
On Logic Synthesis for Timing Speculation

Yuxi Liu†, Rong Ye†, Feng Yuan†, Rakesh Kumar§ and Qiang Xu†

†CUhk REliable Computing Laboratory (CURE)
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Email: {yxliu, rye, fyuan, qxu}@cse.cuhk.edu.hk

§Dept. of ECE, University of Illinois at Urbana-Champaign, USA
Email: rakeshk@illinois.edu

ABSTRACT
By allowing the occurrence of infrequent timing errors and correct-
ing them with rollback mechanisms, the so-called timing speculation
(TS) technique can significantly improve circuit energy-efficiency and
hence has become one of the most promising solutions to mitigate the
ever-increasing variation effects in nanometer technologies. As tim-
ing error recovery incurs non-trivial performance/energy overhead, it
is important to reshape the delay distribution of critical paths in timing-
speculated circuits to minimize their timing error rates. Most existing TS
optimization techniques achieve this objective with post-synthesis tech-
niques such as gate sizing or body biasing. In this work, we propose to
conduct logic synthesis for timing-speculated circuits from the ground
up. Being able to manipulate circuit structures during logic optimiza-
tion, the proposed solution is able to dramatically reduce circuit timing
error rates and hence improve its throughput, as demonstrated with ex-
perimental results on various benchmark circuits.

1. INTRODUCTION
Technology scaling has brought various challenges to state-of-the-art

integrated circuit (IC) design, among which the ever-increasing timing
uncertainty caused by static and dynamic variation effects (e.g., man-
ufacturing variability and runtime voltage/temperature fluctuations) is
one of the most critical problems [1, 2]. To tolerate such timing uncer-
tainty, conventional designs focus on worst-case parameters and rely on
conservative design guardbanding to guarantee “always correct" opera-
tions. Such worse-case-oriented design methodology, however, dramat-
ically reduces the benefits brought by technology scaling.

When there is no sufficient timing slack in a circuit, variation effects
would manifest themselves as infrequent timing errors on its speed-
paths [6, 7]. If we could detect the occurrence of timing errors and cor-
rect them on-the-fly with little penalties, we can achieve error-resilient
computing with improved circuit performance and/or energy-efficiency.
Such “better-than-worst-case" design methodology has attracted lots of
research attention from both academia and industry, and a number of
so-called timing speculation (TS) techniques have been presented in the
literature [3, 4, 5].

Since timing error detection and correction mechanisms are the en-
abling techniques in timing-speculated circuit designs, there have been
numerous research works to address these two issues. On one hand,
many timing error detectors were presented in the literature (e.g., [8, 3,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2012, November 5-8, 2012, San Jose, California, USA.
Copyright c©2012 ACM 978-1-4503-1573-9/12/11 ...$15.00.

9]), among which Razor flip-flop [3] with double-sampling capability is
the most representative one. On the other hand, timing error recovery
is usually achieved by restoring system to a known-good pre-error state
with microarchitectural-level support. For example, when a timing er-
ror is detected in microprocessor datapath, the processor pipeline can
be flushed. Then, by lowering the system frequency for a short period
and replaying instructions, the processor is able to recover from the fail-
ure cycle and continues its operations correctly with performance/power
penalties paid for recovery and re-execution. Since the system operates
at higher frequency without timing errors for the general case, the over-
all system performance is expected to be improved, as long as timing
errors do not occur frequently and the penalties paid to correct them are
well controlled.

Since timing error correction incurs non-trivial performance over-
head, it is important to reduce the timing error probability of the circuit
under a certain operational frequency to improve its throughput. Various
techniques (e.g., [11, 12, 13, 14]) have been presented in the literature
to achieve this objective, but most of them are conducted using post-
synthesis optimization techniques such as gate sizing or body biasing.
The effectiveness of these solutions is thus limited with fixed circuit
structure at this stage. Motivated by the above, we propose to conduct
logic synthesis for timing speculation from the ground up in this work.
With the flexibility to manipulate circuit structural changes, our solution
can dramatically improve the throughput of timing-speculated circuits,
as demonstrated on various benchmark circuits. The main contributions
of this work include:

• We propose a simple yet effective model to estimate the impact
of structural changes on the timing error probability of a circuit,
by taking process variation effects and speed-path sensitization
probability into consideration;

• Using the proposed optimization metrics, we present novel logic
synthesis techniques to improve the performance of timing-speculated
circuits.

