BMEG3102 Bioinformatics Lecture 6. Motifs and Domains

Qi Dou Email: qidou@cuhk.edu.hk Office: Room 1014, 10/F, SHB

BMEG3102 Bioinformatics The Chinese University of Hong Kong

1. General definitions

2. DNA motifs

3. Protein domains

Part 1

General Definitions

Protein binding sites

- Suppose a protein can bind certain locations in each of the following sequences:
 - AACCCGATACAGACGACCATTACGACC
 - GAGACGACATACATTACACCAA
 - CCGACTAAACCAGATACAGAGATTACAGCATAC
 - ACATCCATACAGACAAAAACATAGAGGGACGATT
- Where do you think the protein binds?
 - Assumption: The protein recognizes a certain pattern of its binding sites (due to shape and energy)

Protein binding sites

- Would be easier if you know the binding site in one of the sequences:
 - AACCCGATACAGACGACCATTACGACC
 - GAGACGACATACATTACACCAA
 - CCGACTAAACCAGATACAGAGATTACAGCATAC
 - ACATCCATACAGACAAAAACATAGAGGGACGATT

Protein binding sites

- From the example, you can use sequence alignment or other methods to find out the binding site in the other sequences:
 - AACCCGATACAGACGACCATTACGACC
 - GAGACGACATACAT TACACCAA
 - CCGACTAAACCAGATACAGAGATTACAGCATAC
 - ACATCCATACAGACAAAAACATA<u>G</u>AGGGACGATT
- Notice that:
 - The different occurrences could be slightly different
 - There may be multiple binding sites in one sequence

Motifs and domains

- In general, we define motifs/domains as patterns that
 - 1. Appear frequently
 - May not be exactly the same in different occurrences, but highly similar
 - Are unlikely to occur "by chance". In other words, they are "over-represented"
 - 2. Usually have known or predicted functional roles
 - 3. Are evolutionarily conserved
 - There are many types of motifs and domains

Motifs and domains: Examples

DNA sequence motifs:

Image sources: http://rosalind.info/media/problems/meme/logo1.png, Wikipedia, Rfam

Motifs and domains: Examples

DNA sequence motifs:

Image sources: http://rosalind.info/media/problems/meme/logo1.png, Wikipedia, Rfam

Motifs and domains: Examples

Protein domains:

DNA sequence motifs:

Image sources: http://rosalind.info/media/problems/meme/logo1.png, Wikipedia, Rfam

DNA motifs and protein domains

- Focuses of this lecture:
 - Transcription factor binding sites, which are short DNA regulatory sequences that frequently appear at specific genomic locations. Some of them are conserved across species.
 - Protein domains, which are similar sub-sequences on different proteins that serve particular functions. Again, some of them are evolutionarily conserved.

Motifs and domains: Differences

- In the literature, sometimes motifs and domains are distinguished by the followings:
 - A domain is assumed to possess certain functional or structural independence.
 A motif may not.
 - A domain is usually larger than a motif.
- In this lecture, we use these two terms more or less interchangeably.

Part 2

DNA Motifs

Regulatory regions

- DNA binding proteins (e.g., transcription factors) bind different types of DNA elements for different purposes. For example:
 - Promoters (around the transcription start site): To help the formation of the transcription machinery
 - Enhancers (usually further away from a gene): To enhance the expression of a gene
 - Silencers: To inhibit the expression of a gene
 - Insulators: To mark expression boundaries

Image credit: Maston et al., Annual Review of Genomics and Human Genetics 7:29-59, (2006)

Transcription factor binding

- Where does a transcription factor bind?
 - Where DNA is accessible
 - Where there are special signals on the DNA (e.g., lack of methylation) and the surrounding proteins (e.g., histone modifications)
 - Where the DNA structure is suitable
 - Where the DNA sequence is suitable \leftarrow our focus
 - The DNA region bound by a transcription factor is called a transcription factor binding site (TFBS)
 - Usually quite short (e.g., 6-10bp)

Transcription factor binding

• Specific regions of transcription factors called the DNA binding domains recognize and bind the TFBS

Image credit: Papavassiliou, Molecular medicine Today 4(8):358-366, (1998)

Representing motifs and domains

- How to represent a TFBS?
- If the pattern is very conserved, may use an exact representation
 - E.g., consensus sequence
- In most cases, need to capture the differences by statistical representations
 - E.g., position weight matrix
- For a representation that is more complex,
 - It can capture more information
 - It involves more parameters
 - Needs more data and time to estimate parameter values
 - Is more prone to over-fitting

- Suppose we have the following TFBS sequences:
 - CACAAAC
 - CACAAAT
 - CGCAAAC
 - CACAAAC
- Consensus sequence:
 - CACAAAC
 - Problem: Information loss

- Suppose we have the following TFBS sequences:
 - CACAAAC
 - CACAAAT
 - CGCAAAC
 - CACAAAC
- Consensus sequence:
 - CACAAAC
 - Problem: Information loss
- Degenerate sequence in IUPAC (International Union of Pure and Applied Chemistry) code (see <u>http://www.bio-soft.net/sms/iupac.html</u>):
 - CRCAAAY

