
Optimization for Timing-Speculated Circuits by

Redundancy Addition and Removal

Yuxi Liu, Rong Ye, Feng Yuan, and Qiang Xu

CUhk REliable Computing Laboratory (CURE)

Department of Computer Science & Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Email: {yxliu, rye, fyuan, qxu}@cse.cuhk.edu.hk

Abstract—Integrated circuits suffer from severe variation effects with
technology scaling, making their timing behavior increasingly unpre-
dictable. Timing speculation is a promising technique to tackle this problem
with the help of online timing error detection and correction mechanisms.
In this paper, we propose to use redundancy addition and removal (RAR)
technique to optimize timing-speculated circuits. By intentionally removing
wires on those frequently-exercised critical paths and replacing them with
wires on less critical ones (if possible), the proposed technique is able to
greatly reduce the timing error rate of the circuit and improve its overall
throughput, as shown in our experimental results on various benchmark
circuits.

I. INTRODUCTION

The increasing uncertainty of circuit timing behavior resulting

from variations has become one of the most serious problems with

the continuous shrunk transistor feature size [1]–[3]. In order to

accommodate such uncertainty, conventional designs usually embed

a large timing guardband into the design to ensure “always correct”

operations. Such worst-case oriented design methodology, however,

inevitably reduces the benefit provided by technology scaling.

One possible solution to tackle the timing uncertainty problem

is to introduce timing error detection and correction mechanisms

for error-resilient computing instead of error-free computing. Timing

Speculation (TS) is a promising solution to achieve the above

objective [4]–[7]. One representative TS technique is Razor [4],

which conducts timing error detection with double sampling and

restores the state of the system to a known-good pre-error state once

detecting an error.

For circuits with timing speculation capability, the system perfor-

mance/throughput can be further improved if we can optimize the

circuit for timing error rate reduction. Various techniques (e.g., [8]–

[14]) were proposed to achieve this objective. Most of them resort to

techniques such as gate sizing and clock tuning to reduce timing error

rates without altering circuit structure [8]–[12], limiting the flexibility

of these solutions. In [13], [14], logic synthesis for timing speculation

is performed. Without physical design information, however, the

timing information at this stage is usually quite inaccurate. In this

paper, therefore, we propose novel optimization methods for timing-

speculated circuits using Redundancy Addition and Removal (RAR)

technique, which iteratively removes target wires in the circuit and

at the same time add alternative wires to keep circuit functionality.

The advantages of the proposed solution include:

• With RAR technique, we are able to change circuit structure and

hence have a high flexibility to manipulate circuit path delay

distribution. To be specific, we have many options when target-

ing at wires on circuit critical paths that have high sensitization

probability for removal, when compared to techniques such as

gate sizing.

• RAR is performed after technology mapping in the design flow

and hence we have more accurate circuit timing information

when compared to those logic synthesis techniques.

• The hardware overhead of RAR-based technique is generally

small as we conduct addition and removal of wires simultane-

ously.

The remainder of this paper is organized as follows. In Section II,

we discuss related works and present the motivation of this paper.

The proposed optimization framework for timing-speculated circuits

based on RAR and an advanced algorithm are then detailed in

Section III and Section IV, respectively. Next, Section V presents the

experimental results on various benchmark circuits. Finally, Section

VI concludes this paper.

II. PRELIMINARIES

A. Timing Speculation

Timing speculation is a ”better-than-worst-case” design technique

that allows timing errors to occur and then detects and corrects

them on-the-fly. By doing so, we can over-clock circuits to achieve

higher throughput or scale down supply voltage for lower power

consumption. Razor technique [4] is one of the most representative

timing speculation techniques, which detects timing errors and con-

ducts error recovery based on counterflow pipelining techniques [22].

During the error recovery phase, the pipeline is stopped for instruction

replay.

