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ABSTRACT
Advancements in technology enable integration of a large number
of cores on a single silicon die. At the same time, aggressive tech-
nology scaling has an ever-increasing adverse impact on the lifetime
reliability of such large integrated circuits. In this work, we model
the lifetime reliability of homogeneous manycore systems using a
load-sharing nonrepairable k-out-of-n:G system with general failure
distributions for embedded cores. In manycore systems, an embed-
ded core can be in operational, cold standby, or warm standby state
depending on system redundancy schemes and their workloads. We
then use the proposed model to analyze the impact of different redun-
dant schemes and configurations on the lifetime reliability of many-
core systems.

1. INTRODUCTION
While the relentless scaling of CMOS technology has brought with

it enhanced functionality and improved performance in every new
generation, the associated ever-increasing on-chip power and tem-
perature densities make the lifetime reliability of high-performance
integrated circuits (ICs) one of the major concerns for the industry
[3, 19].

The failure mechanisms that contribute to IC’s permanent failures
(e.g., time dependent dielectric breakdown (TDDB) and electromi-
gration) have been extensively studied at the circuit level in the past,
and they are shown to be strongly related to the temperature and volt-
age applied to the circuit. Recently these failure mechanisms have
been revisited at the processor microarchitecture level due to their
increasing impact with technology scaling [18, 19].

The above models mainly target unicore processor chips. State-of-
the-art computing systems (e.g., multi-digital signal processor (DSP)
system [11], general-purpose processors), however, have started to
employ multiple cores on a single silicon die to improve performance
through parallel execution instead of frequency increase, which have
the benefits of power-efficiency and short time-to-market [7]. A 128-
core GPU [15] and a 64-core general-purpose multiprocessor [22]
have already been released to the market. Various research teams
have projected that thousand-core processor chips will become com-
mercially available in the foreseeable future [1, 4]. For such large-
scale manycore systems fabricated with latest technology, how to
model its lifetime reliability is an interesting and relevant problem.

Assuming the failure distribution of an embedded core is known
a priori, we analyze the lifetime reliability of manycore systems in
this work. We make the following observations during the modeling
process:

• embedded cores will age in operation. That is, we expect an
increasing failure rate (IFR) when a core gets older.

• manycore systems are k-out-of-n:G systems1, in which n is the
total number of processor cores fabricated on-chip and k is the
number of cores for the system to function correctly. Generally
speaking, the value of n is larger than the value of k to provide
fault tolerance [24].

• manycore systems are load-sharing systems, i.e., each embed-
ded core is designed to carry only part of the load assigned by
the operating system (OS). In fact, a core’s failure rate and the
associated lifetime depends significantly on its workload that
determines the temperature and voltage applied to the circuit.

• manycore systems are nonrepairable systems. That is, unlike
traditional board-level multiprocessor systems that can be eas-
ily repaired by replacing defective processor chip, embedded
cores are integrated on silicon die in manycore systems and it
is extremely difficult to repair or replace a faulty core, if not
impossible.

Based on the above observations, we model the lifetime reliability
of manycore systems using a load-sharing nonrepairable k-out-of-
n:G system with general lifetime distributions for embedded cores.
To the best of our knowledge, this is the first comprehensive reliabil-
ity model for such complex systems.

Manycore systems can be configured in two ways to achieve re-
liability: (i). gracefully degrading systems that use all failure-free
cores to execute tasks. When a core failure is detected, these sys-
tems attempt to reconfigure to a system with one fewer module; (ii).
standby redundant systems that execute tasks on active cores. Upon
detection of the failure of an active core, these systems attempt to
replace the faulty unit with a spare unit. Depending on the above
configurations and current workload, cores can be in normal func-
tional mode, warm standby, or cold standby state, which have direct
implications on the ageing effect of the manycore system. In this
paper, we use the proposed model to analyze the impact of different
configurations and redundant schemes on manycore systems’ life-
time reliability. This will facilitate designers to make architecture
decisions to achieve their design objectives.

The remainder of this paper is organized as follows. In Section 2,
we present preliminaries and motivation for this work. The proposed
lifetime reliability model for manycore systems is then discussed in
detail in Section 3. Experimental results for different manycore sys-
tem configurations are presented in Section 4. Finally, Section 5 con-
cludes this paper.

1An n-component system that works (or is “good”) if at least k of the n components
work is called a k-out-of-n:G system.



2. PRELIMINARIES
In this paper, we consider homogeneous manycore systems that

have n identical embedded cores fabricated on-chip. In order to func-
tion correctly, at least k (k ≤ n) cores need to be good. These cores
will share the workload designated by operating system. Appar-
ently, this is a k-out-of-n:G load-sharing system. Before discussing
the technical details of the proposed lifetime reliability model, we
present some preliminaries in this section.

2.1 IC Lifetime Reliability
Integrated circuit errors can be broadly classified into two cate-

gories: soft errors and hard errors. As soft errors caused by radiation
effects do not fundamentally damage the circuit, they are not viewed
as lifetime reliability threats. In this paper we mainly consider those
hard errors that are permanent once they manifest, such as TDDB in
the gate oxides, electromigration (EM) and stress migration (SM) in
the interconnects, and thermal cycling (TC).

