
On Task Allocation and Scheduling for Lifetime
Extension of Platform-Based MPSoC Designs

Lin Huang, Student Member, IEEE, Feng Yuan, Student Member, IEEE, and

Qiang Xu, Member, IEEE

Abstract—With the relentless scaling of semiconductor technology, the lifetime reliability of today’s multiprocessor system-on-a-chip

(MPSoC) designs has become one of the major concerns for the industry. Without explicitly taking this issue into consideration during

the task allocation and scheduling process, existing works may lead to imbalanced aging rates among processors, thus reducing the

system’s service life. To tackle this problem, in this paper, we propose an analytical model to estimate the lifetime reliability of

multiprocessor platforms when executing periodical tasks, and we present a novel task allocation and scheduling algorithm that is able

to take the aging effects of processors into account, based on the simulated annealing technique. In addition, to speed up the

annealing process, several techniques are proposed to simplify the design space exploration process with satisfactory solution quality.

Experimental results on various hypothetical multiprocessors and task graphs show that significant system lifetime extension can be

achieved by using the proposed approach, especially for heterogeneous platforms with large task graphs.

Index Terms—Lifetime reliability, aging effect, multiprocessor system-on-a-chip, task allocation and scheduling.

Ç

1 INTRODUCTION

AS technology advances, it is possible to integrate multi-
ple microprocessors, dedicated hardware accelerators,

and sometimes mixed-signal circuitries on a single silicon
die, namely multiprocessor system-on-a-chip (MPSoC) [1].
One way to design MPSoC embedded systems is to use
hardware/software cosynthesis [2]. While this method is able
to explore more design space to obtain a flexible application-
specific architecture, it generally takes more design time and
has high design risk. Because of this, platform-based design
methodology has become increasingly popular for complex
embedded systems. In this approach, designers first pick a
predesigned MPSoC platform, e.g., ARM11 PrimeXsys plat-
form [3] or NXP Nexperia platform [4], and then map their
applications onto this platform.

While the relentless scaling of CMOS technology has
brought MPSoC designs with enhanced functionality and
improved performance in every new generation, at the
same time, the associated ever-increasing on-chip power
and temperature densities make failure mechanisms serious
threats for the lifetime reliability of such high-performance
integrated circuits (ICs) [5], [6], [7]. If care is not taken
during the task allocation and scheduling process, some
processors might age much faster than the others and
become the reliability bottleneck for the embedded system,
thus significantly reducing the system’s service life.

Although there are many existing works on reliability-
driven task allocation and scheduling (e.g., [8], [9], [10],

[11]), most of them assume an exponential distribution for
failure mechanisms. In other words, processors’ failure
rates are assumed to be independent of their usage history,
which is obviously inaccurate: a typical wearout failure
mechanism will have increasing failure rate as the circuit
ages [12], [13]. Recently, some thermal-aware task schedul-
ing techniques have been proposed in the literature (e.g.,
[14]). As ICs’ failure rates are strongly related to their
operational temperature, these techniques may implicitly
improve the MPSoC’s lifetime reliability by balancing
different processors’ temperatures or keeping them under
a safe threshold. However, since many other factors (e.g.,
internal structure, operational frequency, and supply
voltage) also severely affect the circuits’ failure rate [6],
[15], without explicitly taking the lifetime reliability into
account during the task allocation and scheduling process,
processor cores may still age differently and hence result in
shorter mean time to failure (MTTF) for MPSoC designs.

In this paper, we present novel solutions for the lifetime
extension of platform-based MPSoC designs. The main
contributions of our work are as follows:

. we propose a comprehensive lifetime reliability-
aware task allocation and scheduling strategy that
takes processors’ aging effects into account, based on
the simulated annealing (SA) technique;

. we present a novel analytical model to compute the
lifetime reliability of platform-based MPSoCs when
executing periodical tasks;

. we propose several speedup techniques to achieve
an efficient MPSoC lifetime estimation with satisfac-
tory solution quality.

The remainder of this paper is organized as follows:
Section 2 reviews related prior work and motivates this
paper. The proposed lifetime reliability-aware task alloca-
tion and scheduling strategy is presented in Section 3. We,

2088 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 12, DECEMBER 2011

. The authors are with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong
Kong. E-mail: {lhuang, fyuan, qxu}@cse.cuhk.edu.hk.

Manuscript received 27 May 2009; revised 21 Aug. 2009; accepted 30 Nov.
2009; published online 12 Apr. 2011.
Recommended for acceptance by F. Petrini.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-05-0240.
Digital Object Identifier no. 10.1109/TPDS.2011.132.

1045-9219/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

then, introduce our analytical model for the lifetime
reliability of platform-based MPSoC designs in Section 4.
To meet the stringent time-to-market requirement, four
speedup techniques for MPSoC lifetime approximation are
presented in Section 5. Experimental results on several
hypothetical platform-based MPSoC designs are presented
in Section 6. Finally, Section 7 concludes this paper and
points out some future research directions.

2 PRIOR WORK AND MOTIVATION

2.1 IC Lifetime Reliability

Various failure mechanisms that could result in IC errors
have been extensively studied in the literature. They can be
broadly classified into two categories: extrinsic failures and
intrinsic failures. Extrinsic failures, e.g., interconnect shorts/
opens during fabrication, are mainly caused by manufac-
turing defects. Most of them are weeded out during the
manufacturing test and burn-in process [16], [17]. Intrinsic
failures can be further categorized into soft errors and hard
errors. As soft errors [18] caused by radiation effects do not
fundamentally damage the circuit, they are not viewed as
lifetime reliability threats. In this paper, we mainly consider
those hard errors that are permanent once they manifest.
The most representative ones include time-dependent
dielectric breakdown (TDDB) in the gate oxides, electro-
migration (EM) and stress migration (SM) in the inter-
connects, and negative bias temperature instability (NBTI)
stresses that shift PMOS transistor threshold voltages. Many
widely accepted reliability models for the above failure
mechanisms at device and circuit level have been proposed
and empirically validated by academia and industry [19],
[20], [21], [22], [23], [24], and it is shown that they are
strongly related to the temperature and voltage applied to
the circuit.

The above hard intrinsic failures have recently reat-
tracted lots of research interests, due to their increasingly
adverse effects with technology scaling. Srinivasan et al. [6],
[13] presented an application-aware architecture-level
model named RAMP that is able to dynamically track
lifetime reliability of a processor according to application
behavior, where the sum-of-failure-rate (SOFR) model is
used to combine the effects of different failure mechanisms.
This model, however, is inherently inaccurate because it
assumes a uniform device density over the chip and an
identical vulnerability of devices to failure mechanisms.
Later, to address this problem, Shin et al. [15] defined
reference circuits and presented a structure-aware lifetime
reliability estimation framework that takes the vulnerability
of basic structures of the microarchitecture (e.g., register
files, latches, and logic) to different failure mechanisms into
account. The above models target a single-core processor’s
lifetime reliability. Coskun et al. [25] proposed a simulation
methodology to evaluate the lifetime reliability of multicore
systems, and used it to optimize the system’s power
management policy. For the sake of simplicity, most of the
above models assumed exponential failure distributions
and thus cannot capture the processors’ accumulated aging
effects. In addition, for the processors’ operational tem-
peratures, the above models either used the average

temperature value over a period of time or tried to trace
the temperature variations accurately. The accuracy of the
former method is questionable, while the computation
complexity for the latter case is too high to be adopted
during design space exploration.

Recently, Huang and Xu [12] proposed to model the
lifetime reliability of homogeneous manycore systems using
a load-sharing nonrepairable k-out-of-n:G system with
general failure distributions for embedded cores, taking
core-level redundancy into account. This model assumes
that a processor core is in one of three states (processing,
wait, and spare), each corresponding to a unique albeit
arbitrary failure distribution. In practice, however, the
lifetime reliability of a processor core strongly depends on
its operational temperature, which varies with different
applications running on it even in the same state. In
addition, how to obtain the failure distributions for each
state is not shown in this work.

