debug for Structured ASIC Systems. In Proc. DesignCon, 2004.

S. Tang and Q. Xu. A Multi-Core Debug Platform for NoC-Based Systems. In
Proc. DATE, pp. 870-875, 2007.

B. Vermeulen and S. K. Goel. Design for Debug: Catching Design Errors in
Digital Chips. IEEE Design & Test of Computers, 19(3):35-43, May 2002.

B. Vermeulen, T. Waayers, and S. K. Goel. Core-Based Scan Architecture for
Silicon Debug. In Proc. ITC, pp. 638-647, 2002.

Xilinx Inc. Chipscope Pro Software and Cores User Guide. http://www.xilinx.com.