In circuits with timing speculation capability, the overall through-

put can be described as Eq. 1 shown [9]:

TP(T ) =
1

T
× (1−Pe(T )+

Pe(T )

r
) =

1

T
−

1

T
×

r−1

r
×Pe(T ) , (1)

where T is the operational clock period, Pe(T ) is the timing error

probability with respect to T , and r is the error penalty factor,

indicating r clock cycles are needed to recover the system.

Based on the above, we can find that under a certain operational

clock period T , system throughput is significantly affected by timing

error probability Pe(T ), which motivates many optimization tech-

niques of timing speculation (e.g., [8]–[10], [13]) to reduce system

timing error probability. For example, Blueshift [8] proposes to

identify and optimize the most frequently exercised critical paths

with On-demand Selective Biasing (OSB) and Path Constraint Tuning

(PCT), while DynaTune [9] assigns low threshold voltage Vt to the

most dynamically critical gates for optimization. Both of these two

methods lead to large power overhead, since the modified elements

will result in extra leakage power consumption. In [10], the authors

proposed to redistribute the path slack to increase the level of over-

scaling under the given timing error rate constraint. This strategy



increases the slack of frequently sensitized critical paths by enlarging

the on-path gate size while decreases that of other paths. All the above

methods can be treated as a post-processing method after the circuit

structure is already finalized, whose effectiveness is hence limited.

In [13], a logic synthesis technique is proposed with a different cost

function. It is performed before technology mapping and accurate

timing information is not available yet at that stage.

Motivated by the above, in this work we present a novel technique

to optimize timing speculation based on redundancy addition and

removal (RAR), which has the flexibility to modify circuit structure

with accurate technology information available for better optimiza-

tion.

B. Redundancy Addition and Removal

Redundancy addition and removal (RAR) technique, also known

as rewiring, is a logic optimization technique that adds and/or

remove wires in a circuit to optimize a certain objective with system

function kept [15], [16]. Specifically, a logic network is optimized by

iteratively adding and removing redundant wires that are identified

by rewiring engine. Generally speaking, a rewiring engine can be

regarded as a function blackbox, which uses the target wires under

removal as input and outputs the corresponding alternative wires. The

actions of target wire removal and alternative wire addition have to

guarantee the original system function unchanged. In other words, the

rewiring procedure is that you first add redundant wire by connecting

a node to another without affecting the function of the circuit, and

then some originally existing wire becomes redundant and removable.

Besides, it is also possible to remove given target wires by adding

the corresponding alternative connections. The way to achieve this

is to use mandatory assignments (MA) for the target wire’s stuck-at

fault test with automatic test and pattern generation (ATPG) applied.

If the connection introduces conflicting assignments, an alternative

connection is found.

Conventionally, RAR technique has been used to realize quite a

lot of optimization objectives. In [15], [17], rewiring is used for a

simplified logic with reduced hardware cost. In [18] an improved

RAR technique is presented for circuit timing optimization. In [19],

[20], the authors proposed to apply the ATPG-based RAR method to

multi-level combinational logic circuit to optimize delay and power.

In [21], the authors presented a novel framework based on RAR

to reduce soft error rate. Different from prior works, in this paper

we propose to use RAR technique to optimize timing-speculated

circuits throughput by reducing system timing error probability.

Our proposed methodology is performed after logic synthesis and

technology mapping, as detailed in the following sections.

III. RAR FOR TIMING-SPECULATED CIRCUITS

A. RAR Effects on Timing Speculation

By performing intentional wire removal and addition in a timing-

speculated circuit, the circuit structure can be optimized to have

less timing error probability and hence be more efficient from the

perspective of timing speculation. Before getting into the details of

our proposed RAR-based optimization technique, we are going to

investigate the effects of RAR on timing speculation first. Generally

speaking, there are two actions to take during the process of RAR:

wire removal and wire addition. We define the wire for removal and

the wire for addition as target wire and alternative wire, respectively.

From these definitions, we can find that the so-called target wire and

alternative wire are always discussed in pairs.

Definition 1: Target wire is the wire that is planned to be removed

from a circuit.

Definition 2: Alternative wire is the wire that should be added

into the circuit to maintain original circuit function after the corre-

sponding target wire is removed.

