DESIGN, AUTOMATION & TEST IN EUROPE

01 – 05 February 2021 · virtual conference The European Event for Electronic

System Design & Test

Deep Neural Network Hardware Deployment Optimization via Advanced Active Learning

Qi Sun, Chen Bai, Hao Geng, Bei Yu

香港中文大學 The Chinese University of Hong Kong

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへぐ

Background

Hardware deployment of deep neural networks

- General deployment framework.
- Support various hardware platforms and DNN models.
- A DNN model is represented as a graph.
- Layer-wise (node-wise) optimization, to determine the deployment configuration for each layer.
- The final model deployment configuration is the combination of the layers.

Background – Some Definitions

Deployment configuration

All of the deployment settings (*e.g.*, thread binding, tensor decomposition, *etc.*) to be determined are encoded as a feature vector, denoted as x.

GFLOPS

Giga floating operations per second (GFLOPS) measures the number of floating-point operations conducted by the hardware per second.

Latency

Latency computes end-to-end model inference time and intuitively reflects the performance of model deployment.

Objective

Find the optimal x, which has the best deployment performance, from the design space \mathcal{D} .

Background – Traditional active learning optimization

Initialization

Randomly sample some configurations from the design space.

Initialize an evaluation model (e.g., XGBoost).

Iterative optimization

- Iteratively select a configruation according to the evaluation model and searching strategy
- Compile and deploy the configuration.
- Update the evaluation model.
- Stop until convergence.

Background

Current status

- Usually more than millions of candidate configurations in the design space.
- Slow compilation and depolyment processes.

Unsolved problems

- Initialization with underabundant information
- Un-scalability of the optimization process
- Inaccuracy of evaluation functions

Our Solution

Targets

Improve data diversity.

- Improve model scalability.
- Improve model accuracy.

Proposed methods

Batch Transductive Experimental Design

Bootstrap-guided Adaptive Optimization

Initialization – Transductive Experimental Design (TED)

Maximize the intra-set diversity

$$x = \arg \max_{v \in \mathcal{V}} \frac{\|K_v\|^2}{k(v, v) + \mu}$$

- K_v is v's corresponding column in K
- ▶ k(v, v) is v's diagonal entry in K, μ is a coefficient
- Iteratively select the configuration point which has the largest distance to other configurations
- The selected points are the initialization set for the evaluation model

Initialization – Batch TED

Batch method

- Computing distance matrix is very slow, even impossible.
- Sample a batch of sets from the design space and compute the distance matrix for each set.

Initialization – Batch TED

Batch method

- Computing distance matrix is very slow, even impossible.
- Sample a batch of sets from the design space and compute the distance matrix for each set.

Algorithm 2 Batch Transductive Experimental Design – **BTED** $(\mathcal{V}, \mu, M, m, B)$

Require: $(\mathcal{V}, \mu, M, m, B)$, where \mathcal{V} is the un-sampled configuration set, μ is the normalization coefficient, B is the batch size, M is the number of randomly sampled points and m is the number of points to be sampled as the initial set.

Ensure: Newly sampled configuration set X.

- 1: for $b=1 \rightarrow B$ do
- 2: Randomly sample a set \mathcal{V}_b from \mathcal{V} , with $|\mathcal{V}_b| = M$;
- 3: $\tilde{\mathcal{X}}_b \leftarrow \mathbf{TED}(\mathcal{V}_b, \mu, m);$

4: end for

- 5: Temporal union set $\tilde{\mathfrak{X}}_U = \tilde{\mathfrak{X}}_1 \cup \tilde{\mathfrak{X}}_2 \cup \cdots \cup \tilde{\mathfrak{X}}_B$;
- 6: $\mathfrak{X} \leftarrow \mathbf{TED}(\tilde{\mathfrak{X}}_U, \mu, m)$; return Newly sampled configuration set \mathfrak{X} ;

8/16

Initialization – Batch TED

Batch method

- Computing distance matrix is very slow, even impossible.
- Sample a batch of sets from the design space and compute the distance matrix for each set.