2.2 Task Allocation and Scheduling for
MPSoC Designs

There is a rich literature on static task allocation and
scheduling algorithms. Various issues have been consid-
ered, including timing constraint, communication cost,
precedence relationship, reliability, static/dynamic priority,
and task duplication [26], [27]. Since the problem of
scheduling tasks on multiprocessors for a single objective
has been proved to be an NP-complete problem, heuristic
algorithms such as list scheduling [28] are widely used in
the industry. To achieve better results, various statistical
optimization techniques (e.g., genetic algorithm, simulated
annealing, and tabu search) were also proposed to tackle
this problem.

Most prior work in reliability-driven task allocation and
scheduling (e.g., [8], [9], [10]) assumes processors’ failure
rates to be independent of their usage history. This
assumption might be applicable for modeling random soft
errors in IC products, but it is obviously inaccurate for the
wearout-related hard errors considered in this work. As
discussed earlier, for lifetime reliability threats, we should
consider the more reasonable increasing failure rates during
the task allocation and scheduling process.

Many recent studies on task scheduling for MPSoC
systems aimed at balancing different processors’ tempera-
tures or keeping them under a threshold (e.g., [14], [29],
[30]). These techniques might improve the system’s lifetime
reliability implicitly, since operational temperature has a
significant impact on ICs’ lifetime reliability. However,
since wearout failures are also affected by many other
factors (e.g., the circuit structure, voltage, and operating
frequency), these thermal-aware techniques may not bal-
ance the aging effects among processors, especially for
heterogeneous MPSoCs. As a result, some processors may
still age faster than the others and hence result in shorter
system service life. On one hand, this heterogeneity might
simply come from the different processors’ microarchitec-
tures [15]. On the other hand, even for homogeneous
systems, structurally identical processors can have different
reliability budgets due to process variation. That is, an
imperfect manufacturing process can lead to significant
variation in device parameters (such as, channel length and

HUANG ET AL.: ON TASK ALLOCATION AND SCHEDULING FOR LIFETIME EXTENSION OF PLATFORM-BASED MPSOC DESIGNS 2089

threshold voltage) among transistors and hence reliability-
related parameters among processor cores on the same die
[31], [32].

Let us consider the following motivational example.
Suppose we have an MPSoC platform containing two
processors P1 and P2. The MTTF due to electromigration
can be modeled as MTTFEM / J�ne

Ea
kT / ðVdd � f � piÞ�ne

Ea
kT

(typically n ¼ 2 [19]), where Vdd; f; pi; Ea; k, and T represent
the supply voltage, the clock frequency, the transition
probability within a clock cycle, a material-related constant,
the Boltzmann’s constant, the absolute temperature, respec-
tively [33]. Suppose f1 ¼ 2f2, i.e., the clock frequency of P1

is twice of that of P2, and all other parameters are the same,
the lifetime of P2 is four times of that of P1. That is, even if
we are able to balance the operational temperatures of the
two processors to be exactly the same all the time, processor
P1 will be the lifetime bottleneck of the MPSoC because it
ages much faster than P2.

From the above, we can reach to the conclusion that it is
essential to explicitly take the lifetime reliability into
consideration during the task allocation and scheduling
process for MPSoC designs [34], which motivates this work.
A relevant work targeting this problem was presented in [7]
recently. The authors suggested to use lookup tables that fit
with lognormal distribution curves to precalculate proces-
sors’ MTTF, but the details are missing. In addition, their
work targets the hardware/software cosynthesis design
methodology, different from the platform-based MPSoC
designs studied in our work.

3 PROPOSED TASK ALLOCATION AND SCHEDULING

STRATEGY

In this section, we formulate the lifetime reliability-aware
task allocation and scheduling problem for platform-based
MPSoC designs (Section 3.1) and we propose to use the
simulated annealing technique to solve this problem. The
solution representation, cost function, and simulated
annealing process are presented in Sections 3.2, 3.3, and
3.4, respectively.

3.1 Problem Definition

As mentioned earlier, the platform-based MPSoC may be
composed of nonidentical processors, where the heteroge-
neity comes from various sources. For example, the
processors might be structurally identical but belong to
different voltage-frequency islands or they have entirely
different structures. Thus, a task may consume different
execution times and powers on different processors. The
problem studied in this work is formulated as follows: Given

. A directed acyclic task graph G ¼ ðV;EÞ, wherein
each node in V ¼ fvi : i ¼ 1; . . . ; ng represents a
task, and E is the set of directed arcs which represent
precedence constraints. Each task i has a deadline di.
If a task does not have deadline, its di is set to be1;

. A platform-based MPSoC embedded system that
consists of a set of k processors and its floorplan;

. Execution time table L ¼ fti;j : i ¼ 1; . . . ; n; j ¼
1; . . . ; kg, where ti;j represents the execution time of
task i on processor j;

. Power consumption table R ¼ fri;j : i ¼ 1; . . . ; n;
j ¼ 1; . . . ; kg, where ri;j represents the power con-
sumption of processor j when it executes task i;

. Parameters of failure mechanisms (e.g., the activa-
tion energy for the diffusion processes Ea of
electromigration) and the time-independent para-
meter of the corresponding failure distributions (e.g.,
the slope parameter � in Weibull distribution).

To determine a static periodical task allocation and
schedule that is able to maximize the expected service life
(or, lifetime) of the MPSoC embedded system under the
performance constraint that every task finishes before its
deadline.

Note that, while we mainly consider processor cores in
this work because of their heavy wearout stress, our solution
can be easily extended to take other hardware resources on
the MPSoC platforms into account, if necessary. In addition,
as the first step to tackle the above complicated problem, we
assume that the voltage and frequency of processors do not
change at runtime, although many MPSoC platforms
employ dynamic voltage/frequency scaling (DVFS). This
work, in spite of that, is applicable for MPSoCs with multiple
voltage-frequency islands.

3.2 Solution Representation

The edges in the task graph G ¼ ðV;EÞ indicate the
dependencies of tasks, that is, there is a directed edge
ðvi; vjÞ in E if and only if task vi must have been finished
before vj start its execution (denoted as vi � vj). For
example, the task graph shown in Fig. 1 reflects the
following relationship: 0 � 1; 2 � 1; 2 � 3, and 3 � 4. For
any directed acyclic graph, there exists at least one order of
the tasks that conforms to the partial order designated by
the task graph (defined as a valid schedule order) and can be
used as the task assignment order. For the above example,
(0, 2, 1, 3, 4) and (2, 3, 4, 0, 1) are both valid schedule orders.

Thus, the task allocation and schedule for an MPSoC
design can be represented as (schedule order sequence; resource
assignment sequence) [35]. For example, given the task graph
in Fig. 1 and two processors (P1 and P2) that can be used to
execute any task, a solution represented as (0, 2, 1, 3, 4;
P1; P1; P2; P1; P2) means that task 0 is scheduled first,
followed by tasks 2, 1, 3, and 4, respectively. As for the
resource assignment, tasks 0, 2, and 3 are executed on P1

while tasks 1 and 4 are assigned to P2. Although this
representation has been proposed in previous work for a
genetic algorithm (e.g., [35]), in this paper it is used in a
simulated annealing algorithm where the methodology to
generate new solutions is totally different. We also provide
a mathematical proof for the completeness of the search
space with our proposed method (see Section 3.4).