The above failure mechanisms have an increasingly adverse effect
with technology scaling, and therefore have re-attracted research in-
terests recently. Srinivasan et al. [19] described a so-called RAMP
model that is able to dynamically track lifetime reliability of a pro-
cessor according to changes in application behavior. Their model,
however, is inherently inaccurate because it assumes a uniform de-
vice density over the chip and an identical vulnerability of devices to
failure mechanisms. To address this problem, Shin et al. [18] intro-
duced a structure-aware model that takes the vulnerability of basic
structures of the microarchitecture (e.g., register files, latches and
logic) to different types of failure mechanisms into account. Coskun
et al. proposed a cycle-accurate lifetime reliability simulation method-
ology as well as a statistical one in [5] and used them to optimize the
processor power management policy. In [20], Srinivasan et al. stud-
ied the vulnerability of FPGAs to TDDB and EM effects.

2.2 Modeling Processor Core Behavior
We assume embedded cores execute tasks independently (an ap-

plication however may consist of a series of tasks [14]) and one core
can perform at most one task at a time. In addition, the tasks as-
signed to a certain core is assumed to be stored in a first-in-first-out
(FIFO) buffer with infinite capacity when the core is busy. Once the
core becomes available, it starts to process the next task in the FIFO
promptly. As shown in Fig. 1, a core can be in active mode or spare
mode in the manycore system (depending on redundancy configu-
rations). For spare processor cores, their power supply can be re-
duced significantly or turned off completely, we therefore treat them
as cold standby components with zero failure rate. For active cores,
depending on the current workload, they can be in two states: pro-
cessing or wait, which denote the state that the cores are performing
tasks or waiting for task allocation, respectively. Generally speaking,
cores operate at higher temperature in processing state and hence will
wear out more quickly than in wait state. We therefore regard cores
in wait state as warm standby components in this work, and we use
Rp(t) and Rw(t) to denote the reliability functions of cores in pro-
cessing state and wait state, respectively, where they have the same

shape but different scale parameter. For example, Rp(t) = e−( t
θp

)β

and Rw(t) = e−( t
θw

)β
, wherein θp and θw are scale parameters.

According to the above discussion, if manycore systems are con-
figured as a graceful degrading system, embedded cores cannot be
in spare mode and hence they are in either processing or wait state.
The number of cores in either state at a particular moment is depen-
dent on the current workload and hence is uncertain. If, however,
manycore systems are configured as a standby redundant system, an

Figure 1: The Embedded Core Behavior.

embedded core can serve as: cold standby, warm standby or process-
ing core. As k cores are active, we know exactly how many cores
are cold standbys but again not sure about the number of cores in
processing or wait state at a specific time.

2.3 Related Work on Modeling k-out-of-n:G Sys-
tems

While there has been a large amount of research work on modeling
the lifetime reliability of multi-component systems, most of them
focused on parallel systems that are designed to carry full load, as
shown in [10, 23].

In the literatures on load-sharing k-out-of-n:G systems, for the
sake of simplicity, many studies (e.g., [16, 12]) assume an expo-
nential lifetime distribution for every component, which implies a
constant failure rate during a component’s entire life cycle. With
this assumption, the system can be represented by a discrete-state,
continuous-time homogeneous Markov chain and analyzed using ma-
ture techniques [16]. The above assumption, however, implies that
there is no difference between a brand-new unit and a 10-year old
one in terms of failure rates, which is obviously not true. In fact,
the popularity of this assumption is mainly due to its mathematical
tractability rather than accuracy.

In real-life systems, we expect components to experience increas-
ing failure rate over its life cycle, i.e., exponential lifetime distribu-
tion does not apply. For systems with general lifetime distributions
for the internal components, Markov model cannot be used to ana-
lyze their lifetime reliability because whether a component is good
or not depends on its past usage and hence the memoryless prop-
erty required for Markov modeling does not hold. This makes the
mathematical analysis for systems with general lifetime distributions
much more complicated. [9] studied a 1-out-of-2:G system with
time-varying failure rates in a general polynomial expression format.
Later, [13] presented an analytical model for components with vari-
ous general lifetime distributions.

An idle component in computing systems can serve as a cold, hot,
or warm standby unit, which has a zero failure rate, the same fail-
ure rate as active components or a failure rate between cold and hot,
respectively. In the above models (e.g., [9, 13]), every component
in the system is assumed to conform to a single failure distribution
and hence can only be applied to analyze systems with hot standby
components. In manycore systems, as discussed earlier, an active
embedded core in wait state should be treated as a warm standby
component. Consequently, the above models are not applicable. [17]
provided a closed-form expression for the k-out-of-n:G systems with
warm standby components. However, they assume the failure rates
of both active and standby units are constant. Recently, [25] pre-
sented an analytical model for k-out-of-(M + N):G repairable warm
standby systems that consists of two different types of components.
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Figure 2: Queueing Model for Task Allocation in Manycore Sys-
tem.

Most prior work (e.g., [16, 9, 13]) focuses on analyzing the life-
time reliability of gracefully degrading systems, in which all em-
bedded cores are active. For standby redundant systems, an embed-
ded core can be a “spare” unit, and such systems involve both warm
standby (wait state) and cold standby (spare state) units as well as
processing cores. [8] presented a mixture model for a 1-out-of-3
standby system that contains a dedicated warm standby unit and a
dedicated cold standby unit. [21] analyzed a system in which a mod-
ule can alternate between cold and warm standby state. However, the
system investigated in this work contains only two components. Sim-
ilar to many prior work on this topic, both [8] and [21] are difficult
to extend to the general k-out-of-n:G systems.

