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Abstract—Deep neural networks (DNNs) have been proven to achieve
unprecedented success on modern artificial intelligence (AI) tasks,
which have also greatly motivated the rapid developments of novel
DNN models and hardware accelerators. Many challenges still remain
towards the design of power efficient DNN accelerator due to the
intrinsically intensive data computation and transmission in DNN
algorithms. However, most existing efforts in the domain have taken
latency as the sole optimization objective, which may often result
in sub-optimality in power consumption. In this paper, we propose
a framework to optimize the power efficiency of DNN dataflow on
FPGA while maximally minimizing the impact on latency. We first
propose power and latency models that are built upon different dataflow
configurations. Then a power-driven dataflow formulation is proposed,
which enables a hierarchical exploration strategy on the dataflow
configurations, leading to efficient power consumption at limited latency
loss. Experimental results have demonstrated the effectiveness of our
proposed models and exploration strategies, where power improvement
has shown up to 31% with latency degradation of no worse than 6.5%.

Index Terms—FPGA, Deep Neural Network, Dataflow Optimization,
Power.

I. INTRODUCTION

Deep Neural Networks (DNNs) have been proven to achieve
unprecedented success on a wide range of AI relevant applications,
such as image classification, object detection, and design for manu-
facturing [1]–[3]. FPGA has been chosen as a promising hardware
platform to deploy DNN model due to the reconfigurability [4],
[5]. When deploying a DNN application onto an FPGA board,
in an end-to-end automation flow, two pivotal steps are involved:
architectural design and dataflow optimization. For architectural
design, a typical DNN accelerator architecture is shown in Fig. 1.
The processing unit (PU) is responsible for the computations, which
is composed of several processing engine (PE) arrays. A multiplier-
accumulator (MAC) can be implemented by various processing
engines (PEs), such as arithmetic multiplication array or systolic
array [6]–[8]. For dataflow optimization, an analytical model, per
the given architecture, is often developed to capture and measure
various design configurations and their attainable performances by
metrics like latency, power consumption, data transfer size, and on-
chip resource consumption, etc. [6], [8]–[13]. The optimal design
configuration is iterated and achieved through above explorations
[6], [8], [11], [12].

For fast prototyping, the deployment of DNN onto FPGA is
facilitated by high-level synthesis (HLS) tools which emancipate de-
signers from the complicated hardware description languages (like
Verilog or VHDL) crafting. In addition, HLS makes it possible for
efficient DNN design modeling and configurations [14], unlocking
rapid design space explorations for high-performance designs [15].

Previous literatures on FPGA based DNN accelerators have pri-
marily focused solely on the latency reduction [8], [10], [11], [13].
In latency-driven designs, hardware resources are activated without
restrictions for best performances. Apparently, such latency-driven
designs often end up with sub-optimality in power consumption and
are excluded from applications demanding low-power.
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Fig. 1 DNN FPGA accelerator architecture.

In the traditional ASIC or FPGA hardware design domain,
power-driven design methodologies have been well studied. Chen
et al. proposed a low-power HLS methodology for general ap-
plication FPGA designs without significant loss of performance
[16]. Besides, optimization on linear algebra core was presented to
achieve high-performance while reducing power consumption [17].
Nevertheless, the power efficiency explorations and optimizations
on DNN deployed onto FPGA have yet been sufficiently studied.

In this paper, we propose a framework to optimize the power
efficiency of DNN dataflow on FPGA while minimizing the impact
of latency. We first propose power and latency models that are
built upon different dataflow configurations. Then a power-driven
dataflow formulation is proposed, which enables a hierarchical
exploration strategy on the dataflow configurations, leading to
globally optimal power efficiency with insignificant latency loss.

We also deploy two DNN models on FPGA to verify the
effectiveness of our proposed framework. In this architecture,
neighboring layers are fused to reduce the volume of data trans-
ferred between on-chip buffer and off-chip memory. Systolic array
is adopted as the computation core to balance data access and
computation. Overall experimental results have demonstrated the
power improvement of up to 31% with latency degradation of no
worse than 6.5%.