Reconstructing schedule from the above solution repre-
sentation is quite straightforward. In each step, we pick up

2090 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 12, DECEMBER 2011

Fig. 1. An example task graph.

a task according to the schedule order, assign it to the
corresponding processor at its earliest available time, and
then update the available time of all the processors. We can,
then, obtain the ending time of every task i (denoted as ei)
to identify whether it violates the deadline constraint di.
Clearly, a solution corresponds to a task schedule if its
schedule order conforms to the partial order defined by G.
A possible schedule for the example solution representation
is shown in Fig. 2.

3.3 Cost Function

As the guidance for decision making, cost function also
plays an important role in simulated annealing. Generally
speaking, the solution with lower cost means a preferable
choice and hence should be accepted with higher possibi-
lity. The cost function is, therefore, defined following this
principle. That is, in our problem, on one hand the solution
should meet the performance (i.e., timing) constraints,
while on the other hand we need to maximize the lifetime
of platform-based MPSoC embedded systems subject to this
requirement. We, therefore, introduce two terms into the
cost function, respectively, as follows:

Cost ¼ � � 1f9i:ei>dig �MTTFsys; ð1Þ

where the first term indicates the deadline violation penalty.
To be specific, � is a significant large number, and 1f�g is the
indicator function. This function is equal to 1 if a schedule
cannot meet deadline; otherwise, it is equal to 0. Thus, if a
schedule violates the deadline constraints, the cost of this
solution will be very large and hence be abandoned.
Otherwise, the first term disappears and only the second
term remains.

By comparing ending time ei and deadline constraint di for
any task i, it is easy to know whether performance constraints
are violated, while, as mentioned before, the lifetime
estimation is a nontrivial problem with extremely high
computational complexity. Our proposed method for hand-
ling this problem is presented in Sections 4 and 5 in detail.

3.4 Simulated Annealing Process

The proposed SA-based algorithm starts with an initial
solution obtained by any deterministic task scheduling
algorithm (e.g., list scheduling) and the “temperature” of
this solution is initialized as a high value. This temperature
gradually decreases during the simulated annealing pro-
cess. At each temperature Ta, a certain amount of iterations
is conducted and some neighbor solutions are considered.
Once we reach a new solution, its cost (denoted as Costnew)
is computed using (1) where MTTFsys is substituted by
(26), and compared to that of the old one (denoted as
Costold). If Costnew < Costold, the new solution is accepted;

otherwise, the probability that the new solution is accepted
is e�ðCostnew�CostoldÞ=Ta . When Ta is as low as the preset ending
temperature, the simulated annealing process is terminated
and the solution with the lowest cost obtained so far is
regarded as the final solution. During the simulated
annealing process, it is important to be able to reach the
entire solution space from an initial solution, in order not to
fall into local minimum point.

Before introducing the details on how we identify new
solutions from a random initial solution, we first introduce
two transforms of directed acyclic graph. With the given
task graph G, we can construct an expanded task graphbG ¼ ðV; bEÞ, which has the same nodes as G, but with more
directed edges. That is, if the task graph implies a
precedence constraint, an edge is added into bG. Fig. 3a
shows the corresponding expanded task graph to the task
graph in Fig. 1. While there is no edge (2, 4) in Fig. 1, task 2
must be executed before task 4 because E contains edges (2,
3) and (3, 4). Thus, an edge (2, 4) is included in bE. Moreover,
we construct an undirected complement graph eG ¼ ðV; eEÞ.
There is an undirected edge ðvi; vjÞ in eE if and only if there
is no precedence constraints between vi and vj (denoted as
vi �̂ vj). The corresponding complement graph to Fig. 1 is
shown in Fig. 3b. vi � vj is used to represent that either
vi � vj or vi �̂ vj.

With these notations, we theoretically prove that any
valid schedule order sequence of the given task graph G is
reachable, starting from an arbitrary initial sequence, as
shown in the following.

Lemma 1. Given a valid schedule order A ¼ ða1; a2; � � � ; ajVjÞ,
swapping adjacent nodes lead to another valid schedule
order, provided that there is an edge between these two nodes
in graph eG.

Proof. Since A is a valid schedule order, we have the
property: a1 � a2 � � � � � ai � aiþ1 � � � � � ajVj. If the
edge ðai; aiþ1Þ 2 eEð1 � i � jVj � 1Þ, there is no prece-
dence constraints between them. In other words, a1 �
a2 � � � � � ai �̂ aiþ1 � � � � � ajVj. If we swap the position
of task ai and aiþ1, no precedence constraints are violated
and hence we have another valid schedule order. tu

Theorem 2. Starting from a valid schedule order A ¼ ða1;

a2; . . . ; ajVjÞ, we are able to reach any other valid schedule
order B ¼ ðb1; b2; . . . ; bjVjÞ after finite times of adjacent
swapping.

Proof. A feasible procedure is shown in Fig. 4. In this
procedure, the positions of nodes in the sequence are
adjusted one by one. That is, we first find node b1 in
sequence A, move it to the first position A by a series of
adjacent swapping. And then, find node b2 in sequence A
and move it to the second position of sequenceA. After the

HUANG ET AL.: ON TASK ALLOCATION AND SCHEDULING FOR LIFETIME EXTENSION OF PLATFORM-BASED MPSOC DESIGNS 2091

Fig. 2. A feasible task allocation and schedule.
Fig. 3. Two transforms of directed acyclic graph. (a) bG and (b) eG.

first ði� 1Þ iterations, a1 ¼ b1; a2 ¼ b2; . . . ; ai�1 ¼ bi�1. At
the ith iteration, if ai ¼ bi, there is no need to adjust the
position of ai. Otherwise, we move node aj to the ith
position of sequenceAby ðj� iÞ times of swapping (line 5).
None of them violate precedence constraints. The main
reason is: since A is a valid schedule order, we have
ai � aiþ1 � � � � � aj. On the other hand, since B is also a
valid order, bi � biþ1 � � � � � bjVj. Note that aj ¼ bi. Thus,
ai � aiþ1 � � � � � aj � biþ1 � � � � � bjVj. In addition, set
fai; aiþ1; . . . ; aj�1g 	 set fbiþ1; . . . ; bjVjg. Consequently,
aj �̂ aj�1; aj �̂ aj�2; . . . aj �̂ ai. tu

Accordingly, three moves are introduced to reach all
possible solutions, starting with an arbitrary valid initial
solution

. M1: Swap two adjacent nodes in both schedule order
sequence and resource assignment sequence, pro-
vided that there is an edge between these two nodes
in graph eG.

. M2: Swap two adjacent nodes in resource assign-
ment sequence only.

. M3: Change the resource assignment of a task.

With the above moves, all possible task schedules are
reachable starting from an arbitrary initial one. This is
because, for a certain resource and task binding M1
essentially can visit all other valid schedule orders starting
from an initial one, while M2 and M3 guarantee that all
resource assignment sequence can be tried.

In the following two sections, we present how to
efficiently obtain MTTFsys in (1), i.e., the MTTF of an
MPSoC design with a particular task allocation and schedule.

4 LIFETIME RELIABILITY COMPUTATION FOR

MPSOC EMBEDDED SYSTEMS

The well-accepted failure mechanism models in the
literature (e.g., [20]) typically provide the relationship
between MTTF and a fixed temperature T . However,
processors’ operational temperature varies significantly
with different applications. Generally speaking, when a
processor is under usage or its “neighbors” on the floorplan
are being used, its temperature is relatively higher than
otherwise. In this section, we introduce a novel analytical
method to estimate the lifetime reliability of MPSoC
embedded systems running periodical tasks, within which
the existing failure models are taken as inputs and the
influence of temperature variation caused by task alterna-
tions is reflected.