2.4 Notations
The most widely-used concepts in reliability engineering and their

representations are listed as follows and will be used throughout this
paper without further explanations.

R(t) reliability function2

F(t) cumulative distribution function, 1−R(t)
f (t) probability density function, d

dt F(t)
h(t) failure rate function (hazard function), f (t)

R(t)
MT T F mean time to failure,

R ∞
0 R(t)dt

In addition, in the rest of the paper, we use superscript sys to dis-
tinguish the functions for the entire manycore system from that for
a single core. We also use de and st to represent the system in de-
grading configuration and standby configuration, respectively. For
manycore systems in standby configuration, subscripts i and j are
used to indicate the number of active and spare cores.

3. PROPOSED LIFETIME RELIABILITY
MODEL FOR MANYCORE SYSTEMS

3.1 Queueing Model for Task Allocation
Consider a manycore system composed of a set S = {1,2, . . . ,n}

identical embedded cores. Among these cores, the set of active cores
is S1, the set of spare cores is S2, the set of faulty cores is S3, and
S1 ∪ S2 ∪ S3 = S . To capture the key features, we model a general-
purpose parallel processing system with a central queue as a bulk
arrival MX/M/|S1| queuing model, as shown in Fig. 2. More specifi-
cally, the application arrival to the manycore system is assumed to be

2Reliability function R(t), also known as survival function, gives the probability that a
component does not fail up to time t.

a Poisson process with rate λa. An application may consist of a se-
ries of tasks that can be processed independently of each other [14].
We denote the number of tasks in an application as X . Let γi be the
probability that an application consists of i tasks (i.e, Pr{X = i}). Ap-
parently, i = 1,2, · · · ; and we have ∑∞

i=1 γi = 1. By using z-transform,
the probability generating function of X is GX (z) = ∑∞

i=1 γizi. Each
task is executed by an individual active core and the service time
is exponentially distributed with mean 1

µ . Consequently, the entire
manycore system is modeled as an MX/M/|S1| queuing system. The
probability that a certain active core is occupied by tasks, i.e., traffic
intensity (also called utilization), is ρ = E[X ]·λa

|S1|·µ , where E[X ] is the s-

expected value of X and can be computed as d
dz GX (z)

∣∣
z=1 = G′X (1).

Let λ≡ E[X ] ·λa, ρ = λ
|S1|·µ . Our approach could be easily extended

to represent other kinds of manycore systems and/or task allocation
mechanisms (e.g., modeling the entire manycore system as a set of
M/M/1 queue).

3.2 Lifetime Reliability of A Single Core
To obtain the lifetime reliability of the manycore system, we need

to first calculate the lifetime reliability of an individual core. In this
section, we examine the manycore system with two different redun-
dant schemes: gracefully degrading and standby redundant.

3.2.1 Gracefully Degrading System
In gracefully degrading manycore systems, all good cores in

the system are active and they alternate between wait state (as warm
standby) and processing state in their lifetimes with different ageing
effects. To accommodate this issue, we define a core’s accumulated
time in a certain mode at time t as how long it has spent in such
a state up to time t. For example, suppose a core has its first task
executed from time zero to time T1, and its second task arrives at
time T2 (T2 ≥ T1), and suppose at time t this task has not finished
yet. In this case, this core’s accumulated time in processing state is
(T1−0)+(t−T2) and its accumulated time in wait state is (T2−T1).
We thus have the following theorem.

Theorem 1 Suppose a manycore system with gracefully degrading
scheme has experienced ` core failures, in the order of occurrence
time at t1, t2, · · · , t`, respectively, for any core that has survived until
time t (t > t`)

(a) its accumulated time in the processing state up to time t

ψde
p (t, t1, t2, · · · , t`)≈

λ
(n− `)µ

t−
`

∑
j=1

λ
µ(n− j +1)(n− j)

t j (1)

(b) its accumulated time as warm standby up to time t

ψde
w (t, t1, t2, · · · , t`)≈ t− λ

(n− `)µ
t +

`

∑
j=1

λ
µ(n− j +1)(n− j)

t j (2)

Proof Before the first core failure, there are n active cores in the
system. In such an MX/M/n queuing system, the utilization of each
core ρn = λ

nµ . Since usually the time scale of lifetime reliability (in
years) is much larger than that of task processing, the accumulated
time in the processing state from time zero to t1 can be approximated
as ρn · t1 = λ

nµ t1. After each failure, the system is reconfigured to a
system with one fewer module. Thus from t j to t j+1, there are (n− j)
active cores in the system (0 < j ≤ `−1). The system can therefore
be modeled as an MX/M/(n− j) queuing system. Similarly, the
utilization of any surviving core is ρn− j = λ

(n− j)µ . Its accumulated

time in processing state in this period is therefore λ
(n− j)µ (t j+1− t j).