The rest of our paper is organized as follows. Section II provides
preliminaries including concrete analysis from DNN dataflow to
systolic array and fused layer. Section III introduces our power
formulation. Section IV presents a dataflow configuration esti-
mation and exploration process using our proposed power-driven
formulation. Section V demonstrates the experiments and results.
Finally, we conclude this paper and provide further discussions in
Section VI.

II. PRELIMINARIES

A typical DNN model contains several operational layers, in-
cluding convolution, pooling and ReLU, where convolutional layers
dominate both storage and computation in current popular DNN
structures [1], [18]. The limited on-chip memory resources would
therefore cause frequent data transfer between on-chip buffer and
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Fig. 2 Systolic array architecture and processing engine structure.
Data are fed into array from the top and the left.

off-chip memory. In addition, pipelining and parallelism, depending
on the size of on-chip buffer and the processing unit (PU) allocated
by on-chip logic resources (LUTs) and DSPs, are often applied on
convolutional layers. Convolutional layers therefore have been the
focal of success in design and optimization of hardware accelera-
tors.

Recall in Fig. 1, we show a typical DNN FPGA accelerator
architecture. The accelerator is composed of off-chip memory
(usually by DRAM) and an FPGA accelerator chip. On the aspect
of hierarchical memory, it can be decomposed into three parts:
off-chip DRAM, on-chip global buffer (BRAM) and local buffer
(register). Accessing unit data at different levels implies different
energy consumption [19]. We load data from off-chip DRAMs to
global buffers. Then the data are passed from global buffers to local
buffers (in PE array) and do the computations. Afterwards, outputs
are stored to DRAMs.

Systolic array is used as the processing engine array, as shown
in Fig. 2, which becomes more and more popular [8], [20], [21] in
DNN FPGA and ASIC designs recently. Each PE in systolic array
connects to its neighbors while the boundary PEs also connects to
the global buffers (BRAM). In each cycle, the input feature and
kernel weight are passed to its neighbors which are then stored
in local buffers in PE simultaneously. The boundary PEs receive
data passed down from the global buffers. The input feature and
kernel weight are multiplied first, then passed through accumulation
operation with partial sum. Note that for computations in each PE,
the input features are fed from the left to right, whereas the weights
are fed from the top to bottom. By contrast, results of all PEs
flow from top to bottom, into global buffers. Obviously, the size of
systolic array also impacts the power consumption when passing
data and conducting computations.

The design of DNN Dataflow refers to the selection procedure
of configurations on data storage and data access pattern on FPGA.
Typical techniques include loop tiling, unrolling, data reuse and
layer fusion. We detail each of them as below.

Loop tiling partitions a loop into smaller blocks. For example,
Fig. 3(a) is a 6-level for-loops of a convolutional layer. The
outermost loop with step size 1 is decomposed into two sub-loops
and the size of inner sub-loop is OC, as shown in Fig. 3(b). The
decomposed sub-loops are responsible for transferring data between
off-chip memory and on-chip global buffer. The sub-loop boundary
is called the loop tiling factor, which reflects the size of global
buffers. Data loaded in the outer loop flow into the local buffers (in
computation engines) in the inner loops.

To facilitate parallelism, we unroll the convolutional group func-

tion as shown in Fig. 3(c). Originally, only a single convolution
function is called for IC times. During computations, different
data segments flow into the same PU sequentially. Once we set
the unrolling factor as IC, the original loop will be replaced with
IC parallel convolutional functions. In this case, these data will
be passed into IC different PUs in parallel. Loop unrolling also
relies on loop tiling factors because we always unroll the sub-loops
after tiling the loop. Traditional works usually unroll and parallel
as many tasks as possible. This kind of choices imply challenges
on power since lots of on-chip logics are instantiated and activated.
In order to improve power performance, the unrolling and tiling
factors need to be carefully configured.