We use Weibull distribution to describe the wearout
effects, as suggested in JEP85 [36]. Since the slope parameter

is shown to be nearly independent of temperature [37], the
reliability of a single processor at time t can be expressed as

Rðt; T Þ ¼ e�
�

t
�ðT Þ

��
; ð2Þ

where T; �ðT Þ, and � represent temperature, the scale
parameter, and the slope parameter in the Weibull
distribution, respectively. Instead of assuming T as a fixed
value, we consider the temperature variations in our
analytical model for more accuracy. At the same time, it is
important to note that the other factors that affect a
processor’s lifetime reliability are also considered in the
model. That is, the architecture properties of processor
cores are reflected on the slope parameter �, while the
cores’ various operational voltages and frequencies man-
ifest themselves on �ðT Þ (see (6)). Since temperature T
varies with respect to time t, it can be regarded as a function
of t. This allow us to eliminate the notation T from Rðt; T Þ in
the rest of this paper.

In general, mean time to failure is defined as

MTTF ¼
Z 1

0

RðtÞdt: ð3Þ

Considering Weibull distribution given in (2), this equa-
tion can be deduced into the formation shown below [38]

MTTF ðT Þ ¼ �ðT Þ� 1þ 1

�

� �
: ð4Þ

Rearranging the equations yields the expression of the
scale parameter, i.e.,

�ðT Þ ¼MTTF ðT Þ
� 1þ 1

�

� � : ð5Þ

Our analytical framework takes the hard error models as
inputs, and hence it is applicable to analyze any kinds of
failure mechanisms, including the combined failure effects
shown in [6], [13]. For the sake of simplicity, we take
electromigration failure mechanism as an example. By
substituting its lifetime model into (5), we obtain the
corresponding scale parameter

�ðT Þ ¼ A0ðJ � JcritÞ�ne
Ea
kT

� 1þ 1
�

� � ; ð6Þ

where A0 is a material-related constant, J ¼ Vdd � f � pi
[33], and Jcrit is the critical current density.

Depending on processor’s temperature variations with
respect to time, we obtain a subdivision of the time ½0; t
:
0 ¼ t0 < t1 < t2 < � � � < tm ¼ t. For all "T > 0, there exists �t >
0 such that if the largest partition maxiðtiþ1 � tiÞ < �t, then for
all i the difference between the highest temperature in this
interval maxti<�<tiþ1

T ð�Þ and the lowest one minti<�<tiþ1
T ð�Þ is

less than "T . Denote by ½ti; tiþ1Þ the ðiþ 1Þth time interval and
let �ti ¼ tiþ1 � ti. We assume that the temperature during
½ti; tiþ1Þ is an arbitrary constant Ti within the range
½minti<�<tiþ1

T ð�Þ;maxti<�<tiþ1
T ð�Þ
. We know that the initial

reliability of the processor is given by

RðtÞ
��
t¼t0 ¼ 1: ð7Þ

2092 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 12, DECEMBER 2011

Fig. 4. Swapping procedure.

For the first interval ½t0; t1Þ, since the temperature is fixed
to T0, by (2), we have

RðtÞ ¼ e�
�

t
�ðT0Þ

��
; t0 � t < t1: ð8Þ

At the end of this interval, the reliability is

Rðt�1 Þ ¼ e
�
�

t1
�ðT0Þ

��
: ð9Þ

Using a quantity c to represent the aging effect in ½t0; t1Þ,
we express the reliability in the second interval as

RðtÞ ¼ e�
�

tþc
�ðT1Þ

��
; t1 � t < t2: ð10Þ

At the beginning of the second interval

Rðtþ1 Þ ¼ e
�ð t1þc

�ðT1Þ
Þ�
; ð11Þ

c can be computed by the continuity of reliability function,
that is, Rðt�1 Þ ¼ Rðtþ1 Þ, yielding

c ¼ �ðT1Þ
�ðT0Þ

� 1

� �
� t1: ð12Þ

Substituting it into (10), we obtain

RðtÞ ¼ e�
�

t
�ðT1Þ
þð 1

�ðT0Þ
� 1
�ðT1Þ
Þ�t1
��
; t1 � t < t2: ð13Þ

More generally, the reliability function must satisfy the
following continuity constraints:

Rðt�‘ Þ ¼ R
�
tþ‘
�
; ‘ ¼ 1; 2; . . . ;m� 1: ð14Þ

By generalizing the above calculation steps, the lifetime
reliability of a processor at time t can be written as

RðtÞ ¼ e�
�

t
�ðT‘Þ
þ�‘
��
; t‘ � t < t‘þ1; ð15Þ

where

�‘ ¼
X‘�1

i¼0

1

�ðTiÞ
� 1

�ðTiþ1Þ

� �
� tiþ1: ð16Þ

With (15) and (16), we can compute MTTF by (3), but
we still need to monitor the processor’s temperature, which
is obviously time consuming.

Fortunately, since the tasks are executed periodically, the
temperature variance with respect to time will alsobe
periodical after it is stabilized. We, hence, can divide each
period into the same subdivisions. Given each task
execution period is divided into p time intervals, by (15)
and (16), a processor’s lifetime reliability at the end of first
period is given by

RðtpÞ ¼ e�
�Pp�1

i¼0

�ti
�ðTiÞ

��
: ð17Þ

Similarly, a processor’s reliability at the end of the mth
period can be expressed as

Rðtm�pÞ ¼ e�
�Pm�p�1

i¼0

�ti
�ðTiÞ

��
: ð18Þ

We notice that the changes of reliability function RðtÞ in
different periods are different, while

Pp�1
i¼0

�ti
�ðTiÞ does not

vary from period to period. That is,

½� lnRðtm�pÞ

1
� ¼

Xm�p�1

i¼0

�ti
�ðTiÞ

¼ m
Xp�1

i¼0

�ti
�ðTiÞ

¼ m � ½� lnRðtpÞ

1
�:

ð19Þ

We, therefore, introduce the concept of aging effect of a

processor in a period A, which enables us to integrate all

lifetime reliability-related characteristics (including tem-

perature, voltage, clock frequency, etc.) of a processor and

its utilization together in this single value

A ¼ ½� lnRðtpÞ

1
� ¼

Xp�1

i¼0

�ti
�ðTiÞ

: ð20Þ

Because typically MTTF � tp, the MTTF of a single

processor defined as (3) can be approximated to

MTTF ¼
X1
i¼0

e�ði�AÞ
�

� tp: ð21Þ

The above is the lifetime estimation of a single processor.

For an MPSoC platform, let us denote processor j’s aging

effect as Aj and its slope parameter as �j and assume that

there is no spare processors in the system (i.e., the system

fails if one processor fails), the MTTF of the entire system

can be approximately expressed as

MTTFsys ¼
X1
i¼0

e
�
P

j
ði�AjÞ�j � tp: ð22Þ

While from the mathematical point of view the extension

from the lifetime estimation of single processor to that of

MPSoC platform is simply a production operation, (22)

essentially does not lose any information about the

correlation between processors. To clarify, let us consider

an important feature of an MPSoC platform as an example,

that is, the execution of a processor affects the temperature

of its neighbors. When we estimate the system lifetime, the

heating effect of processor j caused by not only itself but

also other processors is reflected in its Aj. Similarly, the

influence of processor j’s behavior on others also affects

their aging effect parameters. These Aj’s, finally, bring the

correlation between processors into the system lifetime

estimation MTTFsys.

5 EFFICIENT MPSOC LIFETIME APPROXIMATION

It is essential to be able to quickly evaluate the cost of a

solution during the simulated annealing process because

this task needs to be conducted whenever we find a

solution. Calculating MTTFsys according to (22) directly,

however, is quite time consuming, which limits our design

space exploration capability. To tackle this problem, four

speedup techniques are introduced in this section.