From t` to t, it is λ
(n−`)µ (t−t`). The summation of these (`+1) terms

is Equation (1).
Since a surviving core can be in either processing or wait state

from time zero to t, ψde
w (t, t1, t2, · · · , t`)= t−ψde

p (t, t1, t2, · · · , t`). Hence,
Equation (2) holds. ¤

With different aging effects in processing state and wait state for
a particular core, we need to combine the accumulated time in these
two modes in a unified manner to calculate the lifetime reliability
of embedded cores. Recall that we assume the reliability functions
in wait state and processing state have the same shape but different
scale parameters (see Section 2). The scale parameter is a value by
which t is divided and we use θw and θp to denote it in wait state
and processing state, respectively. Given a general reliability func-
tion defined as R(t,θ) (abbreviated as R (t)), the reliability functions
of processing state and wait state are R(t,θp) (denoted as Rp(t)) and
R(t,θw) (denoted as Rw(t)) respectively. After unification, we have
relationships: Rp(t) = R ( θ

θp
· t) and Rw(t) = R ( θ

θw
· t). The follow-

ing theorem provides the relationship between a single core’s relia-
bility and its accumulated times in different states, and enables their
integration into one analytical model.

Theorem 2 Given a gracefully degrading manycore system that has
experienced ` core failures which occur at t1, t2, . . . , t`, respectively,
the probability that a certain core survives at time t (t > t`) provided
that it has survived until time t` is given by

Rde(t|t1, t2, · · · , t`) = R (ψde(t, t1, t2, · · · , t`)) (3)
where

ψde(t, t1, t2, · · · , t`) =
θ

θp
ψde

p (t, t1, t2, · · · , t`)+
θ

θw
ψde

w (t, t1, t2, · · · , t`)
(4)

Proof The proof of this theorem is presented in Appendix. ¤

We are also interested in the probability density function (p.d.f.) of
core failures. By the definition of reliability and the corresponding
p.d.f., given a manycore system has experienced ` core failures, at
t1, t2, · · · , t`, respectively, the probability that a certain core fails in
an infinitesimal interval dt`+1 at time t`+1 is given by

f de(t`+1|t1, t2, · · · , t`)dt`+1 =
d
dt

(1−Rde(t|t1, t2, · · · , t`))
∣∣∣
t=t`+1

dt`+1

(5)

3.2.2 Standby Redundant System
In a standby redundant manycore system, spare cores are put

aside in the beginning and are activated only when failures occur.
In other words, different from that in gracefully degrading system,
the active cores at time t in standby redundant system may be ini-
tially configured as spare ones. Once a spare core converts into ac-
tive mode, it starts its aging process and will never return to spare
mode (see Fig. 2). To capture this feature, we define a core’s birth
time tb as the time point when it is configured as an active one. Be-
fore birth time tb, a processor core is in the cold standby mode and
has zero failure rate. After that, it alternates between processing state
and wait state.

Theorem 3 In a standby redundant manycore system, for any core
with birth time tb that has survived until time t (t > tb)

(a) its accumulated time in the processing state up to time t

ψst
p (t, tb)≈ λ

kµ
(t− tb) (6)

(b) its accumulated time as warm standby up to time t

ψst
w(t, tb)≈ (1− λ

kµ
) · (t− tb) (7)

Proof A functioning manycore system with standby redundant
scheme always keeps k active cores and leaves remaining good cores
as spares. Therefore, the utilization of an active core remains ρk =
λ
kµ . Similar to the analysis of the system with gracefully degrading

scheme, the accumulated time of a core in processing state from tb

to t can be approximated as ρk · (t − tb) = λ
kµ (t − tb). As can be

observed, a processor core’s accumulated time in either state only
depends on its birth time tb while is independent of the past ` core
failures. As for the accumulated time in wait state, since the core is
in either processing or wait state from tb to t, ψst

w(t, tb) = (t− tb)−
ψst

p (t, tb). Thus, we get Equation (7). ¤

Theorem 4 In a manycore system with standby redundant scheme,
the probability that a certain core with birth time tb survives at time
t (t > tb) is given by

Rst(t, tb) = R (ψst(t, tb)) (8)
where

ψst(t, tb) =
θ

θp
ψst

p (t, tb)+
θ

θw
ψst

w(t, tb) (9)

Proof Because the failure rate of cold standbys is considered to be
negligible, ∀τ < tb : Rst(τ) = R (0). After becoming an active one,
a core alternates between wait state and processing state. Except for
this note, the proof for Theorem 4 is as same as the proof for Theorem
2. ¤

Similar to the analysis in section 3.2.1, the probability that a
certain core with birth time tb fails at time t`+1 is given by

f st(t`+1, t
b)dt`+1 =

d
dt

(1−Rst(t, tb))
∣∣∣
t=t`+1

dt`+1 (10)

3.3 Lifetime Reliability of the Entire Manycore
System

After obtaining the lifetime reliability of a single core, we move
to study the lifetime reliability of the entire manycore system in this
section. Again, we first introduce the reliability of gracefully degrad-
ing systems and then investigate that of standby redundant systems.