Data reuse strategy is also beneficial. Fig. 3(d) is an example
of the output data reuse strategy. The output data are loaded from
DRAM to BRAM once and reused in the inner loop several times.
The blue line in Fig. 3(d) shows the reuse situation. Similarly, if we
reuse inputs, we only need to load inputs once. Different strategies
may affect the total length of dataflow, hence the communication
power consumption.

A naive DNN accelerator design runs layers one by one on
FPGA. Due to the sequential nature, the output features of the
previous layer have to be first stored in off-chip memory before
starting the next layer computation. The drawback is obvious that
we have to transfer the same data between FPGA and DRAM
repeatedly. But for layer fusion, once we get parts of the output
data of the first layer, they will be passed to compute engines of
the second layer as inputs and start the computations immediately.
We can fuse convolution layers with the neighboring pooling layers
or ReLU layers [21], [22]. A more effective strategy is to fuse
several neighboring convolution layers together with pooling and
ReLU layers, which further reduces the size of data transfer [23].
Some extra data processing is necessary to handle the overlapping
data resulted from layer fusion, at the cost of more memory
consumption. Using layer fusion limits the choice of data reusing
strategy. If we reuse input features of the second layer, only when
we finish all the computations of one block in the first layer, can
we start the computations of the corresponding block in the second
layer. In this process, computations in the second layer are blocked,
which is not helpful for the system pipelining. Typically, as shown
in Fig. 4(b), we reuse outputs in the first layer, which means we
must reuse inputs in the second layer.

III. POWER MINIMIZATION

In this section, we discuss the details of our proposed power
optimization framework. As energy is defined as the integral of
power over the latency of an underline task, after introducing param-
eters and notations, we will first derive energy and latency models
respectively. We will further show the overall power minimization
formulation to be explored and optimized.

A. Notations

Denote the number of layers in a DNN model as Z. For a
convolutional layer i, the number of input channels is Ni, number
of output channels is Mi, kernel size is Ki, kernel stride is Si,
feature height is Hi, and feature width is Wi. Here we assume
the output feature size is equal to the input feature size, for the
expression simplicity.

Generally, we summarize the parameters in TABLE I. Some
have been used in Fig. 3(b) and Fig. 3(c). We can decompose
the input convolutional channels into blocks, with ICi channels
in each block. Output channels are decomposed into blocks and
each has OCi output channels. Features in each channel are also
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for WR��in range(0, OC):

(b)
conv_group(BIN[IC],BWT[OC][IC],BOUT[OC]):

for L2 in range(0, IC): 

for L1 in range(0, OC): 

convolution(BINL2,BWTL1,L2,BOUTL1)

conv_group(BIN[IC],BWT[OC][IC],BOUT[OC]):

for L1 in range(0, OC):

convolution(BIN0,BWTL1,0,BOUTL1)

convolution(BIN1,BWTL1,1,BOUTL1)

convolution(BINIC-1,BWTL1,IC-1,BOUTL1)
…

(c)

for to in range(0, M, OC):

for row in range(0, H, PH):

for col in range(0, W, PW):

for ti in range(0, N, IC):

load_output(BOUT[OC][PH][PW],DOUT)

load_input(BIN[IC][PH][PW],DIN)

load_weight(BWT[OC][IC][K][K],DWT)
conv_group(BIN[IC],BWT[OC][IC],

BOUT[OC])
store_output(BOUT[OC][PH][PW],DOUT)

(d)