An example of target wire removal is shown in Fig. 1(a). Assume

wire w (u → v) is a target wire for removal, gate u is its source node,

and gate v is its destination node, it can be found that removing

wire w has these impacts to system timing error probability: (i)

All the critical paths that go through wire w will be broken and

hence the system timing error probability contributed by these critical

paths becomes non-existent; (ii) The masking effect from wire w on

the paths that go through gate v is weakened and the timing error

probability on these paths may be increased.

v

u
w

a

b

s

t

(a) Target wire removal.

w,
s

a

b
t

u

v

(b) Alternative wire addition.

Fig. 1. An example to show target wire and alternative wire.

As for alternative wire addition, as shown in Fig. 1(b), assume w
′

(s → t) is an alternative wire of target wire w, gate s is the source

node of wire w
′
, and gate t is the destination node. we can conclude

that adding alternative wire w
′

has these impacts on system timing

error probability: (i) New paths are produced after w
′

is added and

these paths may contribute extra timing error probability to the overall

system; (ii) The masking effect from the newly-added alternative wire

w
′

on the paths that go through gate t is strengthened so that the error

contribution of these paths may be decreased.

B. Optimization Metric

By intentionally removing the wires that can break down critical

paths, especially those frequently-sensitized critical paths , it is

promising for us to improve timing performance and/or reduce timing

error probability of circuits. From this viewpoint, how to obtain

the error probability of critical paths and evaluate the impact of

circuit structure changes on time error probability is quite interesting

and important in our RAR-based optimization technique. Intuitively,

we can simply resort to timing simulation to acquire timing error

probability. For example, prior works (e.g., [13]) use timing simu-

lation to acquire path sensitization probability, however this method

is too time-consuming to be used in the iterative logic optimization

procedure. To tackle this problem, a simple and effective optimization

metric has been proposed in [14], wherein the probability for the

delay of a certain path i to exceed clock period and the sensitization

probability of this path are calculated to obtain the timing error

probability as below 1:

Pi = Di ×Si . (2)

Here, Pi is the timing error probability of path i, Di is the probability

for the delay of path i to exceed clock period, and Si is the

sensitization probability.

C. Optimization Algorithm

During our optimization process, the objective is to reduce timing

error probability by wire removal and addition. We consider one

1Please refer to [14] for details.



target wire together with one of its alternative wires as a pair. In each

optimization step, we update/replace one pair of wires, which means

removing the target wire and adding the alternative wire. During

this process, we expect the error probability reduction because of

target wire removal can compensate the error probability increase

from alternative wire addition, so that the overall error probability is

reduced finally.

Path is a chain of gates and wires along which the signal can

propagate from input to output and removing a wire can break all

the paths through it. Here, we have an important observation that

removing/adding a wire with more/less critical paths going through

can contribute more in error probability reduction. Consequently, we

propose to analyze the critical path distribution and estimate their

error probability first. After that, we define a weight which indicates

the importance of a wire during optimization process as follows:

Definition 3: The weight of a wire w (denoted as weight(w)) is

defined as the sum of the error probability of all the critical paths

that go through wire w.

It can be found that a wire with larger weight indicates more critical

paths going through it and therefore removing this wire is expected

to reduce more error probability. Meanwhile, since we have to add an

alternative wire after target wire removal to remain circuit function,

the key problem here is how to select a group of target wires with

the largest weights as candidate target wires and then choose the

best pair of wires to update the circuit. An intuitive way to tackle

this problem is to try different target and alternative pairs and check

their effects on error probability. To describe the importance of such

a pair of wires, we define a metric called bene f it as below:

Definition 4: The benefit of a pair of wires, consisting of a target

wire w and an alternative wire aw, is defined as the error probability

reduction between the original circuit (denoted as ”C”) and the

updated circuit (denoted as ”C−w+aw”).