IUPAC nucleotide code	Base
А	Adenine
С	Cytosine
G	Guanine
T (or U)	Thymine (or Uracil)
R	A or G
Υ	C or T
S	G or C
W	A or T
К	G or T
Μ	A or C
В	C or G or T
D	A or G or T
Н	A or C or T
V	A or C or G
Ν	any base
. or -	gap (not used in motifs)

Example source: http://conferences.computer.org/bioinformatics/CSB2003/NOTES/Liu_Color.pdf

- Suppose we have the following aligned TFBS sequences:
 - CACAAAAC
 - CACAAA_T
 - CGCAAAAC
 - CACAAA_C
- Regular expression (see

http://en.wikipedia.org/wiki/Regular expression for syntax)

- E.g., C[AG]CA{3,4}[CT]

• Position weight matrix

ATGGCATG		4	2	2		-	C	-	0
AGGGTGCG		1	2	3	4	5	6		ð
ATCGCATG TTGCCACG	Α	0.9	0.0	0.0	0.1	0.0	0.8	0.0	0.0
ATGGTATT	С	0.0	0.1	0.1	0.1	0.7	0.0	0.3	0.0
AGGGCGTT	G	0.0	0.2	0.7	0.8	0.1	0.2	0.0	0.8
ATGACATG ATGGCATG	т	0.1	0.7	0.2	0.0	0.2	0.0	0.7	0.2
ACTGGATG									

• Position weight matrix

 Pseudo-counts: add a small number to each count, to alleviate problems due to small sample size

	1	2	3	4	5	6	7	8
Α	10/14	1/14	1/14	2/14	1/14	9/14	1/14	1/14
С	1/14	2/14	2/14	2/14	8/14	1/14	4/14	1/14
G	1/14	3/14	8/14	9/14	2/14	3/14	1/14	9/14
т	2/14	8/14	3/14	1/14	3/14	1/14	8/14	3/14

Example source: http://conferences.computer.org/bioinformatics/CSB2003/NOTES/Liu_Color.pdf

- Sequence logo
 - Nucleotide with the highest probability on top
 - Total height of the nucleotides at the *i*-th position,

$$h_i = 2 + \sum_{x \in \{A,C,G,T\}} p_{i,x} \log_2 p_{i,x} - \frac{4-1}{2n \ln 2}$$

- $p_{i,x}$: probability of character x at position i
- *n*: number of sequences
- Height of nucleotide x = n. h. $\frac{g_{1}}{g_{5'}}$

	1	2	3	4	5	6	7	8
Α	0.9	0.0	0.0	0.1	0.0	0.8	0.0	0.0
С	0.0	0.1	0.1	0.1	0.7	0.0	0.3	0.0
G	0.0	0.2	0.7	0.8	0.1	0.2	0.0	0.8
т	0.1	0.7	0.2	0.0	0.2	0.0	0.7	0.2

Identifying over-represented motifs (occurrence)

- The above representations are for known motifs: We know the exact DNA sequences of the TFBS
- In reality, how do we find out these sequences?
 - There are experiments that directly tell the rough binding locations of a protein
 - E.g., Chromatin immuno-precipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq/ChIP-exo)
 - If a TF is believed to regulate some genes by binding at their promoters, we can collect these promoter sequences
 - In both cases, the resolution is not high enough

Identifying over-represented motifs (occurrence)

- The corresponding motif discovery problem is as follows:
- Inputs: A set of sequences, each containing exactly one TFBS
 - There are other variations:
 - Each sequence contains one or more TBFS
 - Each sequence contains zero or one TFBS
 - Each sequence contains zero or more TFBS
- Goal: Find out the TFBS locations in the sequences
- Main idea: Identify common patterns in the sequences

Identifying over-represented motifs (occurrence)

- Different methods:
 - 1. Exhaustive search for all words of size up to k
 - Guaranteed to find best matches if the motif has a size $\leq k$
 - The cost increases exponentially with respect to *k*
 - Indexing helps to a certain extent
 - More cost if inexact matches are allowed
 - 2. Multiple sequence alignment
 - Computationally hard
 - Many heuristics proposed
 - 3. Integrating auxiliary information for finding active binding site
 - Gene expression level (e.g., correlating number of binding sites with expression level)
 - Direct binding evidence (ChIP-chip or ChIP-seq)
 - Chromatin signals (e.g., DNA accessibility)

An illustrative example

- Suppose we know a protein binds some positions in the following sequences:
 3-mer Number of sequences
 - s₁= ACCGGCT
 - s_2 = GTCAGCT
 - s₃= TCGGTAT
- 3-mer approach:
 - So, the binding site may be around $\ensuremath{\texttt{CGG}}$ or $\ensuremath{\texttt{GCT}}$

3-mer	Number of sequences containing it	
ACC		1
AGC		1
CAG		1
CCG		1
CGG		2
GCT		2
GGC		1
GGT		1
GTA		1
GTC		1
TAT		1
TCA		1
TCG		1

- Now, consider the following situation:
 - A certain genome contains 80% C's and G's, and 20% A's and T's.
 - You have 100 sequences that contain the binding sites of a protein
 - 90 of them contain the pattern $\ensuremath{\mathsf{GCGC}}$
 - 85 of them contain the pattern ATAA
 - Which one do you think is more likely to be the actual binding motif?