Fig. 3 Pseudo-code of dataflow optimization. (a) A 6-loops convolutional layer. (b) Loop
Tiling. (c) Loop Unrolling. (d) Output Data Reuse.
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for to1 in range(0, M1, OC1):

for row1 in range(0, H1, PH1):

for col1 in range(0, W1, PW1): 

for ti1 in range(0, N1, IC1):

load_input(BIN1[IC1][PH1][PW1],DIN1)

load_weight(BWT1[OC1][IC1][K1][K1],DWT1)

systolic_group_1(BIN1[IC1],BWT1[OC1][IC1],
BOUT1[OC1],U1)

prepare_for_layer2(BOUT1[OC1][PH1][PW1],
extra_buffer)

for to2 in range(0, M2, OC2):

load_weight(BWT2[OC2][OC1][K2][K2],DWT2)

load_output(BOUT2[OC2][PH2][PW2],DOUT2)

systolic_group_2(BOUT1[OC1],BWT2[OC2][OC1],
BOUT2[OC2],U2)

store_output(BOUT2[OC2][PH2][PW2],DOUT2)

(b)

Fig. 4 Fusing two convolutional layers: (a) hard-
ware architecture using systolic array; (b) pseudo-
codes.

TABLE I List of Parameters

Name Definition

OCi # of output channels per feature block in fused layer i
ICi # of input channels per feature block in fused layer i
PHi Feature height of feature block in fused layer i
PWi Feature width of feature block in fused layer i
Thi row # of PEs in one systolic array in fused layer i
Twi column # of PEs in one systolic array in fused layer i
Ui # of instantiated systolic arrays in fused layer i

decomposed into smaller blocks, with height PHi and width PWi.
The corresponding block stride is PSi, which can be determined
according to the block size and kernel stride. The pseudo-code of
fusing two convolutional layers using systolic array is in Fig. 4(b).
The output channels of the first layer are the input channels of the
second layer. Therefore, we have M1 = N2 and OC1 = IC2.
Also, the number of input blocks of the second layer is equal to
the number of blocks in the first layer.

Data used in systolic array should be in the matrix format while
they are often stored as tensors in DRAM. The process of trans-
forming data from the tensors to matrices is conducted on board to
avoid unnecessarily repeated DRAM access and extra power load.
Denote the height and width of systolic array for fused layer i as
Thi and width Twi, the number of instantiated systolic arrays in
a processing unit as Ui. For any feature tensors, they should be
flattened as matrices, with height (PHi−Ki

PSi
+1)× (PWi−Ki

PSi
+1).

For weights, they are flattened as matrices with width OCi. The
depth of the transformed matrix is Di, as shown in Equation (1)
[24].

Di = K2
i × ICi. (1)

B. Modeling the Energy

Without loss of generality, the total energy can be composed of
two parts, data transfer and computation.

As mentioned before, there are three-levels of hierarchical mem-
ory in DNN accelerator system. We measure the data transfer energy
by calculating the data size transferring between all these levels.
The energy of accessing one unit data at each level is regarded
as a constant. Compared with on-chip buffers, accessing data from
DRAM consumes much more energy. In Fig. 4(b), the load and
store functions read and store data between DRAM and FPGA.
As shown in Fig. 4(a), both two layers need to load weights from
off-chip memory to on-chip buffer. The first layer needs to load
input features from DRAM. Meanwhile, we transfer output features,
or partial sums of the second layer between off-chip memory and
on-chip buffer several times since we reuse input features here.
Other sources of energy consumptions include extra buffers used to
prepare data and handle data overlaps for the second fused layer, as
well as passing data between global buffer and systolic array, etc.

For simplicity, we group the data transfer energy in systolic
array as part of the computation energy due to the computations
within systolic array. The data transfer energy of layer i can be
simplified as in Equation (2). Here {α1, α2, . . . , α7} are model-
specific constants that can be predetermined once the DNN model
is given. For example, if reusing outputs, α1 is the multiplication
of feature size and channel number, and (α1 / OCi) refers to the
input data size we load. Similarly, (α7 / ICi) refers to how many
output data we load, if we reuse inputs. (α2 / PHi×PWi) stands
for weights energy. In addition, we have four terms (α5 / PHi),
(α6 / PWi), α3PHi and α4PWi for fused data preparations.