Algorithm 1: RAR-based Optimization Algorithm

1 begin

2 while (max bene f it > 0) do

3 max bene f it = 0;

4 find all critical paths;

5 assign weight weight(wi) for each wire;

6 sorted wires=sort wires according to weight(wi) from

largest to smallest and select the group with top weights;

7 foreach wi∈sorted wires do

8 alt wires = RewireEngine(wi);
9 foreach awi∈alt wires do

10 bene f it =
error rate(C)−error rate(C+awi −wi);

11 if (bene f it > max bene f it) then

12 max bene f it = bene f it;

13 w = wi;

14 aw = awi;

15 end if

16 end foreach

17 end foreach

18 if (max bene f it > 0) then

19 C =C+aw−w;

20 end if

21 end while

22 end

It is worth noting that, by calling the rewiring engine, we can obtain

a number of alternative wires for each target wire. Among these pairs,

each time only one pair is selected to update circuit structure, because

the process of finding alternative wires is based on the analysis of

original circuit structure, and if we update two pairs at the same

time, it may cause wrong function. Updating two pairs at the same

time can be considered as updating them one after another. When we

are updating the second pair, the circuit structure has been changed

because of the updating of the first pair. In that case, the equivalent

relation between target wire and alternative wire may not stand any

longer, and the second pair, found by rewiring engine based on the

original structure, would violate circuit’s original function.

Based on the above, we propose a basic version of optimization

algorithm as demonstrated in Algorithm 1. Firstly, a structural analy-

sis is performed to find out all critical paths in the circuit. Secondly,

for each candidate wire wi, we find out all critical paths that go

through it and calculate its weight(wi). Next, we sort all the target

wires in weight-descending order and select out those wires with

largest weight (e.g. the top 50%). For each selected target wires wi,

rewiring engine is called to find out its alternative wires. Finally,

for each pair of wires, we calculate its bene f it and select out the

pair with maximum bene f it to update the circuit. This optimization

procedure is repeated until we cannot obtain any bene f it any longer.

IV. FURTHER OPTIMIZATION WITH RAR

A. Structural Analysis

In the basic version of RAR-based optimization algorithm (see

Algorithm 1), we only update one wire pair in each optimization

step. After each step, rewiring engine has to read in and analyze

the updated circuit structure again to find new target and alternative

wire pairs. However, performing this kind of strucutural analysis is

quite time-consuming. If more than one pair can be updated in each

step, we can save a lot of time. Besides, in Algorithm 1, we choose

wire pair to update circuit structure in bene f it-descending order.

However, this kind of greedy algorithm usually cannot guarantee

global optimality because the global dependency information is not

taken into consideration. That means, the order to update wire pairs

will significantly affect the effectiveness but it is quite difficult to

find out the best order because of the complicated dependency. From

this point of view, if we can update more than one pair in each

optimization step, at least the impact of optimization order can be

weakened to some extent. Consequently, in this section we propose

to utilize some rules through structural analysis to find out some sets

of wire pairs that can be updated at the same time without violating

original functionality.

FF

FF

...

FF

FF

...

w1

aw1

w2

aw2

Fig. 2. An example of structural independent wire pairs.

Without loss of generality, let us consider a case with only two

wire pairs in circuit structural analysis. As shown in Fig. 2, we

have two wire pairs w1-aw1 and w2-aw2. Suppose their fan-out cones

(the triangle areas in Fig. 2) have no overlapping with each other,

we highlight this situation as ”structural independent”. When the

two pairs are structural independent, updating one pair would not



affect the functionality around another pair. As a result, updating the

two pairs without re-calling the engine will not violating the circuit

functionality. Similarly, in the case of more than two pairs(pair A, B

and C), if every two pairs (A and B, A and C, B and C) are mutually

structural independent, we can update them at the same time.

B. Proposed Algorithm

To utilize the independency information obtained by structural

analysis, we build up a graph as shown in Fig. 3. In this graph,

the vertexes represent wire pairs and if two wire pairs are structural

independent, they are connected with an edge. After that, we calculate

the benefits of wire pairs and assign them to the vertexes as weights.