3.3.1 Gracefully Degrading System
As the manycore system is functioning when it contains no less

than k good cores, it may contain k,k + 1, · · · ,n good cores and all
are in active mode. Let Psys,de

n−` (t) be the probability that the many-
core system has (n− `) active cores at time t. The system reliability
Psys,de(t) can therefore be expressed as

Psys,de(t) =
n−k

∑̀
=0

Psys,de
n−` (t) (11)

Hence, the mean time to failure of the system can be written as

MT T Fsys,de =
∞Z

0

Psys,de(t)dt =
∞Z

0

n−k

∑̀
=0

Psys,de
n−` (t)dt =

n−k

∑̀
=0

∞Z
0

Psys,de
n−` (t)dt

(12)
Clearly, it is necessary to determine Psys,de

n−` (t) to compute MT T Fsys,de.
Since all components are in active mode before the first core failure,
Psys,de

n (t) is simply the probability that all n cores survive at time t,
i.e.,

Psys,de
n (t) =

(
Rde(t)

)n (13)



The event that the system experiences exactly one failure before t
is a union of a set of continuous elementary events in which a fail-
ure occurs in an infinitesimal interval dt1 at time t1; the probability
that a certain core fails during dt1 is f de(t1)dt1. After this failure,
the system is reconfigured as a system with (n− 1) cores in a very
short reconfiguration time. Because of this failure, the load on each
surviving cores increases. The load strongly influence the aging ef-
fect of the remaining cores. Therefore, the probability that all other
(n−1) cores survive up to time t is given by

Psys,de
n−1 (t|t1) =

(
Rde(t|t1)

)n−1
, t ≥ t1 (14)

This elementary event consists of two independent events. There-
fore, the probability for this elementary event is Psys,de

n−1 (t|t1)· f de(t1)dt1.
By the theorem of total probability, the probability of the union event
Psys,de

n−1 (t) is obtained by integration over t1. Besides, since there are
n good cores before the first failure, we obtain

Psys,de
n−1 (t) = n ·

tZ
0

Psys,de
n−1 (t|t1) f de(t1)dt1 (15)

Using the same argument, by extending the event of only one fail-
ure to include ` failures at time t1, t2, · · · , t`, the general term 3 can be
written as Equation (16).

where
Psys,de

n−` (t|t1, t2, · · · , t`) =
(
Rde(t|t1, t2, · · · , t`)

)n−` (17)

3.3.2 Standby Redundant System
In a standby redundant manycore system, it is functioning if it

contains at least k good cores, i.e., |S1|+ |S2| ≥ k. Among these good
cores, k of them are configured as active ones. The number of spare
cores in the system thus can be 0,1, · · · ,(n− k). Therefore, similar
to the analysis of gracefully degrading system, we have

MT T Fsys,st =
∞Z

0

n−k

∑̀
=0

Psys,st
k,n−k−`(t)dt =

n−k

∑̀
=0

∞Z
0

Psys,st
k,n−k−`(t)dt (18)

where, Psys,st
k,n−k−`(t) is the probability that a manycore system has

exactly k active cores and (n− k− `) spare cores at time t.
The probability that no failure occurs in such a system up to time

t equals to the probability that all active cores with birth time zero
survives at t, that is,

Psys,st
k,n−k(t) =

(
Rst(t)

)k (19)
To compute the probability that exactly one core failure occurs

up to t, we firstly analyze the event that a certain core with birth
time zero fails in a small interval dt1 at t1; the probability for this is
f st(t1, t0)dt1 (for ease of discussion, let t0 ≡ 0). In addition, the prob-
ability that the remaining (k−1) active cores with birth time zero and
the active core with birth time t1 survive at t can be expressed as

Psys,st
k,n−k−1(t|t1) =

(
Rst(t, t0)

)k−1 ·Rst(t, t1) (20)

Again, the unconditional probability is obtained by multiplying
the probabilities of two independent events and integration over t1.
Also, because there are k cores with birth time zero in the system
before the first failure, we have

Psys,st
k,n−k−1(t) = k ·

tZ
0

dt1
(
Rst(t, t0)

)k−1Rst(t, t1) f st(t1, t0) (21)

The reliability of a core depends on its birth time, independent of
the occurrence time of past failures of manycore system. According
to their birth times, active cores in a manycore system may belong

3Multiple integrals can be effectively and efficiently calculated by using Monte Carlo
simulation [6].

to more than one type. Although the first failure of the manycore
system must occur on a core with birth time zero, the following ones
may occur on other types of cores. For example, after the first failure,
there are two types of cores in the system: (k− 1) cores with birth
time zero and one core with birth time t1. The second failure may
happen on either one of them. Consequently, to compute the relia-
bility of a manycore system having two failures, we should consider
two cases: the birth time of two failure cores is t0, t0; or t0, t1. Each
one corresponds to a different failure rate. Therefore, when `≥ 2 the
expression of Psys,st

k,n−k−`(t) is more complex. Different from the anal-
ysis of gracefully degrading system, the ith failure of the manycore
system with standby redundant scheme should be described by two
parameters: occurrence time ti and index of birth time xi, represent-
ing that the ith failure occurs on a core with birth time txi at time ti.
Then, the key features of past ` failures can be captured by two 1× `
vectors: t1×` = (t1, t2, · · · , t`) and x1×` = (x1,x2, · · · ,x`).

To preserve the order of failures, vector t1×` satisfies: t1 < t2 <
· · · < t`. In addition, since the ith failure must occur on a core that
is initially configured as an active one or activated because of the
past (i−1) failures, the birth time txi ∈ set {t0, t1, · · · , ti−1}. In other
words, vector x1×` satisfies ∀1 ≤ i ≤ ` : xi = 0,1, · · · , i− 1. Also,
since there are at most one core with birth time ti (1 ≤ i ≤ `) in the
manycore system having ` core failures, the birth time index vector
x1×` also satisfies ∀xi,x j 6= 0 : xi 6= x j . Let πi, j be the number of
i’s in the first j elements of vector x1×`. It is also important to note
that the number of cores with birth time zero in a manycore system
is no more than k. Thus, vector x1×` should also meet the constraint
π0,` ≤ k.