EDi =
α1

OCi
+

α2

PHi × PWi
+ α3PHi + α4PWi

+
α5

PHi
+

α6

PWi
+

α7

ICi
.

(2)



As to the computation energy, naively, we may assume the
total computation energy is a constant. This is because from
the perspective of DNN model description, the total number of
computations (accumulation and multiplication) are definite. How-
ever, for hardware deployments, the computation energy is tightly
proportional to the sizes of computation engines. As mentioned
earlier, the size of computation engine (or systolic array) is roughly
a product of the height of input feature block times the width of
weight block. Input feature block with size (ICi×PHi×PWi) is
decomposed into (d(PHi−Ki

PSi
+1)× (PWi−Ki

PSi
+1) / Thie) sub-

matrices. Each has size (Di×Thi), where Di is the depth as shown
in Equation (1). Similarly, for weights with size (OCi×K2

i ×ICi),
they are decomposed into (dOCi / Twie) sub-matrices. Each has
size (Di×Twi). The ceiling operations here are to tackle with the
boundary situations.

In each computation cycle, all the (Thi×Twi) PEs are in active
status and consume energy. For each pair of inputs and weights sub-
matrices, (Di + Thi + Twi − 2) cycles are needed to finish the
computations. Energy consumed to finish the computation of one
feature block and one corresponding weight block using systolic
array is denoted as eb, in Equation (3), where ec is the energy
consumed by each PE in each cycle, including inside data transfer
energy.

eb =

⌈
(PHi−Ki

PSi
+ 1)× (PWi−Ki

PSi
+ 1)

Thi

⌉
×
⌈
OCi

Twi

⌉
×

(Thi × Twi)× (Di + Thi + Twi − 2)× ec.
(3)

The total energy consumed by layer i is the summation of all blocks,
as in Equation (4).

ECi =dNi/ICie × dHi/PHie × dWi/PWie
× dMi/OCie × eb.

(4)

Here we assume that the energy consumption have nothing to do
with the number of systolic arrays (parallelism), i.e. Ui. The reason
is that no matter how many systolic arrays we have instantiated,
we only call it (d(PHi−Ki

PSi
+ 1) × (PWi−Ki

PSi
+ 1) / Thie ×

dOCi / Twie) times in computations. By contrast, the size of each
individual systolic array is proportional to energy consumption.

The overall model energy consumption Etotal is the summation
of computation and data transfer energy of all layers, as shown in
Equation (5).

Etotal =

Z∑
i=1

(EDi + ECi). (5)

C. Modeling the Latency

Intuitively, the latency consists of computation latency and data
transfer latency. The characteristic of using systolic array is that, in
each PE, we pass data to neighboring PEs per cycle and finish the
computation simultaneously. Therefore, part of data transfer latency
has overlapped with the computation latency. Total data transfer
latency is determined by the size of data we transfer. Although some
transfer overlaps could occur per engineering implementations, we
can still sum up all the data to be transferred to estimate the latency.
The on-chip data transfer latency should be divided by the degree
of system parallelism since the data are passed into the unrolled
computation engines simultaneously.

Except for the latency regarding to systolic arrays, the data trans-
fer latency in layer i can be formulated as in Equation (6), where
{β1, β2, . . . , β7} are model-specific constants. The explanations to

these terms are similar to Equation (2). For example, (β1 / OCi)
is for input data transfer latency.

Here we highlight the latency of passing data into systolic arrays.
For input feature block with size (ICi×PHi×PWi), and weight
block with size (OCi × ICi ×K2

i ), we have computation latency
in Equation (7).