Now the original problem to select a set of wire pairs that can be

updated at the same time with largest error probability reduction

becomes a new problem: how to find a clique in the graph so that

the benefit sum of the vertexes in this clique is maximum.

Benefit(a)

a

 
Benefit(b)

b

 

Benefit(c)

c

Benefit(d)

d

Benefit(e)

e

 

Fig. 3. A bene f it-weighted graph.

Before directly investigating the above problem, it is inapplicable

because the number of wire pairs inside a circuit can be quite large

so that a huge amount of computation effort is needed to build and

process such a graph. To reduce graph size and computation effort,

we apply some rules to filter some wire pairs out of the vertexes

candidates.

It is obvious that if the benefit (see Definition 4) of a wire pair is

quite small or even negative, it must not be a good choice for circuit

updating. Besides, since the error probability of a wire is closely

related to the number of critical paths that go through it and the

source/destination node of a wire can well describe it and its related

critical paths, instead of calculating the wire’s benefits, we investigate

the rules for filtering out vertexes by defining a metric called a node’s

criticality as follows:

Definition 5: The criticality of a node is defined as the sum of the

weights of all the wires that serve as this node’s fan-ins.

On the one hand, if there are many critical paths going through

a node and a wire whose source node is this node (e.g. node s in

Fig. 1(b)) is added into the circuit, it is probable that many critical

paths will be introduced into the circuit. On the other hand, if there are

few critical paths going through a node and a wire whose destination

node is this node(e.g. node t in Fig. 1(b)) is added into the circuit,

the critical path masking effect from the added wire would be quite

small. From this point of view, when we add an alternative wire into

the circuit, we prefer the wire whose source node is with less critical

paths and destination node is with more critical paths. According to

this observation, we build up our rules to filter out wire pairs during

the process of graph construction:

• If the criticality of alternative wire’s source node is larger than

that of target wire’s source node, this wire pair will not be

included into the bene f it-weighted graph;

• If the criticality of alternative wire’s destination node is smaller

than that of target wire’s destination node, this wire pair will

not be included into the bene f it-weighted graph.

Algorithm 2: Advanced RAR-based Optimization Algorithm

1 begin

2 while (bene f it > 0) do

3 find all critical paths;

4 assign weight weight(wi) for each wire;

5 sorted wires=sort wires according to weight(wi) from

largest to smallest and select the group with top weights;

6 foreach wi∈sorted wires do

7 alt wires = RewireEngine(wi);
8 decide awi and wi pair filtered out or not;

9 foreach awi∈alt wires do

10 bene f it =
error rate(C)−error rate(C+awi −wi);

11 if (bene f it > 0) then

12 add pair P(wi,awi)to the graphG;

13 assign benefit to vertex P(wi,awi);
14 end if

15 end foreach

16 end foreach

17 assign edges between different vertex P in graph G;

18 Pbest(w,aw) = max weight clique(G);
19 bene f it = error rate(C)−error rate(C+aw−w);
20 if (bene f it > 0) then

21 C =C+aw−w;

22 end if

23 end while

24 end

With the bene f it-weighted graph constructed, we present our ad-

vanced RAR-based optimization algorithm as shown in Algorithm 2.

Firstly, we perform structural analysis to find out all the critical

paths and calculate wire weights. Secondly, we construct a bene f it-

weighted graph with each vertex representing a wire pair, assign

the benefits of wire pairs as the weights of vertexes, and connect

the structural independent vertexes with edges. After that, we try to

find the clique with largest sum of bene f it-weights. This process is

repeated until there is not any error probability reduction that can be

obtained any longer.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the effectiveness of RAR-based optimization tech-

nique, we conduct experiments on ISCAS’89 benchmark circuits with

UMC’s 130nm technology and perform Monte Carlo simulation to

study the impact of variation effects (we use Gaussian distribution

with standard deviation 10%). To get timing error probability, we

perform simulation with random inputs in our experiments and each

simulation is performed for 100,000 cycles, which is conducted on

post-layout netlist to incorporate the impact of technology mapping

and physical design on timing error rates. The penalty factor r in

Eq. 1 is assumed to be 10 clock cycles according to [23]. We sweep

the operational clock period for each case to find out the best one

with largest throughput calculated according to Eq. 1.