Initially, there are k active cores with birth time zero in the many-
core system. After ` failures, π0,` of them fails and the remaining
(k− π0,`) are still functioning. After the ith failure, a core is acti-
vated and its birth time is ti. At time t, it may be either functioning
or failed, which is described by x1×`. That is, the number of active
cores with birth time ti (0 < i≤ `) is (1−πi,`). The conditional prob-
ability that, given the past ` failures described by t1×` and x1×`, no
more failures occur up to time t (t > t`) is therefore expressed as

Psys,st
k,n−k−`(t|t1×`;x1×`) =

(
Rst(t, t0)

)k−π0,` ·
`

∏
i=1

(
Rst(t, ti)

)1−πi,` (22)

Next, consider the event that the rth failure occurs in a small in-
terval dtr at tr on a certain core with birth time txr given past (r−1)
failures’ description; the probability for this is f st(tr, txr )dtr.

Now, we are able to compute the probability that the past ` fail-
ures of the manycore system. It can be described by vector x1×`

as Equation (23), where term N(xr|x(r−1)
1×` ) denotes the number of

active cores with birth time txr before the rth failure in the system,
and x(r−1)

1×` = (x1,x2, · · · ,xr−1) indicates the birth time index of first

(r− 1) failures. When it comes to the computation of N(xr|x(r−1)
1×` ),

two cases are considered: the rth failure occurs on a core initially
configured as active one (i.e., xr = 0) or spare one (i.e., xr 6= 0). For
the first case, there are (k−π0,r−1) cores in the system belonging to
this type before the rth failure; for the second case, only one core has
birth time txr . Therefore, we have

N(xr|x(r−1)
1×` ) =

{
k−π0,r−1, xr = 0
1, otherwise (24)

To cover all possible failure cases, let X1×` be the set of all possible
x1×`. Psys,st

k,n−k−`(t) can be expressed as

Psys,st
k,n−k−`(t) = ∑

x1×`∈X1×`

Psys,st
k,n−k−`(t,x1×`) (25)



Psys,de
n−` (t) = n · (n−1) · · ·(n− `+1) ·

tZ
0

dt`

t`Z
0

dt`−1

t`−1Z
0

dt`−2 · · ·
t3Z

0

dt2

t2Z
0

dt1Psys,de
n−` (t|t1, t2, · · · , t`) f de(t1) f de(t2|t1) · · · f de(t`|t1, t2, · · · , t`−1)

(16)

Psys,st
k,n−k−`(t,x1×`) =

`

∏
r=1

N(xr|x(r−1)
1×` ) ·

tZ
0

dt`

t`Z
0

dt`−1

t`−1Z
0

dt`−2 · · ·
t3Z

0

dt2

t2Z
0

dt1Psys,st
k,n−k−`(t|t1×`;x1×`) f st(t1, tx1) f st(t2, tx2) · · · f st(t`, tx`) (23)

4. NUMERICAL RESULTS
4.1 Experimental Setup

In this section, we present results for the lifetime reliability of
manycore systems with different redundancy schemes and various
workloads. Two widely-used non-exponential lifetime distributions
are assumed in the experiments: Weibull and Linear Failure Rate,
whose reliability functions can be written as R (t)= e−( t

θ )β
and R (t)=

e−a·( t
θ )−b·( t

θ )2
, respectively. θ is the scale parameter, and they are dif-

ferent in processing state (θp) and wait state (θw). Typically they are
in unit of years or hours. Clearly, θp < θw.

The property of the Weibull distribution, whose failure rate func-
tion h(t) = β

θ · ( t
θ )β−1, highly depends on its shape parameter β.

When β = 1, a Weibull distribution reduces to an exponential one,
i.e., the failure rate is constant. For β > 1, it has increasing failure
rate. For 0 < β < 1, the failure rate is decreasing with respect to
time. We set β = 4 in our experiment. Linear failure rate distribution
has hazard function h(t) = a

θ + 2b
θ2 · t, where a,b ≥ 0. When b = 0,

it reduces to an exponential distribution; when a = 0, it becomes
a Rayleigh distribution. Different from Weibull distribution, linear
failure rate distribution may have non-zero failure rate at t = 0. We
set a = 0.03, b = 0.15 in our experiments.

Also, we set the number of embedded cores in the manycore sys-
tem to be (32 + m). Therefore, if it is configured as a gracefully
degrading system, there are initially (32 + m) active cores; while if
standby redundancy configuration is used, it consists of 32 active
cores and m spare cores at time zero.

4.2 Experimental Results and Discussion
First of all, we discuss an issue that attracts the most attention:

how much benefit can be expected from adding core-level redun-
dancy into a manycore system? As shown in Table 1, if we assume
an exponential lifetime distribution, the sojourn time only depends
on the number of active cores in the system, independent of aging
effect. We therefore observe great lifetime enhancement (around m
times extension), as shown in the last column of Table 1, where we
set θw = θp = 7. Apparently, this result does not conforms to our
common sense. In practice, IC products experience increasing fail-
ure rates. Therefore, if we use Weibull or linear failure rate distribu-
tion to approximate such wearout effect, we are able to achieve more
reasonable results.