LDi =
β1
OCi

+
β2

PHi × PWi
+ β3PHi + β4PWi

+
β5
PHi

+
β6
PWi

+
β7
ICi

.
(6)

lc =

⌈
(PHi−Ki

PSi
+ 1)× (PWi−Ki

PSi
+ 1)

Thi

⌉
×
⌈
OCi

Twi

⌉
× (Di + Thi + Twi − 2),

(7)

where Di is the depth of transformed matrix as in Equation (1). The
total latency consumed by layer i is the summation of all blocks,
as in Equation (8).

LCi = ddNi / ICie × dHi / PHie / Uie×
dWi / PWie × dMi / OCie × lc.

(8)

Since we have Ui instantiated parallel systolic arrays in total for
fused layer i, the overall latency should be divided by Ui. The
ceiling operations here are to tackle with the boundary situations,
too.

The total model latency Ltotal can be formulated as Equation (9),
which is summation of latencies of all layers.

Ltotal =

Z∑
i=1

(LDi + LCi). (9)

D. Power Minimization Formulation

The overall optimization objective is to minimize the ratio of
energy consumption over system latency, constrained by resources,
as shown in Formula (10). This formulation is also constrained
by latency upper bound Lupper since we cannot allow latency to
be infinitely large. Buffertotal and DSPtotal represent the total
buffers and DSPs available on FPGA. Bufferused and DSPused

denote the memory and computation resources used.

min
Etotal

Ltotal
,

s.t. Bufferused ≤ Buffertotal,
DSPused ≤ DSPtotal,

Ltotal ≤ Lupper.

(10)

Equation (9) and Equation (5) are both the summation of all
layers. However, for a given DNN model, the resources used on
chip only need to handle one fused layer group, i.e., we run the
fused groups one by one sequentially.

Let Bufferiglobal represent the size of global buffers used by
fused layer i, which includes the following terms. Denote the unit
size of buffers used to store these data as CGLB , which is deter-
mined by data precision. The size of input features buffers needed
by one block in layer i is ICi×PHi×PWi×CGLB . Similarly, the
sizes of output features and weights buffers are OCi × PHi+1 ×
PWi+1×CGLB and OCi×ICi×K2

i ×CGLB respectively. For the
second fused layer, as shown in Fig. 4(a), extra buffers are needed
to store the overlapping features. The horizontal overlapping data
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Fig. 5 The proposed exploration flow, where the input is DNN
model, the output is final dataflow configuration.

need buffers with size ICi+1 ×Wi+1 × PSi+1 × CGLB , and the
vertical data have size ICi+1 × PHi+1 × PSi+1 × CGLB .

The local buffers Bufferilocal of fused layer i are needed in
each PE to store the intermediate data. Therefore, local buffer size
is equal to Ui × Thi × Twi × CPE , where CPE is a constant
representing size of local buffers per PE.

The number of DSPs used in each PE in systolic array can be
assumed as a constant, denoted as CDSP , which is also determined
by data precision. The total number of DSPs used by one layer is
equal to Ui × Thi × Twi × CDSP .

For a fused layer group with L layers, we have Bufferused and
DSPused in Equations (11) and (12).

Bufferused =

L∑
i=1

(
Bufferilocal +Bufferiglobal

)
, (11)

DSPused =

L∑
i=1

(Ui × Thi × Twi × CDSP ) . (12)

We use the proposed model as the metric of measuring power
performance of dataflow configurations. Any configurations violat-
ing the constraints will be excluded.

IV. DATAFLOW EXPLORATION

In this section, we discuss how to explore power optimal dataflow
configurations based on our proposed formulation. The Formula
(10) is non-convex and non-linear. Besides, all the parameters
should be integers according to their hardware meanings. It is nearly
impossible to enumerate all configurations in the search space
and run synthesis for them all. We therefore propose hierarchical
exploration which can be decomposed into two steps: model-based
exploration and deployment-based exploration. The overall solu-
tion exploration flow is in Fig. 5.

