DESIGN, AUTOMATION & TEST IN EUROPE

01— 05 February 2021 - virtual conference
The European Event for Electronic

System Design & Test

Deep Neural Network Hardware Deployment
Optimization via Advanced Active Learning

Qi Sun, Chen Bai, Hao Geng, BeiYu

1/16

Background Dafe’”.

Hardware deployment of deep neural networks

e » General deployment framework.

[} [}
I I
i 8 DNN Model E » Support various hardware platforms and
LS ® \ DNN models.
““““‘“_“_:“‘; “““““““““ ! » A DNN model is represented as a graph.
High-level Compuataion :
Graph Optimization i > Layer-wise (node-wise) optimization, to
_______________________________ determine the deployment configuration
[Node-wise Optimization] for each |ayer_

» The final model deployment

____________ ~ |
1 Final Model !
'O".". ! Deployment @ \ configuration is the combination of the
I

D ettt e - layers.

2/16

Background — Some Definitions pate”’

Deployment configuration

All of the deployment settings (e.g., thread binding, tensor decomposition, etc.) to be
determined are encoded as a feature vector, denoted as x.

GFLOPS

Giga floating operations per second (GFLOPS) measures the number of floating-point
operations conducted by the hardware per second.

Latency

Latency computes end-to-end model inference time and intuitively reflects the performance
of model deployment.

Obijective

Find the optimal x, which has the best deployment performance, from the design space D.

3/16

Background — Traditional active learning optimization DATE™

Initialization

> Randomly sample some configurations from the design space.

P Initialize an evaluation model (e.g., XGBoost).

lterative optimization

P lteratively select a configruation according to the evaluation model and searching
strategy

» Compile and deploy the configuration.
» Update the evaluation model.

» Stop until convergence.

4/16

Background

Current status

» Usually more than millions of candidate configurations in the design space.

» Slow compilation and depolyment processes.

Unsolved problems

» |nitialization with underabundant information
» Un-scalability of the optimization process

P |Inaccuracy of evaluation functions

5/16

DATE”

Our Solution

Targets
» Improve data diversity.
» Improve model scalability.

P> Improve model accuracy.

Proposed methods
> Batch Transductive Experimental Design

> Bootstrap-guided Adaptive Optimization

6/16

DATE”"

Initialization — Transductive Experimental Design (TED) 24"

Maximize the intra-set diversity

X = arg max K
veV k(v,v) + 1

» K: Euclidean distance matrix
> K, is v's corresponding column in K
» k(v,v)isv's diagonal entry in K, p is a coefficient

> lteratively select the configuration point which has the largest distance to other
configurations

P> The selected points are the initialization set for the evaluation model

7/16

Initialization — Batch TED DATE™’
Batch method

» Computing distance matrix is very slow, even impossible.

» Sample a batch of sets from the design space and compute the distance matrix for
each set.

8/16

Initialization — Batch TED DATE”'
Batch method

» Computing distance matrix is very slow, even impossible.

> Sample a batch of sets from the design space and compute the distance matrix for
each set.

Algorithm 2 Batch Transductive Experimental Design —
BTED(V, i, M, m, B)

Require: (V, u, M, m, B), where 'V is the un-sampled configuration
set, 1 is the normalization coefficient, B is the batch size, M is
the number of randomly sampled points and m is the number
of points to be sampled as the initial set.

Ensure: Newly sampled configuration set X.

1: forb=1— B do
2 Randomly sample a set V,, from V, with |V,| = M;
3 Xy TED(Vy, pi, m);

4: end for

5

6

: Temporal un~ion set 5CU = 5C1 @] §C2 J---u 5CB;
. X < TED(Xu, p, m); return Newly sampled configuration set
X

8/16

Initialization — Batch TED

8/16

Batch method

DATE”

» Computing distance matrix is very slow, even impossible.

> Sample a batch of sets from the design space and compute the distance matrix for

each set.

Algorithm 2 Batch Transductive Experimental Design —
BTED(V, i, M, m, B)

Require: (V, u, M, m, B), where 'V is the un-sampled configuration
set, 1 is the normalization coefficient, B is the batch size, M is
the number of randomly sampled points and m is the number
of points to be sampled as the initial set.

Ensure: Newly sampled configuration set X.

1: forb=1— B do
2 Randomly sample a set V,, from V, with |V,| = M;
3 Xy TED(Vy, pi, m);

4: end for

5

6

: Temporal un~ion set 5CU = 5C1 @] §C2 J---u 5CB;
. X < TED(Xu, p, m); return Newly sampled configuration set
X

» Example

Design Space o BTED o Random

o
o
O
6]
90 09
€]
() (o)

1

lterative Opt. — Bootstrap-guided Adaptive Opt. (BAO) DATE”

Bootstrap re-sampling

» Randomly re-sample a batch of sub-sets from the already-sampled configuration set.
» Build new evaluation functions for each of these re-sampled sub-sets.