B. Results and Discussion

First of all, we present the throughput improvement and hardware

cost in Table I. RARintuitive represents the results of basic RAR-

based optimization algorithm and RARadvanced represents the results

of advanced RAR-based optimization algorithm. Column 2 shows



5
10

15
20

25
30

0

10

20

30

0

0.5

1

1.5

2

x 10
4

Path delay
Path sensitization probability

N
um

be
r 

of
 p

at
h

(a) Original

5
10

15
20

25
30

0

10

20

30

0

0.5

1

1.5

2

x 10
4

Path delay
Path sensitization probability

N
um

be
r 

of
 p

at
h

(b) Rewire (c) Comparison

Fig. 4. Path delay distribution and sensitization probability on s35932.

5
10

15
20

25
30

0

10

20

30

0

0.5

1

1.5

2

x 10
4

Path delay
Path sensitization probability

N
um

be
r 

of
 p

at
h

(a) Original

5
10

15
20

25
30

0

10

20

30

0

0.5

1

1.5

2

x 10
4

Path delay
Path sensitization probability

N
um

be
r 

of
 p

at
h

(b) Rewire (c) Comparison

Fig. 5. Path delay distribution and sensitization probability on s38584.

TABLE I
RESULTS ON SYSTEM THROUGHPUT AND HARDWARE COST.

Circuit Throughput(MHz) Hardware Runtime(Sec.)
Original RARintuitive ∆1(%) RARadvanced ∆2(%) Original RARintuitive RARadvanced ∆2(%) RARintuitive RARadvanced

s298 1071.53 1185.98 10.68 1210.50 12.97 681 671 681 0 0.83 0.71

s344 488.56 564.32 15.51 576.24 17.95 796 792 790 -0.75 1.27 1.44

s349 488.56 564.32 15.51 579.73 18.66 794 796 800 0.76 1.41 1.54

s382 464.32 581.91 25.32 589.14 26.88 1101 1087 1082 -1.73 1.76 1.71

s386 380.73 474.60 24.65 481.83 26.56 1273 1273 1273 0 1.72 2.04

s444 575.12 605.45 5.27 635.63 10.52 1252 1255 1243 -0.72 4.42 4.96

s526 725.83 785.69 8.25 827.00 13.94 1094 1084 1090 -0.37 8.32 7.64

s641 230.10 252.82 9.88 262.99 14.23 1311 1311 1311 0 12.76 13.00

s713 172.14 196.84 14.35 208.08 20.88 1377 1377 1377 0 15.92 15.01

s953 605.81 738.51 21.90 812.36 34.10 2177 2184 2183 0.28 8.13 9.03

s1196 321.75 384.93 19.64 396.22 23.15 1795 1797 1795 0 25.84 23.00

s1238 313.45 354.35 13.05 375.06 19.66 1685 1685 1701 0.95 33.91 36.02

s5378 354.83 406.50 14.56 426.65 20.24 14169 14172 14174 0.04 34.86 39.05

s9234 245.45 286.05 16.54 295.86 20.54 19575 19580 19578 0.02 133.62 128.22

s13207 190.68 220.76 15.78 246.87 29.54 37025 37137 37392 0.99 480.23 492.14

s35932 285.98 322.20 12.67 382.44 33.73 114320 114146 114218 -0.01 1593.02 1655.28

s38584 115.91 124.80 7.67 139.85 20.65 77747 77747 77714 -0.04 4628.28 5325.45

AVERAGE 14.78 21.42 -0.03

∆1: Difference between Original and RARintuitive;
∆2: Difference between Original and RARadvanced .