5.1 Speedup Technique I—Multiple Periods

Remind that the aging effect Aj of processor j is the same

for every period. Obviously, its aging effect of � periods can

be expressed as Aj � �. As long as the condition tp � � �
MTTF is still satisfied (i.e., � is much less than the number

of operational periods before permanent system failure),

HUANG ET AL.: ON TASK ALLOCATION AND SCHEDULING FOR LIFETIME EXTENSION OF PLATFORM-BASED MPSOC DESIGNS 2093

MTTFsys
appxI defined by the following equation can be a

lifetime approximation

MTTFsys
appxI ¼

X1
i¼0

e
�
P

j
ði�Aj��Þ�j � tp � �: ð23Þ

The idea behind this estimation is shown in Fig. 5, wherein
the area inside the dotted curve is the system’s actual MTTF
while the approximated MTTFsys

appxI is the area inside the
solid rectangles. As can be easily observed, although
MTTFsys

appxI is not the accurate mean time to failure of the
system, it is an effective indicator for the lifetime with
different task schedules, because a task schedule with
relatively larger MTTF tends to have larger MTTFsys

appxI . This
technique benefits us significantly in terms of computational
time, i.e., � times faster than the case without this technique.

5.2 Speedup Technique II—Steady Temperature

To obtain an accurate Aj used in (23) is a quite time-
consuming process because the time interval ½ti; tiþ1Þ needs
to be set as a very small value. Fortunately, the time for
processors to reach steady temperature with task changes in
the platform is typically much shorter than the execution
time of tasks [39], [40]. As an example, we demonstrate the
temperature variations for a sample MPSoC platform
containing three processors in Fig. 6a, obtained from HotSpot
[41], an efficient and accurate thermal simulator that is able to
calculate transient and/or steady temperature of on-chip
computing elements. Fig. 6b shows the corresponding
processors that are under usage at a particular time. From
this figure, we can observe that the processors stay at a
relatively stable temperature most of the time when the tasks
do not change. With this observation, we propose to calculate
Aj at a much coarser time scale based on such steady
temperature within each time slot as shown in Fig. 6b.

5.3 Speedup Technique III—Temperature
Precalculation

Even though Aj could be calculated efficiently with the
above speedup techniques, we have to run HotSpot
temperature simulator [41] to obtain the temperature
information every time the simulated annealing algorithm
reaches a solution. Let us perform a simple calculation.
Suppose the initial and end temperature of an algorithm are
102 and 10�5, respectively, cooling rate is 0.95, and 1,000

neighbor solutions are searched at the same algorithm
temperature, the time-consuming HotSpot simulator needs
to be called 1;000� log0:95

102

10�5 3� 105 times, which is
obviously unaffordable. To avoid this problem, we propose
to conduct the HotSpot simulation in a precalculation phase.

To precalculate the processors’ temperatures, we define a
series of time slots for task schedules. Each one is identified by
the set of busy processors and the power consumption of the
tasks running on these processors,1 as shown in Fig. 6. Since
the power consumptions can be different when the same task
execute on distinct processors and when different tasks
execute on the same processor, the number of possible time
slots is huge and it is very difficult, if not impossible, to run
HotSpot once and precalculate the aging effects for all the
cases. To tackle this problem, we categorize the tasks into m
types (m is a user-defined value) based on their power
consumptions when running on a processor and we assume
the tasks belonging to the same category have the same power
consumption value when they run on the same processor.
Since every processor can be either used or unused in a time
slot, and each processor in use has m possible power
consumption values, there can be at most

Pk
i¼1 m

i k
i

� �
¼

ðð1þmÞk � 1Þ kinds of time slots in task schedules, where k is
the quantity of processors on the platform. Here, mi means
that when i processors are in use, each hasm possible power
consumption values. In total, there are k

i

� �
possible combina-

tions that i-out-of-k processors are under used. The possible
values of occupied processor quantity i are 1; 2; . . . ; k.

Denote by xi‘ ð1 � i � k; 1 � ‘ � mÞ the event that pro-
cessor i is under usage in a time slot, and the task running
on this processor belongs to type ‘. Note that the time slot
here is independent of the length of time interval. We
separate these two concepts based on the observation that
as long as the time interval is not very short, its aging effect

2094 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 12, DECEMBER 2011

Fig. 5. Approximation for the system’s MTTF.

Fig. 6. An example of slot representation and the corresponding
temperature variations. (a) Temperature variations and (b) slot
representation.

1. In practice, the power consumption for a task may vary with different
inputs, and hence we use the average power consumption here, as in [6].

can be approximated by the steady temperature (as
mentioned in Section 5.2), which is independent of the
length. Each slot can be described by a set of xi‘, denoted by
X. We omit the processors in idle state in the representation
of set X. A task schedule is composed of a list of time slots.
A feasible way to identify the time slot in a schedule is to
cut the schedule into a series of time intervals at the task
starting or ending time points. For example, suppose an
embedded system contains three processors and its tasks
are classified into two types, in the time order the schedule
shown in Fig. 6b consists of seven slots: fx1

2g; fx1
2; x

2
1g;

fx1
2; x

2
1; x

3
2g; fx2

2; x
3
1g; fx1

1; x
3
1g; fx3

2g; fx2
2g.

Let TX
j be the steady temperature of processor j in time

slot X. Because the steady temperature depends on power
consumption of processors and floorplan, and all are fixed
in a slot, there are exactly ðð1þmÞk � 1Þ possible TX

j values
for processor j. Given the steady temperature of processor j
in time slot X (i.e., TX

j), we calculate the aging effect factor
of processor j, denoted as 	X

j . Here, aging effect factor is the
aging effect in unit time, defined as

	X
j ¼

1

�
�
TX
j

� : ð24Þ

For example, since X of the first slot in Fig. 6 is fx1
2g,

processor P1’s steady temperature is T
fx1

2g
1 . Its aging effect

factor 	
fx1

2g
1 equals 1=�ðT fx

1
2g

1 Þ. Given the length of the first

slot �t0; P1’s aging effect in this slot is �t0=�ðT
fx1

2g
1 Þ. It is

necessary to highlight that, in any slot, not only under usage

processors but also idle ones have aging effect. For

processor P1, we should also estimate its steady tempera-

ture and aging effect factor for the time slots where P1 is not

under usage (e.g., the 4th slots). The aging effect of P1 in this

schedule in a period can be computed by

A01 ¼
�t0

�
�
T
fx1

2
g

1

�þ �t1

�
�
T
fx1

2
;x2

1
g

1

�þ �t2

�
�
T
fx1

2
;x2

1
;x3

2
g

1

�þ �t3

�
�
T
fx2

2
;x3

1
g

1

�
þ �t4

�
�
T
fx1

1
;x3

1
g

1

�þ �t5

�
�
T
fx3

2
g

1

�þ �t6

�
�
T
fx2

2
g

1

� :
ð25Þ

The aging effect of other processors in a period can be
computed in the same method.