In model-based exploration, we estimate the power performance
of dataflow configurations using our power model. For a given
DNN model, firstly, we narrow the search space by adding more
practical and empirical constraints. This step is reasonable since
some specific domain knowledge cannot be expressed explicitly
in the objective function. For example, the on-chip buffer size
is usually the power of two. Therefore, the search space for
{OCi, PHi, PWi, ICi} is narrowed at a large scale. Further, to
help solve the latency constraints in Equation (10), we can constrain
the parameters in {Ui, Thi, Twi} to be greater than an acceptable
lower bound. Layer fusion strategy is highly related to the DNN
model structures. The fused layers should share similar structures
due to hardware regularity especially in FPGA. For example, for
VGG16, we split the model into several groups at pooling layers.
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Fig. 6 (a) If the number of BRAMs is not fixed, as the number
increases, more power is consumed. By fixing the BRAM but read
in same amounts of data, the power consumption is stable; (b) An
example of deploying 2 × 2 convolutions on PYNQ-Z1. As the
number of computation engines increases, the power increases. With
more BRAMs used, the power performance also decreases.

Then all layers in one group are fused, including convolutional
layers, ReLU layers, and pooling layers. For AlexNet, convolutional
layers sharing 3 × 3 kernels are fused. For layers with 11 × 11
and 5 × 5 kernels, they are not fused since the different kernel
sizes may lead to unstructured hardware designs which consume
lots of logic resources to do the logical controls. For the layers
which are not fused, we can follow the empirical ideas as proposed
in [25]. After narrowing the exploration space with such, all
possible legal configurations can be enumerated. Then we check the
constraints and discard the configurations violating any constraint.
A set of candidates with lower power values out of the remaining
configurations will survive.

In deployment-based exploration, we further verify the config-
urations selected in previous step, removing those incompatible to
FPGA hardware platform. Thus an even smaller set of candidates
are generated after front-end synthesis. Eventually, those candidates
passing all above pruning procedures are fed into the next step to
run the back-end synthesis to get the actual power-performance
metrics. The final optimal configurations is the one with the best
back-end power performance.

V. EXPERIMENTAL RESULTS

All experiments are conducted on Xilinx Zynq UltraScale+ MP-
SoC ZCU102 or PYNQ Z1 [26]. The design and deployment flow
are via Xilinx Vivado HLS 2018.2. Some fundamental convolution
examples, together with AlexNet and VGG16 are evaluated. The
Lupper is set as 108% of the baseline latency for AlexNet and
VGG16.

Firstly, the influences of instantiating different numbers of
BRAMs (global buffers) and computation engines are shown in
Fig. 6. As in Fig. 6(a), we only load and store data between
DRAM and FPGA, with different buffer sizes and data sizes.
The x-axis represents the number of BRAMs. If we enlarge the
BRAM capacity, i.e. instantiate more BRAMs, the system power
will increase significantly. If the BRAM size is fixed and we load
in the same data with the non-fixed version, data transfer wouldn’t
have negative impacts on power performance. Another example in
Fig. 6(b) shows the situation of finishing a 2× 2 convolution task
at various parallel levels. The convolution task is decomposed into
several smaller parallel sub-tasks. One parallel sub-task is assigned
with one computation engine. The difficulties of partitioning the
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Fig. 7 Model fidelity analysis: (a) AlexNet; (b) VGG16.
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Fig. 8 The results of a set of configurations on: (a) power; (b)
latency.

TABLE II Power Performance and Utilization

DNN Model Power (W ) DSP BRAM FF LUT

AlexNet 4.042 1195 192 82255 126326
VGG16 5.333 1179 618 61034 134706

origin problem into sub-tasks lead to some fluctuations. It is remark-
able that the power consumption trend increases as the number of
computation engines increases. Considering the situations of using
same number of computation engines with different BRAM sizes,
obviously, more BRAMs consume more power. Inspired by this
experiment, it is reasonable to instantiate less BRAMs to save power
without loss of parallelism.