the throughput results for the original benchmark circuits. Column

3 shows the throughput results optimized by RARintuitive and Col-

umn 4 indicates the improvement ratio of RARintuitive, from which

we can observe a 14.78% throughput improvement. In Column 5,

the throughput optimized by RARadvanced is shown and Column 6

shows its improvement ratio compared with the original one. On

average 21.42% throughput improvement can be obtained. Column

7-9 demonstrate the circuit area of the original circuit, the circuit

optimized by RARintuitive and the circuit optimized by RARadvanced . In

Column 10, the circuit area difference ratio between the original and

RARadvanced is shown. We can see that the hardware cost is usually

very small and sometimes negative. Column 11 and Column 12

demonstrate the runtime of RARintuitive and RARadvanced , respectively.

By comparing the results in these two columns, we can see their

runtime difference is not large. This is because, although a maximum

clique algorithm is needed in the advanced algorithm, the calculating

round is reduced as multiple wires are selected in each round.

To better demonstrate the effectiveness of our proposed technique,

we take s35932 and s38584 as examples to show the impact of our

optimization on path delay and sensitization probability distribution

of the circuit. In Fig. 4 and Fig. 5, x-axis indicates the path delay,

y-axis shows the path sensitization probability and z-axis represents

the number of paths. Fig. 4(a)(Fig. 5(a)) and Fig. 4(b)(Fig. 5(b))

show the path distribution of the original circuit and RARadvanced ,

respectively. Fig. 4(c) and Fig. 5(c) demonstrate the difference on



0

0.05

0.1

0.15

0.2

0.25

0.3

0.55 0.65 0.75 0.85 0.95

Pe

Clock Period
LSrewire

LSoriginal

(a) s35932

0

0.02

0.04

0.06

0.08

0.1

0.12

0.55 0.65 0.75 0.85 0.95

Pe

Clock PeriodLSoriginal

LSrewire

(b) s38584

Fig. 6. Timing error probability comparison.

0

100

200

300

400

500

0.55 0.65 0.75 0.85 0.95

Throughput

Clock PeriodLSoriginal

LSrewire

(a) s35932

0

40

80

120

160

0.55 0.65 0.75 0.85 0.95

Throughput

Clock Period
LSrewire

LSoriginal

(b) s38584

Fig. 7. Circuit throughput comparison.

path distribution between them. The red bars within the dashed circle

represent the increment of path number while the blue ones within the

solid circle represent the decrement of path number after RARadvanced.

From this comparison, the number of the paths with smaller delay or

smaller sensitization probability is increased while the number of the

paths with larger delay or larger sensitization probability is decreased,

which justifies the decrease of timing error probability after using our

technique.

Finally, we also show the changes of timing error probability

(Fig. 6) and circuit throughout (Fig. 7) of the example circuits s35932

and s38584 with respect to different clock periods. From Fig. 6

we can see that in most cases, the timing error probability is cut

down after using the rewiring technique. In Fig. 7, we can see the

throughput increment in most cases and the peak of the curve is the

selected operational clock period.

VI. CONCLUSION

In this paper, timing speculation optimization techniques based

on RAR are proposed. When compared to existing solutions, our

technique has the advantages of both flexibility to change circuit

structure and accuracy of detailed technology information. Results

show the timing error probability is largely cut down, which improves

the performance for timing-speculated circuits.

VII. ACKNOWLEDGEMENT

This work was supported in part by the Hong Kong SAR Research

Grants Council under General Research Fund No. CUHK418111 and

No. CUHK418812.

REFERENCES

[1] S. Borkar, et al., “Parameter variations and impact on circuits

and microarchitecture,” in Proc. ACM/IEEE Design Automation

Conference (DAC), 2003, pp. 338–342.

[2] K. Bowman, et al., “Circuit techniques for dynamic variation toler-

ance,” in Proc. ACM/IEEE Design Automation Conference (DAC),

2009, pp. 4–7.

[3] D. Frank, R. Puri, and D. Toma, “Design and CAD Challenges in

45nm CMOS and beyond,” in Proc. International Conference on

Computer-Aided Design (ICCAD), 2006, pp. 329–333.