Algorithm 2 Batch Transductive Experimental Design – $BTED(\mathcal{V}, \mu, M, m, B)$

Require: $(\mathcal{V}, \mu, M, m, B)$, where \mathcal{V} is the un-sampled configuration set, μ is the normalization coefficient, B is the batch size, M is the number of randomly sampled points and m is the number of points to be sampled as the initial set.

Ensure: Newly sampled configuration set X.

- 1: for $b=1 \to B$ do
- 2: Randomly sample a set \mathcal{V}_b from \mathcal{V} , with $|\mathcal{V}_b| = M$;
- 3: $\tilde{\mathfrak{X}}_b \leftarrow \mathbf{TED}(\mathfrak{V}_b, \mu, m);$

4: end for

- 5: Temporal union set $\tilde{\mathfrak{X}}_U = \tilde{\mathfrak{X}}_1 \cup \tilde{\mathfrak{X}}_2 \cup \cdots \cup \tilde{\mathfrak{X}}_B$;
- 6: X ← TED(X̃_U, μ, m); return Newly sampled configuration set X;

Example

$\circ \operatorname{Design}\,\operatorname{Space} \circ \operatorname{BTED} \circ \operatorname{Random}$

900

Iterative Opt. - Bootstrap-guided Adaptive Opt. (BAO)

Bootstrap re-sampling

- Randomly re-sample a batch of sub-sets from the already-sampled configuration set.
- Build new evaluation functions for each of these re-sampled sub-sets.
- The final evaluation function is built as the summation of the evaluation functions of these re-sampled sub-sets.

Iterative Opt. – Bootstrap-guided Adaptive Opt. (BAO)

Adaptive Sampling

- Adjust the searching space (neighborhood of the previously-sampled point) adaptively in each optimization step.
- If the relative performance improvement is satisfying, we will keep the size of the searching space.
- Otherwise, we will enlarge the searching space.

Our Framework

Advanced active learning

- Batch transductive experimental design
- Bootstrap-guided adaptive optimization

Experimental Settings

Platform

- Intel(R) Xeon(R) E5-2680 v4 CPU@ 2.40GHz
- NVIDIA GeForce GTX 1080Ti GPU, CUDA 9.0.176

Benchmark

AlexNet, ResNet-18, VGG-16, MobileNet-v1, and SqueezeNet-v1.1

Criterion

- Inference latency
- Giga floating operations per second (GFLOPS)

Baseline

Convergence

Fig. 4 Convergence trends of GFLOPs for the first 2 layers of MobileNet-v1, (a) the first layer, (b) the second layer.

Sampled Configurations and GFLOPS

Fig. 5 The number of sampled configurations and GFLOPS values of MobileNet-v1. AVG represents the average results of the 19 tasks.

Results

Table: Comparisons of End-to-end Model Inference Latency and Variance

Model	AutoTVM		BTED				BTED + BAO			
	Latency (ms)	Variance	Latency (ms)	Δ (%)	Variance	Δ (%)	Latency (ms)	Δ (%)	Variance	Δ (%)
AlexNet	1.3639	0.1738	1.3373	- 1.95	0.2246	+29.23	1.3304	- 2.46	0.0711	-59.09
ResNet-18	1.8323	0.4651	1.7935	- 2.12	0.4487	- 3.53	1.7519	- 4.39	0.3848	-17.27
VGG-16	6.5176	2.3834	5.6808	-12.84	0.6574	-72.42	5.6183	-13.80	0.3617	-84.82
MobileNet-v1	1.0597	0.9290	0.8738	-17.54	0.5398	-41.89	0.7621	-28.08	0.0674	-92.74
SqueezeNet-v1.1	0.8697	1.1208	0.7436	-14.50	0.5533	-50.63	0.6920	-20.43	0.1709	-84.75
Average	2.3286	1.0144	2.0858	- 9.79	0.4848	-27.85	2.0309	-13.83	0.2112	-67.74

Thank You

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