Then, combining the speedup techniques II and III, for a
task schedule we can compute A0j for every processor j.
Replacing the accurate Aj in (23) with A0j yields

MTTFsys
appxII ¼

X1
i¼0

e
�
P

j
ði�A0j��Þ

�j

� tp � �: ð26Þ

5.4 Speedup Technique IV—Time Slot Quantity
Control

We notice that the number of possible time slots ðð1þmÞk �
1Þ increases exponentially with the increase of on-chip
processor cores m. This issue can be effectively resolved
based on the observation that when a core is in execution,
usually only nearby cores’ temperatures are affected.
Therefore, we can identify those neighboring processor
cores based on the MPSoC’s floorplan and precalculate the
temperatures for a much less number of time slots. In

practice, the processor cores on an MPSoC platform
oftentimes do not crowd together (i.e., separated by other
functional blocks), and hence can be naturally divided into a
few regions and we conduct temperature estimation for
them separately during the precalculation phase.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup

To evaluate the effectiveness and efficiency of the proposed
methodology, we conduct experiments on a set of random
task graphs generated by TGFF [42] running on various
hypothetical MPSoC platforms. The number of tasks ranges
from 20 to 260, and the maximum in and out degree of a
task is set to be the default values used in TGFF (i.e., 3 and
2, respectively). The number of processor cores varies
between two and eight. By the speedup technique IV, a
large platform that contains six or eight processors is
partitioned into two domains for precalculation. Unless
specified otherwise, all the speedup techniques presented in
Section 5 are applied on the proposed algorithm for
approximation. We have also considered the homogeneity
of platforms. For homogeneous platforms, all processor
cores have the same execution time for a certain task. For
heterogeneous ones, two kinds of processor cores are
assumed: main processors and coprocessors. The former
ones have relatively higher processing capability than the
latter ones in most cases. For all task graphs and platforms,
we compare the proposed strategy with an existing
thermal-aware task allocation and scheduling algorithm
proposed in [14] (abbreviated in tables to thermal aware).
List scheduling is utilized in [14], i.e., a list of unscheduled
tasks is maintained and the task with the highest priority is
scheduled iteratively in a deterministic manner. To reduce
the peak temperature, task energy consumptions are taken
into consideration in [14] when calculating the priority.
Once the task schedule is constructed, its makespan (i.e., the
time interval that all periodical tasks need to finish their
executions once) becomes known. For fair comparison, it is
used as the reference deadline for the proposed approach.

The simulated annealing parameters are set as follows:
initial temperature ¼ 100, cooling rate ¼ 0:95, end tem-
perature ¼ 10�5, and the number of random moves at
each temperature ¼ 1;000. Moreover, because of the lack of
public empirical data on the weight of influence of
various failure mechanisms on real circuit, we use the
electromigration failure model presented in [43] in our
experiments.2 The corresponding parameters are set as the
cross-sectional area of conductor Ac ¼ 6:4� 10�8 cm2, the
current density J ¼ 1:5� 106 A=cm2, and the activation
energy Ea ¼ 0:48 eV. Further, the power density of plat-
forms is in the range of 3.33 to 12:5 W=cm2 and the tasks
are categorized into three groups depending on their
power consumption. The slope parameter in Weibull
distribution used for describing the processor cores’
lifetime reliability in homogeneous platforms is set as
� ¼ 2. While in heterogeneous ones, the slope parameters

HUANG ET AL.: ON TASK ALLOCATION AND SCHEDULING FOR LIFETIME EXTENSION OF PLATFORM-BASED MPSOC DESIGNS 2095

2. Our model can be applied to other failure mechanisms as well. We can
also combine the effects of multiple failure mechanisms and derive an
overall MTTF based on [6] and [13].

of main processors and coprocessors are set to 2.5 and 2,
respectively. Unless otherwise specified, the clock fre-
quency of the main processors in heterogeneous platforms
is set to be twice of that of the coprocessors and the one
in homogeneous platforms, i.e., the frequency ratio is 2.

In addition, we define a reference platform, which
contains a single processor core with a fixed temperature
351:5 K, slope parameter of Weibull distribution � ¼ 2, and
the same clock frequency as the processor cores in
homogeneous ones. Its MTTF is set to be 1,000 units. The
MTTF obtained in our experiments are normalized to this
reference case for easier comparison.

6.2 Results and Discussion

Let us first validate the approximation techniques used for
MTTF estimation. By using our algorithm, we obtain a set of
valid task schedules (i.e., the task schedules that meet the
deadlines) for a homogeneous 2-processor platform. For
each schedule, the approximated MTTF are computed
using (26), where � is set to 100. Then, we derive the
accurate MTTF values by monitoring the temperature
variation using HotSpot for the same schedules, and
compare them to the approximated values. As shown in
Fig. 7, our approximation is able to reflect the quality of
different valid schedules. That is, if a schedule has larger
mean time to failure, it tends to have larger approximated
value. Also, it is worth noting that because of exponentially
increased CPU execution time overhead with respect to the
number of processors in the platform, we are not able to
provide accurate MTTF for larger platforms.3

Next, we present experimental results obtained with
various platforms and task graphs in Table 1. Columns 1
and 2 indicate the number of main processors and
coprocessors on the platform; Columns 3 and 4 describe
the task graph; Column 5 is the makespan obtained by
thermal-aware task allocation and scheduling algorithm in
[14] and is used as the baseline deadline of our algorithm;
Column 6 is the corresponding platforms’ lifetime. In the
last six columns, we obtain platforms’ lifetime by using our
algorithm, relaxing the deadline used in our algorithm by 0,
5, and 10 percent, respectively.

As shown in this table, in most cases the results obtained
with our algorithm have longer lifetime than that of

thermal-aware one even if the deadlines of both algorithms
are the same (see Columns 7 and 8). The only exception is
the “2 processors 22 task” case (Row 4). When the same
deadline is assumed, we observe the same lifetime resulted
from our algorithm and that in [14]. We attribute this
phenomenon to the simple MPSoC and the small task graph.
That is, in this case, the schedules that are able to meet the
deadlines are quite limited and we are not able to find a
solution with extended MTTF. If we relax the deadline by 5
or 10 percent, the advantage of the proposed lifetime
reliability-aware task scheduling algorithm is more obvious
(see Columns 9 to 12). Taking the last row as an example,
with the deadline relaxation, the lifetime extension ratio
increases from 38.09 to 54.64 percent, and to 76.31 percent.
Also, we notice that our algorithm provides more benefit if
the platform is a heterogenous one. For example, when we
relax the deadline by 5 percent, the lifetime improvement on
heterogeneous 6-processor platform is 41.93 percent, much
higher than that on homogenous 6-processor platform,
which is 12.17 percent. This is mainly because, for
heterogeneous platforms, the thermal-aware task allocation
and scheduling algorithm in [14] is based on the list
scheduling technique and tends to assign tasks to main
processors because the main processors have better perfor-
mance. In this case, it is very likely that the aging effects of
the main processors are much serious than that of the
coprocessors, while our algorithm is able to achieve more
balanced aging among these processors.

A closer observation for 8-processor platforms is shown
in Table 2. For the same platform, more task graphs are
scheduled on it. When we target a larger task graph, the
lifetime improvement obtained by our algorithm tends to
be larger. For example, if we relax the deadline constraints
by 10 percent, the lifetime improvements on the homo-
geneous platform for a task graph with 131 tasks and that
with 201 tasks are 16.86 and 20.62 percent, respectively. We
attribute it to the more valid solutions with larger number
of tasks. However, it should be noted that the effectiveness
of the proposed methodology also depends on many other
factors, such as the detailed precedence dependencies.

Fig. 8 shows the difference ratio between the MTTF
obtained from the proposed approach and [14], as a
function of frequency ratio. Here, frequency ratio
 is an
important factor that reflects platform heterogeneity,
representing that the clock frequency of the main processors
is set to be
� of that of the coprocessors. We schedule the
task graph with 131 tasks on the 8-core heterogeneous
platform. The benefit provided by the proposed approach
significantly increases as the ratio between main processors
and coprocessors grows. In other words, the proposed
method performs better when the heterogeneity of the
MPSoC system is high. For example, as frequency ratio
increases from 1 to 4, even when no deadline relaxation is
allowed, the lifetime extension ratio grows by a factor of
2.65. Also, the improvement achieved by deadline relaxa-
tion is more significant when the system heterogeneity is
high. Consider the deadline extension by 5 percent as an
example. The lifetime extension ratio improvements are
7.33 and 20.47 percent for the same frequency (1�) case and
4� case, respectively.

2096 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 12, DECEMBER 2011

Fig. 7. Comparison between approximated MTTF and accurate value.