The remainder of this paper is organized as follows. Section 2 presents
the preliminaries of this work. In Section 3, we detail the proposed
logic synthesis techniques for timing speculation. Experimental results
on various benchmark circuits are then presented in Section 4. Finally,
Section 5 concludes this paper.

2. PRELIMINARIES

2.1 Timing Speculation
By detecting timing errors on-the-fly and conducting rollback error

recovery, the circuit’s throughput and/or energy consumption can be sig-
nificantly improved with timing speculation technique. One of the most
representative solutions is the so-called Razor technique [3], wherein
double-sampling sequential elements are used for timing error detection
while counterflow pipelining technique [10] is used for error recovery.

591

Assuming the clock period is T and the circuit timing error rate with
respect to T is Pe(T), we can have the probability function for the circuit
to operate without timing errors P(T) = 1−Pe(T). By using the timing
speculation penalty factor r to indicate that r clock cycles are needed to
recover the system and re-execute the failure cycle, the overall system
throughput is [11]:

T P(T) =
1
T
× (1−Pe(T)+

Pe(T)
r

) (1)

In traditional “worst-case-oriented" designs, no timing error is al-
lowed and hence we have Pe(Twc) = 0, where Twc is the operational
clock period in the worst case to guarantee error-free computation. Then,
Eq. 1 is simplified to be T P(Twc) = 1/Twc, the familiar case with rel-
atively low throughput, because Twc has to be large enough to tolerate
variation effects.

With timing speculation, the clock period T can be reduced from Twc
to Tts and we have Pe(Tts) > 0. From Eq. 1, it is clear that the timing
error rate has to be kept within a small range to achieve performance
benefit. Generally speaking, the penalty factor r is a fixed value, and we
can find an optimal clock period with maximum throughput for a given
design. On the other hand, under a certain operational clock period, as
can be seen from Eq. 1, the circuit throughput is determined by Pe(T).
Consequently, if we can make design changes to reduce circuit timing
error rate, the system throughput can be enhanced.

To achieve the above objective, DynaTune [11] optimizes frequently-
sensitized critical paths of the circuit by assigning low threshold voltage
Vt to some critical gates on them. Blueshift [12] identifies and opti-
mizes frequently-exercised critical paths by On-demand Selective Bias-
ing (OSB) and Path Constraint Tuning (PCT). In [13], Kahng et al. pro-
posed a slack re-distribution strategy to increase the level of over-scaling
under a given timing error probability constraint to minimize power con-
sumption. They increase the timing slacks of frequently-sensitized crit-
ical paths by sizing the on-path gates.

The effectiveness of the above works relies on the circuit generated
from the logic synthesis step. To optimize timing-speculated circuits
with more flexibility, Cong et al. proposed to conduct logic synthesis
for timing speculation in [15]. However, in this work, the authors simply
changed the cost function used in logic optimization, by taking timing
error probability into consideration. In addition, timing simulation is
required in each optimization step to acquire switching probability and
during synthesis the circuit structure is changed frequently. As a result,
its computational complexity is extremely high and it would be too time-
comsuming.

2.2 AIG-Based Logic Synthesis
Logic synthesis is a process by which an abstract form of desired

circuit behavior is turned into an optimized logic gate implementation
(e.g., in terms of timing and/or area), which plays an important role in
today’s IC design flow.

During logic synthesis, we need to make frequent local structural
changes for circuit optimization. Consequently, an effective representa-
tion of combinational logic that enables fast local transformation is cru-
cial. And-Inverter Graphs (AIGs), a networks of two-input ANDs and
inverters, is one of the most popular such representations [16]. With
this representation, structural changes are conducted at each super-gate
during the optimization process [17]. By applying the AIG rewriting
many times, the structural change scope will be no longer local and it is
stated that the cumulative effect for multiple rounds of AIG rewriting is
usually superior to traditional synthesis in terms of quality.

DEFINITION 1. Super-gate rooted at a node o is composed of a set
of nodes in node o’s subtree whose leaves are either inverters or PIs.