- Statistically significant: something is unlikely to happen by chance
 - May suggest biological significance (why?)
- Steps to determine statistical significance:
 - Define a null hypothesis (background model)
 - Compute probability of occurrence given the null model
 - Direct computation
 - Simulation (more expensive, but usually more realistic)

- Example: For a DNA sequence of length 4, assuming each base is independently and uniformly distributed, what is the chance of observing
 - 3 or more A's on one strand?
 - Consider one strand: $(0.25)^4 + 4(0.75)(0.25)^3 = 0.0508$
 - Consider both strands: $0.0508 \times 2 = 0.1016$

- What would be a good null model for a DNA sequence?
 - Independent, uniform?
 - Not quite true
 - Local dependence, uniform?
 - Better, but still missing global distribution
 - Local dependence, non-uniform?
 - Good, but more difficult to handle

- What would be a good null model for a DNA sequence?
 - Independent, uniform?
 - Not quite true
 - Local dependence, uniform?
 - Better, but still missing global distribution
 - Local dependence, non-uniform?
 - Good, but more difficult to handle
- In general, good to get more realistic null distribution by
 - Sampling from permuted data
 - While preserving some key properties
 - For DNA, may want to preserve nucleotide frequencies, dinucleotide frequencies, etc.
 - Finally, get a distribution from the samples and see where the observed number is in the distribution

Part 3

Protein Domains

Protein domains

- Similar to DNA motifs, there are also enriched patterns on protein sequences that play special functions
 - With 20 amino acids (instead of 4 bases), even conserved patterns could contain a lot of variants
 - Need to consider similarity between amino acids
 - E.g., non-polar residues are in general more similar to each other than to polar or charged residues
- There are also patterns defined according to the structure
 - Sequence and structure are closely related

- InterPro web site: "An integrated documentation resource for protein families, domains, regions and sites"
 - Gene3D: hidden Markov models
 - HAMAP: sequence matrices
 - PANTHER: hidden Markov models
 - Pfam: hidden Markov models

Protein families http://pfam.xfam.org/

- PIRSF: hidden Markov models
- PRINTs: fingerprints (aligned position specific sequence matrices)
- PROSITE: regular expressions, sequence matrices
- PRODOM: sequence clusters
- SMART: hidden Markov models
- TIGRFAMs: hidden Markov models
- SUPERFAMILY: hidden Markov models

- For each family, the followings are provided:
 - An alignment of some representative seed sequences of the family
 - Profile HMM (a probabilistic model similar to PWM but which also considers relationships among positions)
 - Constructed from the seed sequences using HMMER3
 - Used to scan all protein sequences in UniProtKB to find occurrences
 - A *full alignment* that contains all sequences above a scoring threshold
- Additional information:
 - Domain architecture
 - Phylogenetic tree of sequences
 - Structural information, where available

- For each family, the followings are provided:
 - An alignment of some representative seed sequences of the family
 - Profile HMM (a probabilistic model similar to PWM but which also considers relationships among positions)
 - Constructed from the seed sequences using HMMER3
 - Used to scan all protein sequences in UniProtKB to find occurrences
 - A *full alignment* that contains all sequences above a scoring threshold
- Additional information:
 - Domain architecture
 - Phylogenetic tree of sequences
 - Structural information, where available

HMM logo (pattern)

• Multiple sequence alignment (conservation)

Image credit: Pfam

• Phylogenetic tree (conservation)

• Domain organization – one protein can have multiple domains

• Crystal structure (en route to function)

Image credit: Pfam

- Four types of entries:
 - Family: collection of related proteins
 - Domain: structural unit found in multiple protein contexts
 - Repeat: stable only when multiple copies are present
 - Not to be confused with DNA repeats
 - Motif: short unit outside globular domains
- Entries are further grouped into clans based on similarity in either
 - Sequence
 - Structure
 - Profile HMM
- Two components
 - Pfam A: high quality, manually curated
 - Pfam B: lower quality, automatically curated
- Current: Pfam 29.0
 - 16,295 families
 - Over 73.5% of proteins in SWISSPROT and TrEMBL have at least one match to a Pfam-A family

Epilogue

Summary and Further Readings

Summary

- Motifs and domains
 - Patterns Representations:
 - Exact
 - Probabilistic
 - Unusual number of occurrences
 - Statistical significance
 - Function
 - Conservation

Further readings

- Chapter 10 of Algorithms in Bioinformatics: A Practical Introduction
 - More biological background
 - Computational methods for finding motifs
 - Free slides available

Further readings

 D'haeseleer, <u>How does DNA Sequence Motif Discovery Work?</u> Nature Biotechnology 24(8):959-961, (2006)