3. The MTTF values shown in the following experiments are approxi-
mated ones.

We are also interested in the trade-off between perfor-
mance and mean time to failure. The experimental results
for two sample cases, a heterogeneous 8-processor platform
and a homogeneous 4-processor one, are shown in Fig. 9.
We can observe that the MTTF generally increases with
the relaxation of deadlines. This is mainly because the
flexibility of selecting task schedules increases with respect
to the deadline relaxation. We can also observe that when
the deadline constraint is relaxed to a certain point (e.g.,
deadline relaxation exceeds 160 percent in Fig. 9b), MTTF
starts to saturate. This is because the task schedule with the

longest lifetime does not violate deadline constraints and
has been selected as the solution.

Finally, as for the efficiency of our algorithm, the simulated
annealing process requests 50-200 s of CPU time on Intel(R)
Core(TM)2 CPU 2.13 GHz for each case in our experiments.
For example, “4 processors 49 tasks” needs 84 seconds, while
“8 processors 101 tasks” costs 158 seconds. The CPU time
spending on precalculation (i.e., steady temperature estima-
tion of time slots) ranges from 3 to 160 seconds. We have tried
the precalculation for 8-processor platform without partition-
ing the platform into two regions. As expected, it requires
extremely long CPU time (more than 5 hours), which
illuminates the need of time slot quantity control (speedup
technique IV). We also attempted to classify the tasks into five
groups and keep the platform partitioning; the precalculation
for 8-processor platform needs around 12 minutes. The

HUANG ET AL.: ON TASK ALLOCATION AND SCHEDULING FOR LIFETIME EXTENSION OF PLATFORM-BASED MPSOC DESIGNS 2097

TABLE 2
Lifetime Reliability of 8-Processor Platforms

Fig. 8. The impact of heterogeneity on the effectiveness of the proposed
strategy.

Fig. 9. The extension of MTTF with the relaxation of deadlines.
(a) Heterogeneous 8-processor platform. (b) Homogeneous 4-processor
platform.

TABLE 1
Lifetime Reliability of Various MPSoC Platforms with Different Task Graphs

impact on MTTF accuracy highly depends on the floorplan of

MPSoC platforms. In particular, when the processor cores are

placed on the silicon die in a loose manner, we observe

negligible temperature difference between the cases with and

without time slot quantity control. In contrast, if the cores are

centered in a small region, the temperature difference could

be a few centigrade.

7 CONCLUSION AND FUTURE WORK

The lifetime reliability of MPSoC designs has become a

serious concern for the industry with technology scaling. To

tackle this problem, different from prior work, we propose a

simulated annealing-based task allocation and scheduling

strategy that maximizes the lifetime of platform-based

MPSoC designs under performance constraints. In order

to efficiently estimate the lifetime reliability of various

solutions with acceptable accuracy, we propose an analy-

tical model and several speedup techniques, by explicitly

taking the aging effects of processors into account. Experi-

mental results show that the proposed techniques signifi-

cantly extend the lifetime of platform-based MPSoC

designs, especially for heterogeneous platform with large

task graphs.
While our current solution has considered the possible

processor cores’ voltage/frequency differences and hence is

applicable for designs with multiple voltage-frequency

islands, we assume that they do not change at runtime.

Since DVFS has been employed in many MPSoC platforms,

we plan to take this effect into account in our future work.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for

their constructive comments. This work was supported in

part by the General Research Fund CUHK417406,

CUHK417807, and CUHK418708 from Hong Kong SAR

Research Grants Council (RGC), in part by National Science

Foundation of China (NSFC) under grant No. 60876029, in

part by a grant N_CUHK417/08 from the NSFC/RGC Joint

Research Scheme, and in part by the National High

Technology Research and Development Program of China

(863 program) under grant no. 2007AA01Z109.

REFERENCES

[1] A. Jerraya, H. Tenhunen, and W. Wolf, “Guest Editors’ Introduc-
tion: Multiprocessor Systems-on-Chips,” Computer, vol. 38, no. 7,
pp. 36-40, July 2005.

[2] Hardware/Software Co-Design: Principles and Practice, J. Staunstrup
and W. Wolf, eds. Kluwer Academic Publishers, 1997.

[3] ARM, “ARM11 PrimeXsys Platform,” http://www.jp.arm.com/
event/images/forum2002/02-print_arm11_primexsys_platform_
ian.pdf, 2011.

[4] B. Vermeulen, S. Oostdijk, and F. Bouwman, “Test and Debug
Strategy of the PNX8525 Nexperia2Digital Video Platform System
Chip,” Proc. IEEE Int’l Test Conf. (ITC), pp. 121-130, 2001.

[5] S. Borkar, “Designing Reliable Systems from Unreliable Compo-
nents: The Challenges of Transistor Variability and Degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10-16, Nov./Dec. 2005.

[6] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers, “The Case for
Lifetime Reliability-Aware Microprocessors,” Proc. IEEE/ACM
Int’l Symp. Computer Architecture (ISCA), pp. 276-287, 2004.

[7] C. Zhu, Z. Gu, R.P. Dick, and L. Shang, “Reliable Multiprocessor
System-on-Chip Synthesis,” Proc. IEEE/ACM Int’l Conf. Hardware/
Software Codesign and System Synthesis, pp. 239-244, 2007.

[8] A. Dogan and F. Ozguner, “Matching and Scheduling Algorithms
for Minimizing Execution Time and Failure Probability of
Applications in Heterogeneous Computing,” IEEE Trans. Parallel
and Distributed Systems, vol. 13, no. 3, pp. 308-323, Mar. 2002.

[9] S.M. Shatz, J.-P. Wang, and M. Goto, “Task Allocation for
Maximizing Reliability of Distributed Computer Systems,” IEEE
Trans. Computers, vol. 41, no. 9, pp. 1156-1168, Sept. 1992.

[10] S. Srinivasan and N.K. Jha, “Safety and Reliability Driven Task
Allocation in Distributed Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 10, no. 3, pp. 238-251, Mar. 1999.

[11] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, Y. Xie, and W.-L.
Hung, “Reliability-Centric Hardware/Software Co-Design,” Proc.
Int’l Symp. Quality of Electronic Design (ISQED), pp. 375-380, 2005.

[12] L. Huang and Q. Xu, “On Modeling the Lifetime Reliability of
Homogeneous Manycore Systems,” Proc. 14th IEEE Int’l Symp.
Pacific Rim Dependable Computing (PRDC), pp. 87-94, 2008.

[13] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers, “Exploiting
Structural Duplications for Lifetime Reliability Enhancement,”
Proc. IEEE/ACM Int’l Symp. Computer Architecture (ISCA), pp. 520-
531, 2005.

[14] Y. Xie and W.-L. Hung, “Temperature-Aware Task Allocation and
Scheduling for Embedded Multiprocessor Systems-on-Chip
(MPSoC) Design,” J. VLSI Signal Processing Systems, vol. 45,
pp. 177-189, 2006.

[15] J. Shin, V. Zyuban, Z. Hu, J. Rivers, and P. Bose, “A Framework for
Architecture-Level Lifetime Reliability Modeling,” Proc. IEEE/IFIP
Int’l Conf. Dependable Systems and Networks (DSN), pp. 534-53, 2007.

[16] M. Bushnell and V. Agrawal, Essentials of Electronic Testing.
Kluwer Academic Publishers, 2000.

[17] Q. Xu and N. Nicolici, “Resource-Constrained System-on-a-Chip
Test: A Survey,” IEE Proc.- Computers and Digital Techniques,
vol. 152, no. 1, pp. 67-81, Jan. 2005.

[18] M. Nicolaidis, “Design for Soft Error Mitigation,” IEEE Trans.
Device and Materials Reliability, vol. 5, no. 3, pp. 405-418, Sept.
2005.

[19] J.R. Black, “Electromigration—A Brief Survey and Some Recent
Results,” IEEE Trans. Electron Devices, vol. ED-16, no. 4, pp. 338-
347, Apr. 1969.