[4] D. Ernst, et al., “Razor: a low-power pipeline based on circuit-level

timing speculation,” in Proc. IEEE/ACM International Symposium

on Microarchitecture, 2003, pp. 7–18.

[5] B. Greskamp and J. Torrellas, “Paceline: Improving single-thread

performance in nanoscale cmps through core overclocking,” in Proc.

International Conference on Parallel Architecture and Compilation

Techniques, 2007, pp. 213–224.

[6] T. Liu, and S. lien Lu, “Performance improvement with circuit-level

speculation,” in Proc. International Symposium on Microarchitec-

ture, 2000, pp. 348–355.

[7] T. M. Austin, “Diva: A reliable substrate for deep submicron

microarchitecture design,” in Proc. International Symposium on

Microarchitecture, 1999, pp. 196–207.

[8] B. Greskamp, et al. “Blueshift: Designing processors for timing

speculation from the ground up,” in Proc. IEEE International

Symposium on High Performance Computer Architecture, 2009, pp.

213–224.

[9] L. Wan and D. Chen, “Dynatune: circuit-level optimization for

timing speculation considering dynamic path behavior,” in Proc. In-

ternational Conference on Computer-Aided Design (ICCAD), 2009,

pp. 172–179.

[10] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistri-

bution for graceful degradation under voltage overscaling,” in Proc.

Asia and South Pacific Design Automation Conference, 2010, pp.

825–831.

[11] R. Ye, F. Yuan, and Q. Xu, “Online clock skew tuning for tim-

ing speculation,” in Proc. IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2011, pp. 442–447.

[12] R. Ye, F. Yuan, H. Zhou, and Q. Xu, “Clock skew scheduling for

timing speculation.,” in Proc.IEEE/ACM Design, Automation, and

Test in Europe (DATE), 2012, pp. 929–934.

[13] J. Cong and K. Minkovich, “Logic synthesis for better than worst-

case designs,” in International Symposium on VLSI Design, Automa-

tion and Test, 2009, pp. 166 –169.

[14] Y. Liu, et al. “On logic synthesis for timing speculation,” in Proc.

IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), 2012, pp. 591–596.

[15] K. Cheng; L. Entrena,“Multi-level logic optimization by redundancy

addition and removal,” European Design Automation Conference,

pp. 373-377, 1993.

[16] S. Chang, G. van, M. Sadowska,“Fast Boolean optimization

by rewiring,” in Proc. IEEE/ACM International Conference on

Computer-Aided Design, pp.262–269, 1996.

[17] S. Chang, G. van, M. Sadowska, “Circuit optimization by rewiring,”

IEEE Transactions on Computers, vol.48, no.9, pp.962-970, Sep

1999.

[18] L. Entrena, J. Espejo, E. Olias, J. Uceda, “Timing optimization by

an improved redundancy addition and removal technique,” Design

Automation Conference at Europe, pp.342-347, 1996.

[19] A. Veneris, “Logic rewiring for delay and power,” IEEE Interna-

tional Symposium on Circuit and Systems, 2002, nov.

[20] M. Amiri, A. Veneris,I. Ting, “Design rewiring for power minimiza-

tion [logic design],” IEEE International Symposium on Circuits and

Systems, vol.4, pp. IV-305–IV-308, 2002.

[21] K. Wu and D. Marculescu, “Soft error rate reduction using redun-

dancy addition and removal,” Design Automation Conference, 2008.

ASPDAC 2008. Asia and South Pacific, March, 2008, pp.559-564.

[22] R. Sproull, I. Sutherland, and C. Molnar, “The counterflow pipeline

processor architecture,” Design & Test of Computers, IEEE, vol. 11,

no. 3, 1994.

[23] M. Kruijf, S. Nomura, K. Sankaralingam, “A unified model for

timing speculation: Evaluating the impact of technology scaling,

CMOS design style, and fault recovery mechanism,” in Proc.

IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), 2010 , pp.487-496.