As shown in Fig. 1(a), the subtree within the dotted line is a super-
gate rooted at Node o. For this example circuit, let us use ATa, ATb,
ATc and ATd to represent the arrival times of fan-in a, b, c, and d, re-
spectively. Assume ATa > ATb > ATc > ATd , if we change the circuit

a
b

c

d

o

a

b

c
d

o

(a) Super gate before balance (b) Super gate after balance

AND

Inverter

Figure 1: Path delay balancing: an example.

structure so that fan-in a, the latest-arrived signal, is located to be the
closest to the output (see Fig. 1(b)), the circuit delay can be reduced. In
other words, by reordering the fan-ins of super-gates, the circuit shown
in Fig. 1(b) has better timing performance when compared to that shown
in Fig. 1(a) while maintaining the functionality of the circuit.

Conventional logic synthesis techniques (e.g., [18, 19]) use the above
method to balance the timing of different paths to minimize the worst-
case timing delay of the circuit. In timing-speculated circuits, we can
apply similar technique to reshape circuit path delay distribution to achieve
better performance, but our objective is to improve the overall system
throughput instead of the worst-case delay. To achieve this objective,
however, is a challenging task, and we detail our proposed solution in
the following section.

3. LOGIC SYNTHESIS FOR TIMING SPECU-
LATION

According to Eq. 1, the system throughput of a timing-speculated cir-
cuit is a function of its clock period and timing error rate. During logic
synthesis, we can make frequent structural changes for circuit optimiza-
tion. Such flexibility provides us better opportunity to reduce circuit
timing error rate under a certain clock period when compared to those
post-synthesis optimization solutions. At the same time, however, this
objective can be achieved only when we are able to efficiently and effec-
tively evaluate the impact of structural changes on circuit timing error
rate. Consequently, we need an optimization metric that can be quickly
calculated and use it to guide our logic synthesis procedures.

3.1 Proposed Optimization Metric
There are three factors that affect the overall timing error rate of a

circuit: (i). the clock period; (ii). the delay distribution of critical paths;
and (iii) the sensitization probability of critical paths. At the logic syn-
thesis stage, it is impossible to obtain the first two factors accurately
because they are significantly affected by later stages of the design flow
(e.g., technology mapping and physical design). Fortunately, as we just
make local changes (e.g., for one super-gate a time) in each logic opti-
mization step, we only need to estimate the corresponding local timing
error rate changes. In other words, it is not necessary to acquire an
accurate overall circuit timing error rate. Instead, we only need to eval-
uate the impact of local structural changes on timing error rates. To be
specific, when conducting fan-in reordering for a particular super-gate
during logic synthesis, the number of critical paths that go through this
gate and/or their timing delay will change, and we need an optimization
metric that can reflect the above factors.

Timing errors manifest themselves on critical paths whose delays
may exceed clock period. Considering process variation, the delay of
each gate is a random variable. By assuming the gate delay follows
Gaussian Distribution,the delay distribution of a path also follows Gaus-
sian Distribution, which can be represented as (µ,σ), where µ is the
mean value of the path delay and σ is the standard deviation of the path
delay. Therefore, the probability for the delay of path i to exceed clock
period T is:

592

Di = 1−Φ(
T −µi

σi
) . (2)

The other condition for timing error to occur on a critical path is that
this path is sensitized. Previous works (e.g., [15]) resort to timing simu-
lation to acquire path sensitization probability. While being more accu-
rate, it is too time-consuming to be used in the iterative logic optimiza-
tion procedure. Consequently, we use a simplified model to calculate
path sensitization probability. Generally speaking, sensitizing a path re-
quires that there is a signal transition at the input of the path and all
the side-inputs of those gates along the path have non-controlling value
(e.g., logic ‘1’ for AND gates) at the same time. Eq. 3 presents the sensi-
tization probability of a path i, where NCV represents "non-controlling
value", Togi and P(g j = NCV) are the input signal toggle probability
and the probability for side-input j along path i to be non-controlling
value. Note that, even though the side-inputs along a certain path may
not be mutually independent, we ignore this effect and estimate the sen-
sitization probability as shown in the equation to reduce computational
complexity.