Fig. 3 shows the lifetime enhancement achieved by core-level re-
dundancy with Weibull and Linear failure distributions. The larger m
is, the longer lifetime of the manycore system at a larger area over-
head. With the increase of m, the lifetime improvement gradually
slows down. For example, see the curve for the θp = 3, θw = 25 case
in Fig. 3(b). The addition of first redundant core results in 60.8%
lifetime extension; those of the second, third, and fourth one lead to
45.2%, 42.2%, 23.3% extension, respectively. Consequently, design-
ers need to set m with an appropriate value to tradeoff area overhead
with lifetime extension, rather than set m as large as possible under
the area overhead constraints.

When m is fixed, from Fig. 3, we can observe that the lifetime
enhancement also depends on the scale parameters (i.e., θp and θw)

in the reliability functions. There are two extreme cases for the re-
lationship between these two parameters. When θp = θw, there is
no difference between wait state and processing state in terms of re-
liability function. Essentially, this case is the so-called hot standby
scheme. Another extreme case is θw → ∞, which means an embed-
ded core in wait state is essentially a cold standby component and
cannot fail. In other cases (e.g., θp = 3 and θw = 10), embedded
cores in wait state serve as the warm standbys. Given the same θp,
since a core’s accumulated time in either processing or wait state is
independent of scale parameters, it is reasonable to expect that the
lifetime increases as θw increases.

A closer observation for both redundant schemes is shown in Table
2 and Table 3. As an example, we set θp = 3, θw = 10, and λ

µ = 10.
Comparing Due to the increasing failure rate, the manycore system
contains no faulty cores in most of its lifetime, especially for systems
experiencing more severe wearout effects. For example, as shown in
Line 7 of Table 2, the sojourn time of a gracefully degrading system
with 4 redundant cores in 0-failure state is 2.2452 years, while the
expected value of its whole lifetime is 3.2864 years. In such case,
one core’s failure may imply the entire system is old and we cannot
expect much residual useful lifetime.

Next, we show the impact of workload, namely λ
µ , on the lifetime

reliability, as depicted in Fig. 4. We set θp = 3; results are presented
for four different cases. When the workload increases, the system’s
lifetime significantly decreases (e.g., see the curves for θw = 10,
Weibull distribution case). But the scale of the decrease of lifetime
is smaller than that of the increase of workload. We attribute this
phenomenon to the wearout effects of warm standbys. Nevertheless,
the workload has significant influence on the lifetime reliability of
manycore systems and should be paid much attention by designers.

Table 4 compares the manycore system’s lifetime reliability in
gracefully degrading scheme and the one in standby redundant scheme.
We set θp = 3 and λ

µ = 20. It can be observed that, the difference be-
tween these two schemes highly depends on the core failure function
in wait state. Most prior work based on the hot standby assump-
tion (e.g., [2]) claim that the standby redundant system has longer
lifetime but worse performance when compared with the gracefully
degrading system. When we assume the embedded cores in wait
state have the same failure functions as that in processing state (i.e.,
hot standby), our model leads to the same conclusion. However, if
we consider the realistic warm standby situation, the difference is
smaller than that based on the hot standby assumption (see Columns
5-8). Moreover, when the aging effect in wait state is much slower
than that in processing state, the lifetime of the standby redundant
system may be even shorter than that of the gracefully degrading
system (e.g., the eighth column). An extreme case is when it is as-
sumed to be cold standby, the gracefully degrading system is better
(the last column). In this sense, a reasonable assumption is important
because it is able to prevent designers from misleading conclusions.
In addition, this difference is also dependent on m. It is very small
when m is small, and it becomes slightly larger with the increase
of m. Both Weibull and linear failure rate distributions follows the
above observations.



m Redundancy
Scheme

Sojourn Time (years)
MT T F sys,de

0-Failure State 1-Failure State 2-Failure State 3-Failure State 4-Failure State
0 — 0.2188 — — — — 0.2188

1 Degrading 0.2121 0.2188 — — — 0.4309
Standby 0.2188 0.2188 — — — 0.4376

2 Degrading 0.2059 0.2121 0.2188 — — 0.6368
Standby 0.2188 0.2188 0.2188 — — 0.6564

3 Degrading 0.2000 0.2059 0.2121 0.2188 — 0.8368
Standby 0.2188 0.2188 0.2188 0.2188 — 0.8752

4 Degrading 0.1944 0.2000 0.2059 0.2121 0.2188 1.0312
Standby 0.2188 0.2188 0.2188 0.2188 0.2188 1.0940

Table 1: Lifetime Reliability of Manycore System with Constant Failure Rate.
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(a) Weibull Distribution
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(b) Linear Failure Rate Distribution

Figure 3: Lifetime Enhancement of Manycore System.

Distribution m Sojourn Time (years)
MT T F sys,de

0-Failure State 1-Failure State 2-Failure State 3-Failure State 4-Failure State

Weibull

0 2.2039 — — — — 2.2039
1 2.2153 0.5573 — — — 2.7726
2 2.2260 0.5600 0.3055 — — 3.0915
3 2.2359 0.5626 0.3142 0.1040 — 3.2167
4 2.2452 0.5649 0.2988 0.0955 0.0820 3.2864

Linear
Failure
Rate

0 1.8572 — — — — 1.8572
1 1.8463 1.1367 — — — 2.9830
2 1.8354 1.1325 0.8926 — — 3.8605
3 1.8243 1.1282 0.8798 0.6941 — 4.5264
4 1.8133 1.1237 0.8762 0.7055 0.6269 5.1456

Table 2: Lifetime Reliability for Non-Exponential Lifetime Distribution (Gracefully Degrading System).