[20] “Failure Mechanisms and Models for Semiconductor Devices
(jep122c),” JEDEC Publication, 2003.

[21] C.-K. Hu, R. Rosenberg, H.S. Rathore, D.B. Nguyen, and B.
Agarwala, “Scaling Effect on Electromigration in On-Chip Cu
Wiring,” Proc. IEEE Int’l Conf. Interconnect Technology, pp. 267-269,
1999.

[22] J.H. Stathis, “Reliability Limits for the Gate Insulator in CMOS
Technology,” IBM J. Research and Development, vol. 46, nos. 2/3,
pp. 265-283, 2002.

[23] S. Zafar, A. Kumar, E. Gusev, and E. Cartier, “Threshold Voltage
Instabilities in High-� Gate Dielectric Stacks,” IEEE Trans. Device
and Materials Reliability, vol. 5, no. 1, pp. 45-64, Mar. 2005.

[24] Z. Lu, W. Huang, M.R. Stan, K. Skadron, and J. Lach,
“Interconnect Lifetime Prediction for Reliability-Aware Systems,”
IEEE Trans. Very Large Scale Integration Systems, vol. 15, no. 2,
pp. 159-172, Feb. 2007.

[25] A. Coskun, T. Rosing, K. Mihic, G.D. Micheli, and Y.L. Lebici,
“Analysis and Optimization of MPSoC Reliability,” J. Low Power
Electronics, vol. 15, no. 2, pp. 159-172, Feb. 2006.

[26] T.D. Braun, H.J. Siegel, N. Beck, L.L. Boloni, M. Maheswaran, A.I.
Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen, and R.F.
Freund, “A Comparison of Eleven Static Heuristics for Mapping a
Class of Independent Tasks onto Heterogeneous Distributed
Computing Systems,” J. Parallel and Distributed Computing,
vol. 61, no. 6, pp. 810-837, June 2001.

[27] Y.-K. Kwok and I. Ahmad, “Static Task Scheduling and Allocation
Algorithms for Scalable Parallel and Distributed Systems: Classi-
fication and Performance Comparison,” Annual Review of Scalable
Computing, Y.C. Kwong, ed., pp. 107-227, Singapore Univ. Press,
2000.

[28] G. Liao, E.R. Altman, V.K. Agarwal, and G.R. Gao, “A
Comparative Study of Multiprocessor List Scheduling Heuristics,”
Proc. Hawaii Int’l Conf. System Sciences, pp. 68-77, 1994.

[29] A.K. Coskun, T.S. Rosing, and K. Whisnant, “Temperature Aware
Task Scheduling in MPSoCs,” Proc. Conf. Design, Automation, and
Test in Europe (DATE), pp. 1659-1664, 2007.

2098 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 12, DECEMBER 2011

[30] K. Stavrou and P. Trancoso, “Thermal-Aware Scheduling: A
Solution for Future Chip Multiprocessors Thermal Problems,”
Proc. EUROMICRO Conf. Digital System Design (DSD), pp. 123-126,
2006.

[31] S. Herbert and D. Marculescu, “Characterizing Chip-Multipro-
cessor Variability-Tolerance,” Proc. ACM/IEEE Design Automation
Conf. (DAC), pp. 313-318, 2008.

[32] S.R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas, “VARIUS: A Model of Process Variation and
Resulting Timing Errors for Microarchitects,” IEEE Trans. Semi-
conductor Manufacturing, vol. 21, no. 1, pp. 3-13, Feb. 2008.

[33] A. Dasgupta and R. Karri, “Electromigration Reliability Enhance-
ment via Bus Activity Distribution,” Proc. ACM/IEEE Design
Automation Conf. (DAC), pp. 353-356, 1996.

[34] L. Huang and Q. Xu, “Lifetime Reliability-Aware Task Allocation
and Scheduling for MPSoC Platforms,” Proc. Design, Automation,
and Test in Europe (DATE), pp. 51-56, 2009.

[35] J. Oh and C. Wu, “Genetic-Algorithm-Based Real-Time Task
Scheduling with Multiple Goals,” J. Systems and Software, vol. 71,
no. 3, pp. 245-258, May 2004.

[36] “Methods for Calculating Failure Rates in Units of Fits (jesd85),”
JEDEC Publication, 2001.

[37] S.-C. Chang, S.-Y. Deng, and J.Y.-M. Lee, “Electrical Character-
istics and Reliability Properties of Metal-Oxide-Semiconductor
Field-Effect Transistors with Dy2O3 Gate Dielectric,” Applied
Physics Letters, vol. 89, no. 5, pp. 053504-1-053504-3, July 2006.

[38] C.E. Ebeling, An Introduction to Reliability and Maintainability
Engineering. Waveland Press, 2005.

[39] R.C. Correa, A. Ferreira, and P. Rebreyend, “Scheduling Multi-
processor Tasks with Genetic Algorithms,” IEEE Trans. Parallel and
Distributed Systems, vol. 10, no. 8, pp. 825-837, Aug. 1999.

[40] A. Gerasoulis and T. Yang, “On the Granularity and Clustering of
Directed Acyclic Task Graphs,” IEEE Trans. Parallel and Distributed
Systems, vol. 4, no. 6, pp. 686-701, June 1993.

[41] K. Skadron, M.R. Stan, W. Huang, S. Velusamy, K. Sankaranar-
ayanan, and D. Tarjan, “Temperature-Aware Microarchitecture,”
Proc. IEEE/ACM Int’l Symp. Computer Architecture (ISCA), pp. 2-13,
2003.

[42] R.P. Dick, D.L. Rhodes, and W. Wolf, “TGFF: Task Graphs for
Free,” Proc. Int’l Conf. Hardware Software Codesign, pp. 97-101, 1998.

[43] A.K. Goel, High-Speed VLSI Interconnections, second ed. IEEE Press,
2007.

Lin Huang (S’08) received the BS degree in
electronic engineering from Shanghai Jiaotong
University, Shanghai, China, in 2007. She
received the MPhil. degree in computer science
and engineering from The Chinese University of
Hong Kong, Hong Kong, China, in 2010. Her
research interests include reliability analysis of
multicore systems, fault-tolerant computing, and
network-on-chip testing. She is a student mem-
ber of the IEEE.

Feng Yuan (S’08) received the BS degree in
information engineering from Zhejiang Univer-
sity, Hangzhou, China, in 2006, and the MS
degree in computer science and engineering
from the Chinese University of Hong Kong in
2009. He is currently working toward the PhD
degree in the CUHK Reliable Computer Labora-
tory (CURE Lab.), the Department of Computer
Science and Engineering at the Chinese Uni-
versity of Hong Kong. His research interests

include manufacturing test and fault-tolerant computing. He is a student
member of the IEEE.

Qiang Xu (M’06) received the PhD degree in
electrical and computer engineering from
McMaster University, Hamilton, ON, Canada, in
2005. Since 2005, he has been an assistant
professor with the Department of Computer
Science and Engineering, The Chinese Univer-
sity of Hong Kong. He leads the CUHK Reliable
Computing Laboratory (CURE Lab.). His re-
search interests range from test and debug of
system-on-a-chip integrated circuits to fault-

tolerant computing. He has published more than 70 technical papers in
these areas. He received the Best Paper Award at DATE ’04 and has
several other papers nominated for best paper awards at prestigious
conferences such as ICCAD and DATE. He is a member of the IEEE, the
ACM SIGDA, and the IEEE Computer Society. He is currently serving as
an associate editor for IEEE Design and Test of Computers.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HUANG ET AL.: ON TASK ALLOCATION AND SCHEDULING FOR LIFETIME EXTENSION OF PLATFORM-BASED MPSOC DESIGNS 2099