Si = Togi×P(g1 = NCV,g2 = NCV, ...,gk = NCV)

≈ Togi×P(g1 = NCV)×P(g2 = NCV)× ...×P(gk = NCV)
(3)

We obtain the toggle probabilities of the path inputs (FF or PI) by per-
forming one-time logic simulation. This is possible because logic syn-
thesis only changes the structure of combinational logic and hence the
toggle probabilities of path inputs would not change during each opti-
mization step. However, we cannot afford to use simulation to obtain
P(g j = NCV) in the above equation due to logic structural changes in
each optimization step. Consequently, we acquire this information by
performing simple probability propagation. To be specific, we travel
through the circuit network in a topological order from PIs to POs and
calculate the output’s logic probability for one gate according to its in-
puts’ logic probabilities. For example, if the probabilities for the two
inputs of a 2-input AND gate to be logic 1 are 0.4 and 0.5 respectively,
the probability for its output to be logic 1 should be 0.4×0.5 = 0.2 and
the probability to be 0 is 1−0.2 = 0.8. Note that, we initially assign 0.5
as the probabilities for all PIs to be logic 0 or 1 respectively.

Based on the above, we can estimate the probability that there is tim-
ing error to occur on a path i as follows:

Pi = Di×Si . (4)

When conducting fan-in reordering on a super-gate, there may be
multiple critical paths that go through the very same gate. We use the
following term as our optimization metric during logic synthesis:

DEFINITION 2. Accumulated timing error probability (ATEP) of a
gate equals the sum of the timing error probabilities of all critical paths
going through it.

3.2 Proposed Logic Synthesis Solution
With the above optimization metric that can reflect the impact of fan-

in reordering of super-gates, there are two key problems that need to
be investigated in our optimization procedure: (i) we need to determine
how to optimize each super-gate by reordering its fan-ins so that the
ATEP of this super-gate can be optimized locally; (ii) we need to inves-
tigate what order we should follow to optimize the super-gates one by
one.

3.2.1 Fan-In Reordering
To reorder the fan-ins of a certain super-gate, we always select the

fan-in permutation that can achieve the lowest ATEP after optimization.
Generally speaking, we reorder the fan-ins by trying all possible fan-in
permutations to find the best order. However, if the number of fan-ins is
large, this enumeration process to investigate all permutations will lead

to a large runtime to. Consequently, for those super-gates with a rela-
tively large number of fan-ins, we resort to a heuristic-based grouping
method to get a near-optimal order. With the best fan-in order, we calcu-
late the change of the super-gate’s ATEP and consider it as an approxi-
mation to bene f it, which is used to demonstrate the maximum potential
improvement by reordering the fan-ins of a super-gate. The bene f it is
defined as follows:

DEFINITION 3. For a super-gate, different fan-in order will lead to
different ATEP. The ATEP difference between the lowest ATEP with the
best order and the original ATEP before reordering is defined as this
super-gate’s benefit.

The heuristic-based grouping method is like this. Given a super-gate
with n fan-ins, we calculate the ATEPs of all the fan-ins and firstly re-
order all of them according to the rule that the fan-in with higher ATEP
should be located closer to the super-gate’s output. After that, we divide
all the reordered fan-ins into k groups evenly with each group contain-
ing (n/k) fan-ins. Then we search all possible permutations of the (n/k)
fan-ins within each group. By doing so, we find out an n-fan-in per-
mutation with the lowest ATEP. By doing this, we only enumerate the
fan-in permutations within each group and the fan-in number in each
group is small. The obtained permutation near-optimal and we use it to
calculate the approximate bene f it.

3.2.2 Super-Gate Ordering
During the optimization process, the structural change happens on

each super-gate. Reordering the super-gate’s fan-ins may provide ben-
efit for the timing error probability. This fan-in reordering process is
conducted for each super-gate one by one. As a result, it is necessary to
study the impact of the super-gate’s order on the result.

Super-gate G1

A

Super-gate G2

B C

Figure 2: The impact of optimization order of super-gates.