» The final evaluation function is built as the summation of the evaluation functions of
these re-sampled sub-sets.

Already-sampled set o 0% N
b (080 iy
o ° o [siseesiill
o o Z o LemmtTieel
o oo, ©° 090
o o ' 00 o —»
o o . . o ©° f2
o oo,) q oo
o PN PR
o %, o o Re-sample :
* o ‘ P
_____ .- ° o
Y ®6 % 090 o _>fB
s._0 © R
/ it -+ 1B

9/16

lterative Opt. — Bootstrap-guided Adaptive Opt. (BAO) DATE”
Adaptive Sampling

P> Adjust the searching space (neighborhood of the previously-sampled point) adaptively
in each optimization step.

» If the relative performance improvement is satisfying, we will keep the size of the
searching space.

» Otherwise, we will enlarge the searching space.

step t, radius R
step t+1, radius R

step t+2, radius TR

10/16

Our Framework

11/16

Advanced active learning

» Batch transductive experimental design

» Bootstrap-guided adaptive optimization

Initialization Iterative Optimization
BETD BAO

Advanced
Active
Learning

p
———— Adaptively Adjust

Sampled | ———————
Set

Searching
Scope

\
\
\
~N

Record\ {
<+ [Bootstrap Sampling}
J

J

Best
Conf.
x*

DATE”

Experimental Settings i

Platform

> Intel(R) Xeon(R) E5-2680 v4 CPU@ 2.40GHz
> NVIDIA GeForce GTX 1080Ti GPU, CUDA 9.0.176

Benchmark
AlexNet, ResNet-18, VGG-16, MobileNet-v1, and SqueezeNet-v1.1

Criterion

» Inference latency
» Giga floating operations per second (GFLOPS)

Baseline

> AutoTVM

12/16

Convergence
—— AutoTVM —— BTED
2,800 F
£ 2,000 |, -
3
o1 =
& 1,000
|
% 512 1,024

Fig. 4 Convergence trends of GFLOPs for the first 2 layers of

(a)

—— BTED + BAO

1,200
800
400

0

|
0 512
(b)

MobileNet-v1, (a) the first layer, (b) the second layer.

13/16

1,024

DATE”

Sampled Configurations and GFLOPS

of Conf.

GFLOPS (%)

1,400

1,000

60

o

—
[N
[=)

—
(]
at

[
[l
(==}

B AutoTVM [JBTED [1BTED + BAO

R IO AT |HH| il HlHH 1L |HH| H|HH il

T1 T2 T3 T4 T5

T6 T7

T8 T9 TI10 T11 T12 T13 T14 TIS TIi6 T17 T18 T19 AVG
(@)

§ |HH|HH|HH|H |HH|H

HIHHIHHIHHIHHIHHIHHIHHIHHIHHIHHIHHIHHIHHIHH]

T1 T2 T3

T4 T5 T6 T7 T8 T9 TI10 TIl TI12 TI3 T14 TI5 Ti6 T17 T18 T19 AVG

(b)

DATE”

Fig. 5 The number of sampled configurations and GFLOPS values of MobileNet-vl. AVG represents the average results of the 19 tasks.

14/16

Results DATE”

Table: Comparisons of End-to-end Model Inference Latency and Variance

Model AutoTVM BTED BTED + BAO
Latency (ms) Variance | Latency (ms) A (%) Variance A (%) | Latency (ms) A (%) Variance A (%)
AlexNet 1.3639 0.1738 1.33738 -1.95 0.2246 +29.23 1.3304 -2.46 0.0711 -59.09
ResNet-18 1.8323 0.4651 1.7935 -2.12 0.4487 -3.53 1.7519 -4.39 0.3848 -17.27
VGG-16 6.5176 2.3834 5.6808 -12.84 0.6574 -72.42 5.6183 -13.80 0.3617 -84.82
MobileNet-v1l 1.0597 0.9290 0.8738 -17.54 0.5398 -41.89 0.7621 -28.08 0.0674 -92.74
SqueezeNet-vl.1l 0.8697 1.1208 0.7436 -14.50 0.5533 -50.63 0.6920 -20.43 0.1709 -84.75
Average 2.3286 1.0144 2.0858 -9.79 0.4848 -27.85 2.0309 -13.83 0.2112 -67.74

15/16

DATE”

Thank You

= = = = 9ae
16/16

	Introduction to DNN Deployment
	Optimization via Advanced Active Learning
	Experiments and Results