Secondly, two well known DNN models, AlexNet [1] and VGG16
[18] are applied to evaluate the power fidelity of our design flow.
We use the 16-bit fixed-point for feature maps and 8-bit fixed-point
for weights. A set of initial designs are selected randomly to show
the model fidelity, shown in Fig. 7(a) and Fig. 7(b). The x-axis
represents the index. To show the order fidelity, all the results are
normalized to 1. The power performance estimated by our model
have similar orders compared with the back-end synthesis power
results. This experiment has shown a clear proof on high fidelity of
our power model.

Crucially, a reasonable trade-off between power and latency is
also often desired, i.e. improvements on power should come with
only minimal or acceptable latency degradation. The initial designs
in Fig. 7(a) and Fig. 7(b) are used here as the baselines. Some
parameters of these designs are fixed and others are free to vary
in the search space, to get the corresponding model-optimized
configurations. As shown in Fig. 8(a) and Fig. 8(b), the baseline
designs are represented as 1 and the optimized configurations are
represented with ratios to the baselines. Most designs can achieve
more than 10% power benefits with the best even up to 31%. As
to the latency loss, most are less than 2% while only one is about
6.5%. It therefore, with the help of the proposed model, becomes
intriguing and effective to trade small latency for much better power
efficiency.

(a) (b)

Fig. 9 The schematics of our designs: (a) AlexNet; (b) VGG16.

Finally, we show the placement and routing results of VGG16 and
AlexNet in Fig. 8 on ZCU102 to further consolidate our designs.
As shown in Fig. 9, not all hardware resources are used in our
optimized design and routed wires are not very congested. As
a result, power consumption can be reduced. The corresponding
performance and utilization reports are in TABLE II. We consume
similar number of DSPs for computations in two models. The model
structure of VGG16 is more friendly to layer fusion, since the model
can be divided directly at pooling layers. Each group has two or
three convolutional layers and more BRAMs are consumed here.
Compared with VGG16, the model structure of AlexNet is more
complex therefore the layer fusion is limited. That explains why
less BRAMs are consumed for AlexNet.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have proposed a power-driven dataflow opti-
mization flow, which can estimate the dataflow configuration power
and guide the design efficiently. The results show that better power
performance can be obtained at a low cost of latency. There are still
several critical challenges existing in dataflow optimization of DNN
accelerator, and we expand a little bit in the rest of the section.

Design Space Exploration. In Fig. 5, likes most existing ef-
forts [6], [8], [11], [13], although the tremendously large design
space can be effectively reduced by domain knowledge, resource
constraints and empirical rules, and hence combinations of design
parameters can be almost exhaustively enumerated to determine
the optimal solution with the help of simulations [8], [11], the
quality of design space exploration still heavily depends on the
configuration performance measurement model and the time of
simulation. Recently, machine-learning-based design space explo-
ration methodologies have been proposed to achieve good design
parameters of circuits without much more simulations [27]–[29],
where a set of representative design configurations are selected for
simulation so that the predicted performance curve can be accurately
fitted with less simulations. The optimal design configuration can
be therefore well determined by the trained model. We believe the
machine-learning-based design space exploration will be a good
option to fast and effectively design DNN accelerators.

Timing Closure. Some low-power DNN FPGA accelerators
often result in high device utilization, which potentially imposes
difficulty on timing closure [30]. even though systolic array with
the local communication and regular layout have been used as the
computation core for the best performance. Recently, many arts
were proposed to generate better quality of result by tuning design
parameters in logic synthesis and physical synthesis [31]–[33]. In
addition, FPGA placement and routing methods were customized
for different scenarios [34]–[36]. However, performance benefits



by either tuning these back-end design parameters or customizing
FPGA placement and routing methods are more limited. Note that
compared to RTL language, HLS is easier to revise. If revising HLS
code, tuning back-end design parameters and customizing FPGA
placement/routing methods are considered in a uniform framework,
it would bring more benefits for timing closure.
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