Let us examine a simple example to show how the optimization order
of super-gates can affect the final results. As shown in Fig. 2, we have
two super-gates (G1 and G2) and G2 is in the fan-in cone A of G1. Re-
ordering either one of them can reduce the error probability. However,
a different optimization order may result in different effectiveness. As-
sume the ATEP of fan-in A is larger than that of the other two fan-ins
B and C. If G1 is proposed to be optimized first, it is obvious that we
should place fan-in A to the position closest to G1’s output to reduce its
delay and error probability. However, if G2 is proposed to be optimized
first, it is possible that after the optimization on G2 the ATEP of fan-in
A becomes smaller than the other two fan-ins B and C. Hence it is not
necessary to locate fan-in A to the position closest to the output when
optimizing G1. From this example, it can be seen that the optimization
result may be different if we follow a different super-gate’s order. How
to find out an appropriate super-gate’s order is an important problem
and will be investigated in the following.

First of all, it is intuitive that those super-gates with larger benefit
should be optimized first. It is because larger benefit means these super-
gates are expected to achieve more error probability reduction. Dur-

593

{Gi}, the set of the super-gates within the subtree.
1. Initialize the set {Gi}
2. Update the benefits of all the super-gates in {Gi}
3. Update the flexibilities of all the super-gates in {Gi}
4. REPEAT
5. IF {Gi}=∅
6. Break;
7. ELSE
8. Select the super-gate G ∈ {Gi} with the smallest flexibility;
9. Reorder the fan-ins of the super-gate G;
10. Remove the super-gate G from {Gi};
11. END REPEAT

Figure 3: The algorithm to optimize the subtree with a super-gate
as root.

Figure 4: The overall optimization flow.

ing the optimization process, we set up a benefit threshold η and opti-
mize the super-gates one by one in a benefit-descending order. Once the
bene f it of currently optimized super-gate is less than the pre-defined
threshold η, we would stop the optimization. By doing so, we can avoid
the optimization to some super-gates that have too less impact on the
error probability reduction and hence save runtime cost.

Secondly, once a super-gate with large enough bene f it is selected
to be optimized, simply reordering its fan-ins at once may result in
a sub-optimal solution as discussed in the above example shown in
Fig. 1. Consequently, we propose a novel algorithm to optimize the
super-gates, which can effectively avoid the sub-optimal case. Specif-
ically, we define a metric f lexibility to indicate the priority of super-
gates during optimization process as follows:

DEFINITION 4. Given a suspicious FF, we can find out all the super-
gates in its fan-in cone and construct a tree with it as root and all the
super-gates as nodes. The flexibility of a super-gate G is defined as the
sum of the benefits of all the super-gates within the subtree rooted at the
super-gate G.

The flexibility of a super-gate indicates how much its ATEP can be
affected by other super-gates. In other words, the larger a super-gate’s
flexibility is, the more probable it is that the super-gate’s ATEP will be
affected by other super-gates. Consequently, when a super-gate G with
large enough bene f it is selected for optimization, we would prefer to
optimize all super-gates within the subtree SG

1 first, so that we can get
a better understanding to the ATEP of G and finally achieve an effective
fan-in reordering for G. Based on the above, we propose an algorithm
to optimize the subtree when a super-gate G is selected to be optimized
as described in Fig. 3. Before the the subtree optimization, we need to
update the benefits and flexibilities first. Then we start to optimize the
1A subtree SG implies that this subtree is constructed with super-gate G as root.

super-gates in the subtree in flexibility-ascending order. This optimiza-
tion order can guarantee a bottom-up traversal to the subtree with super-
gate G as root, which can avoid the sub-optimal case in the example of
Fig. 1. Note that, in order to avoid the optimization to some super-gates
once again, if some super-gates have been optimized and the bene f its
have also been updated already, we will mark out these super-gates and
not conduct optimization for them again.