Distribution m Sojourn Time (years)
MT T F sys,de

0-Failure State 1-Failure State 2-Failure State 3-Failure State 4-Failure State

Weibull

0 2.2039 — — — — 2.2039
1 2.2039 0.5617 — — — 2.7656
2 2.2039 0.5617 0.3156 — — 3.0812
3 2.2039 0.5617 0.3156 0.0966 — 3.1778
4 2.2039 0.5617 0.3156 0.0966 0.0578 3.2356

Linear
Failure
Rate

0 1.8572 — — — — 1.8572
1 1.8572 1.1419 — — — 2.9991
2 1.8572 1.1419 0.9110 — — 3.9101
3 1.8572 1.1419 0.9110 0.6879 — 4.5980
4 1.8572 1.1419 0.9110 0.6879 0.6148 5.2128

Table 3: Lifetime Reliability for Non-Exponential Lifetime Distribution (Standby Redundant System).

Distribution m Redundancy
Scheme

MT T F sys

Hot
Standby

Warm Standby Cold
Standbyθw = 5 θw = 10 θw = 15 θw = 25

Weibull
2 Degrading 1.5039 1.8232 2.1497 2.2930 2.4265 2.6258

Standby 1.5314 1.8227 2.1133 2.2488 2.3484 2.5309

4 Degrading 1.5046 1.8521 2.2305 2.4432 2.5771 2.8376
Standby 1.5577 1.8545 2.1715 2.3103 2.4266 2.6261

Linear
Failure
Rate

2 Degrading 1.9115 2.3197 2.7070 2.8697 3.0105 3.2424
Standby 1.9608 2.3314 2.7330 2.8851 3.0091 3.2146

4 Degrading 2.1348 2.7122 3.3642 3.6529 3.9385 4.3590
Standby 2.3008 2.7899 3.4307 3.6015 3.8588 4.1881

Table 4: Comparison Between Gracefully Degrading System and Standby Redundant System.
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Figure 4: The Impact of Workload.

5. CONCLUSION AND FUTURE WORK
State-of-the-art technology enables the integration of a great amount

of embedded cores in a single computing system. The lifetime reli-
ability of such large circuit is a major concern because IC failure
mechanisms have an increasingly adverse impact with technology
scaling. In this paper, we propose a comprehensive analytical model
to estimate the lifetime reliability of manycore systems, which is able
to facilitate designers to make a better decision at the architecture
level.

The model presented in this paper could be extended to take some
other aspects into account. For example, in this model we assume the
wearout of active cores can be in two discrete states with different re-
liability functions. In practice, as the wearout effects highly depend
on temperature and voltage, cores in the same active state can ex-
perience different reliability functions. The proposed model can be
extended to deal with continuous states by expressing the scale pa-
rameter as a function of temperature and voltage. Also, the assump-
tion that the failure rate in spare state is negligible can be abandoned.

Appendix A. Proof of Theorem 2
Any core can start with either wait state or processing state at time zero.
Suppose a core is in wait state from 0 to T1, and then converts into the pro-
cessing state and stays for (T2−T1), and so on. Assuming it is surviving at t,
we obtain a a subdivision of the time [0, t]: 0 = T0 < T1 < T2 < · · ·< Td = t.
We know the initial reliability of this core is given by Rde(0) = R (0). By the
definition of reliability function in the wait state, the reliability of this core
in the first interval [T0,T1) is

Rde(τ) = R (
θ

θw
· (τ−T0)), T0 ≤ τ < T1 (A-1)

At the end of this interval

Rde(T−
1 ) = R (

θ
θw
· (T1−T0)) (A-2)

Since this core follows the reliability function in the processing state in
the second interval [T1,T2), we have

Rde(τ) = R (
θ
θp
· (c+ τ−T1)), T1 ≤ τ < T2 (A-3)

where, c reflects the aging effect of the first interval.
At the beginning of this interval

Rde(T +
1 ) = R (

θ
θp
· c) (A-4)

By its continuity, the reliability function must satisfy Rde(T−
1 ) = Rde(T +

1 ).
Combining Equation (A-2) and (A-4) yields c = θp

θw
· (T1−T0). Therefore

Rde(τ) = R (
θ
θp
· (τ−T1)+

θ
θw
· (T1−T0)), T1 ≤ τ < T2 (A-5)

After finishing this procedure, we obtain the reliability of a single core at
time t

Rde(t) = R
( θ

θp
·

d

∑
i=1

i is even

(Ti−Ti−1)+
θ

θw
·

d

∑
i=1

i is odd

(Ti−Ti−1)
)

(A-6)

where,
d
∑
i=1

i is even

(Ti−Ti−1) and
d
∑
i=1

i is odd

(Ti−Ti−1) are the accumulated time in

the processing and wait state respectively. Apparently, the conclusion does
not depend on the starting state of this core. Therefore, Theorem 2 holds.
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