3.2.3 Overall Optimization Flow
To sum up, the overall optimization flow of our proposed logic syn-

thesis technique is shown in Fig. 4. Firstly, we read the circuit netlist
structure into our optimization program and perform timing analysis
to differentiate the suspicious FFs driven by critical paths. Secondly,
for each suspicious FF, we explore its fan-in cone and find out all the
super-gates within it and their benefits. Finally, we optimize each super-
gate together with the super-gates within its subtrees one by one with
bene f it-descending order.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
We develop our logic synthesis tool for timing speculation based on

ABC [17]. To evaluate its effectiveness, we conduct experiments on
ISCAS’89 benchmark circuits with UMC’s 130nm technology, and per-
form Monte Carlo simulation to inject gate-level delay variation follow-
ing Gaussian distribution with standard deviation equal to 10%. To get
timing error probability, we perform simulation with random inputs in
our experiments and each simulation is performed with 100,000 cycles.
Note that, our simulation is conducted on post-layout netlist to incorpo-
rate the impact of technology mapping and physical design on timing
error rates. The penalty factor r in Eq. 1 is assumed to be 10 clock cy-
cles according to [23]. The baseline solution optimized by ABC, aiming
at timing balance, is denoted as LSbaseline. Our proposed logic synthe-
sis technique, aiming at reducing timing error probability, is denoted as
LSproposed . We sweep the operating clock period for each case to find
out the best one with largest throughput calculated according to Eq. 1.

4.2 Results and Discussion

We first present the results on system throughput and hardware cost
in Table 1. The throughputs of LSbaseline and LSproposed are reported in
Column 2 and Column 3, respectively. The throughput improvement be-
tween LSbaseline and LSproposed is shown in Column 4. We can observe
about 17.51% throughput improvement on average after our optimiza-
tion. Column 7 and Column 8 demonstrate the circuit area of LSbaseline
and LSproposed . The additional hardware cost of LSproposed is shown in
Column 9. Only 1.13% hardware cost on average is needed to realize
our proposed optimization techniques, which is quite small especially
considering the significant improvement of system throughput.

In Column 5 we show the throughput results with our proposed tech-
niques and a special technology mapping step LSbaseline + T M. This
mapping step is different from the original mapping technique in ABC
which is used in our proposed logic synthesis technique LSproposed to
get the results in Column 3. The optimization target is changed from
the area/power to timing error probability to reduce the error rate. For
the traditional technology mapping implemented in ABC, the target is
to minimize the worst case path delay or reduce the overall circuit area.
However, here we make some modifications on the target function. Our
target is no longer the worst case delay or overall area. Instead, we try
to reduce the timing error rate. As a result, while selecting the cover-
ings in the algorithm, we change the strategy to select the one that can
shorten those critical paths which have large contribution on timing er-
rors. The objective to combine our proposed logic synthesis techniques
with technology mapping is to indicate that our proposed logic synthe-
sis techniques can be well combined with other optimization techniques
to further improve the performance of the final circuit.

594

Table 1: Results on system throughput and hardware cost.

Circuit Throughput(MHz) Hardware
LSbaseline LSproposed ∆1(%) LSproposed +T M ∆2(%) LSbaseline LSproposed Cost(%)

s298 456.63 508.36 11.33 540.10 18.27 1206 1210 0.33
s344 283.24 338.64 19.56 349.83 23.51 1823 1840 0.93
s349 285.72 344.27 20.49 347.79 21.72 1878 1886 0.43
s382 556.11 657.78 18.28 672.68 20.96 2569 2578 0.35
s444 422.77 455.25 7.68 466.30 10.30 3089 3121 1.04
s526 456.86 510.42 11.72 530.42 16.10 3327 3363 1.08
s641 210.99 271.27 28.57 276.69 31.14 5671 5779 1.90
s713 243.14 260.23 7.03 272.71 12.16 5798 5852 0.93
s953 343.47 394.52 14.86 401.41 16.87 5841 5915 1.27

s1196 263.42 305.60 16.01 317.29 20.45 6760 6895 1.99
s1238 254.09 325.12 27.95 331.78 30.58 7068 7164 1.36
s1423 271.54 338.65 24.71 345.33 27.17 7444 7488 0.59
s13207 234.39 280.84 19.82 289.4 23.47 30320 30815 1.63
s35932 269.90 303.97 12.62 317.11 17.49 118790 120215 1.20
s38584 162.93 198.77 22.00 203.76 25.06 97901 99706 1.84

AVERAGE 17.51 21.02 1.13
∆1: Throughput improvement ratio between LSbaseline and LSproposed ;
∆2: Throughput improvement ratio between LSbaseline and LSproposed +T M.

5 10 15 20 25 30

0

10

20

30

0

0.5

1

1.5

2

x 10
4

Path delay
Path sensitization probability

N
u

m
b

er
 o

f
p

at
h

(a) LSbaseline

5 10 15 20 25 30

0

10

20

30

0

0.5

1

1.5

2

x 10
4

Path delay
Path sensitization probability

N
u

m
b

er
 o

f
p

at
h

(b) LSproposed (c) Comparison

Figure 6: Path delay distribution and sensitization probability on s35932.

5 10 15 20 25 30

0

10

20

30

0

0.5

1

1.5

2

x 10
4

Path delay
Path sensitization probability

N
u

m
b

er
 o

f
p

at
h

(a) LSbaseline

10
20

30

0

10

20

30

0

0.5

1

1.5

2

x 10
4

Path delay
Path sensitization probability

N
u

m
b

er
 o

f
p

at
h

(b) LSproposed (c) Comparison

Figure 7: Path delay distribution and sensitization probability on s38584.

Column 6 shows the improvement compared with LSbaseline. From
the results in Column 4 and Column 6, it can be observed that we can get
additional 3.51% improvement on average if we conduct explicit opti-
mization for timing speculation in post-synthesis stages, which demon-
strate that our proposed solution can be combined with other optimiza-
tion techniques for timing speculation (e.g., [13, 14, 24, 25]).

To further examine the effectiveness provided by our proposed so-
lution, we take s35932 and s38584 as examples to show the change of
the delay distribution and the sensitization probability after applying our
proposed techniques. In Fig. 6 and Fig. 7, the x-axis describes the path

delay distribution2, the y-axis indicates the path sensitization probabil-
ity and the z-axis represents the number of paths. Fig. 6(a)(Fig. 7(a))
and Fig. 6(b)(Fig. 7(b)) show the path distribution of LSbaseline and
LSproposed , respectively. To make the difference clear, we compare the
path distribution of LSbaseline and LSproposed , obtain the path number
difference between them and present them in Fig. 6(c) and Fig. 7(c),
wherein the red bars within the dashed circle represent the increment
of path number and the blue ones within the solid circle represent the
decrement of path number after applying our optimization technique.

2For simplicity, we only present the top 50% longest paths here.

595

0

0.05

0.1

0.15

0.2

0.25

0.3

0.55 0.65 0.75 0.85 0.95

Pe

Clock Period

LSproposed

LSbaseline

(a) Timing error probabilities on s35932.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.55 0.65 0.75 0.85 0.95

Pe

Clock PeriodLSbaseline

LSproposed

(b) Timing error probabilities on s38584.

Figure 5: Comparison between LSbaseline and LSproposed .

From these two figures, we can see that the number of the paths with
smaller delay or sensitization probability is increased while the number
of the paths with larger delay or sensitization probability is decreased,
which demonstrate why the proposed technique is effective.

Finally, we show the changes of timing error probabilities with re-
spect to clock period (set as a percentage of the longest path delay) in
Fig. 5. Again, from this figure, we can observe that for many of the
different clock periods, the timing error probability for LSproposed is re-
duced when compared with that of LSbaseline, which is the reason that
the circuit throughput is improved. This also proves the effectiveness of
the proposed solution.

5. CONCLUSION
In this paper, we propose to conduct logic synthesis for timing spec-

ulation from the ground up. Being able to change the logic structure to
reduce timing error probability, the proposed solution facilitates to im-
prove the throughput and/or energy-efficiency of circuits equipped with
timing speculation capability.

6. ACKNOWLEDGEMENTS
This work was supported in part by the Hong Kong SAR Research

Grants Council under General Research Fund No. CUHK418111.

7. REFERENCES

[1] S. Borkar, et al., “Parameter variations and impact on circuits and
microarchitecture,” in Proc. ACM/IEEE Design Automation Conference
(DAC), 2003, pp. 338–342.

[2] K. Bowman, et al., “Circuit techniques for dynamic variation tolerance,”
in Proc. ACM/IEEE Design Automation Conference (DAC), 2009, pp.
4–7.

[3] D. Ernst, et al., “Razor: a low-power pipeline based on circuit-level
timing speculation,” in Proc. IEEE/ACM International Symposium on
Microarchitecture, 2003, pp. 7–18.

[4] B. Greskamp and J. Torrellas, “Paceline: Improving single-thread
performance in nanoscale cmps through core overclocking,” in Proc.
International Conference on Parallel Architecture and Compilation
Techniques, 2007, pp. 213–224.

[5] L. Benini, E. Macii, M. Poncino, and G. D. Micheli, “Telescopic units: A
new paradigm for performance optimization of vlsi designs,” IEEE Trans.
Computer-Aided Design, vol. 17, pp. 220–232, 1998.

[6] D. Frank, R. Puri, and D. Toma, “Design and CAD Challenges in 45nm
CMOS and beyond,” in Proc. International Conference on
Computer-Aided Design (ICCAD), 2006, pp. 329–333.

[7] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” IEEE Micro, vol. 25,
no. 6, pp. 10–16, 2005.

[8] C. Metra, M. Favalli, and B. Ricco, “On-line detection of logic errors due
to crosstalk, delay, and transient faults,” in Proc. IEEE International Test
Conference (ITC), 1998, pp. 524–533.

[9] M. R. Choudhury and K. Mohanram, “TIMBER: Time borrowing and
error relaying for online timing error resilience,” in Proc. Design,
Automation, and Test in Europe (DATE), 2010, pp. 1554–1559.

[10] R. Sproull, I. Sutherland, and C. Molnar, “The counterflow pipeline
processor architecture,” IEEE Design & Test of Computers, vol. 11, no. 3,
p. 48, 1994.

[11] L. Wan and D. Chen, “Dynatune: circuit-level optimization for timing
speculation considering dynamic path behavior,” in Proc. International
Conference on Computer-Aided Design (ICCAD), 2009, pp. 172–179.

[12] B. Greskamp, et al., “Blueshift: Designing processors for timing
speculation from the ground up,” in IEEE International Symposium on
High Performance Computer Architecture, 2009, pp. 213–224.

[13] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution for
graceful degradation under voltage overscaling,” in Proc. Asia and South
Pacific Design Automation Conference, 2010, pp. 825–831.

[14] Y. Liu, F. Yuan and Q. Xu, “Re-synthesis for cost-efficient circuit-level
timing speculation,” in Proc. ACM/IEEE Design Automation Conference
(DAC), 2011, pp. 158–163.

[15] J. Cong and K. Minkovich, “Logic synthesis for better than worst-case
designs,” in Proc. International Symposium on VLSI Design, Automation
and Test, 2009, pp. 166 –169.

[16] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Proc. Design
Automation Conference, 2006, pp. 532–535.

[17] ABC: http://www.eecs.berkeley.edu/ alanmi/abc/.
[18] J. Cortadella, “Timing-driven logic bi-decomposition,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 22,
no. 6, pp. 675 – 685, June 2003.

[19] A. C. Ling, J. Zhu, and S. D. Brown, “Delay driven AIG restructuring
using slack budget management,” in Proc. ACM Great Lakes symposium
on VLSI, 2008, pp. 163–166.

[20] K.C. Chen, et al., “DAG-map: graph-based FPGA technology mapping
for delay optimization,” IEEE Design & Test of Computers, vol. 9, no. 3,
pp. 7 –20, Sep. 1992.

[21] K.J. Singh, “Timing optimization of combinational logic,” in Proc.
International Conference on Computer-Aided Design (ICCAD), 1988, pp.
282–285.

[22] S. Chatterjee, et al., “Reducing structural bias in technology mapping,” in
Proc. International Conference on Computer-Aided Design (ICCAD),
2005, pp. 519–526.

[23] M. Kruijf, S. Nomura, K. Sankaralingam, “A unified model for timing
speculation: Evaluating the impact of technology scaling, CMOS design
style, and fault recovery mechanism,” in Proc. International Conference
on Dependable Systems and Networks, 2010 , pp.487-496.

[24] R. Ye, F. Yuan and Q. Xu, “Online clock skew tuning for timing
speculation,” in Proc. IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2011, pp. 442–447.

[25] R. Ye, F. Yuan, H. Zhou and Q. Xu, “Clock skew scheduling for timing
speculation,” in Proc. IEEE/ACM Design, Automation, and Test in Europe
(DATE), 2012, pp. 929–934.

596

