Efficient Turing Machines

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015

Undecidability of PCP (optional)

$$\label{eq:pcp} \operatorname{PCP} = \{\langle \, T \rangle \mid \, T \text{ is a collection of tiles} \\ \\ \operatorname{contains a top-bottom match} \}$$

The language PCP is undecidable

We will show that

If PCP can be decided, so can $A_{\rm TM}$

We will only discuss the main idea, omitting details

```
\begin{array}{ccc} \langle M \rangle & \longmapsto & T \text{ (collection of tiles)} \\ M \text{ accepts } w & \Longleftrightarrow & T \text{ contains a match} \end{array}
```

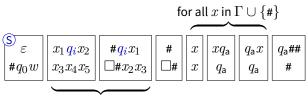
Idea: Matches represent accepting history

 $\#q_0 \text{ab\%ab\#x} q_1 \text{b\%ab\#...\#xx\%x} q_{\text{a}} \text{x\#} \\ \#q_0 \text{ab\%ab\#x} q_1 \text{b\%ab\#...\#xx\%x} q_{\text{a}} \text{x\#}$

$$\begin{array}{ccc} \langle M \rangle & \longmapsto & T \text{ (collection of tiles)} \\ M \text{ accepts } w & \Longleftrightarrow & T \text{ contains a match} \end{array}$$

We will assume that the following tile is forced to be the starting tile:

On input $\langle M, w \rangle$, we construct these tiles for PCP



for each valid window with state q_i in top middle

tile type	purpose
$ \stackrel{\text{(S)}}{\varepsilon}_{\varepsilon} \\ {}^{\!$	represents initial configuration
$\begin{bmatrix} x_1 q_i x_2 \\ x_3 x_4 x_5 \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix}$	represents valid transitions between configurations
$\begin{bmatrix} #q_ix_1 \\ \square #x_2x_3 \end{bmatrix} \begin{bmatrix} # \\ \square # \end{bmatrix}$	adds blank spaces before # if necessary
$ \begin{bmatrix} xq_{a} \\ q_{a} \end{bmatrix} \begin{bmatrix} q_{a}x \\ q_{a} \end{bmatrix} \begin{bmatrix} q_{a}\#\#\\ \# \end{bmatrix} $	matching completes if computation accepts

Once the accepting state symbol occurs, the last two tiles can "eat up" the rest of the symbols

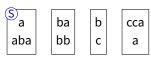


If M rejects on input w, then $q_{\rm rej}$ appears on the bottom at some point, but it cannot be matched on top

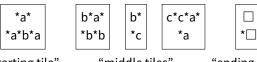
If M loops on w, then matching goes on forever

Getting rid of the starting tile

We assumed that one tile is marked as the starting tile



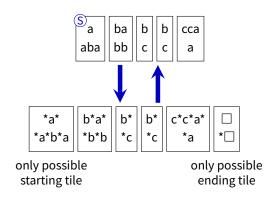
We can simulate this assumption by changing tiles a bit



"starting tile" "middle tiles" begins with *

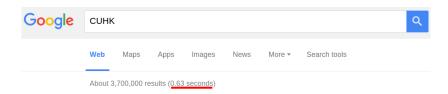
"ending tiles"

Getting rid of the starting tile



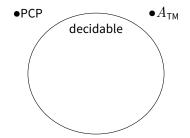
Polynomial time

Running time



We don't want to just solve a problem, we want to solve it quickly

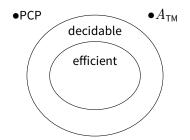
Efficiency



Undecidable problems:
We cannot find solutions in any finite amount of time

Decidable problems: We can solve them, but it may take a very long time

Efficiency



The running time depends on the input

For longer inputs, we should allow more time

Efficiency is measured as a function of input size

Running time

The running time of a Turing machine M is the function $t_M(n)$:

$$t_M(n) = \mbox{maximum number of steps that } M \mbox{ takes}$$
 on any input of length n

Example: $L = \{w \# w \mid w \in \{a, \}\}$	b}*}
M: On input x , until you reach #	O(n) times
Read and cross of first a or b before #)
Read and cross off first a or b after #	O(n) steps
If mismatch, reject	J
If all symbols except # are crossed off, accept	O(n) steps
running time:	$O(n^2)$

Another example

$$L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0 \}$$

M: On input x ,	
Check that the input is of the form $0*1*$	O(n) steps
Until everything is crossed off:	O(n) times
Cross off the leftmost 0) (() -+
Cross off the following 1	O(n) steps
If everything is crossed off, accept	O(n) steps
running time:	$O(n^2)$

6/31

A faster way

$$L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0 \}$$

M: On input x ,	
Check that the input is of the form 0^*1^*	O(n) steps
Until everything is crossed off:	$O(\log n)$ times
Find parity of number of 0s)
Find parity of number of 1s	
If the parities don't match, reject	O(n) steps
Cross off every other 0 and every other 1	J
If everything is crossed off, accept	O(n) steps
running time:	$O(n \log n)$

Running time vs model

What if we have a two-tape Turing machine?

$$L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0 \}$$

M: On input x ,	
Check that the input is of the form 0*1*	O(n) steps
Copy 0* part of input to second tape	O(n) steps $O(n)$ steps
Until □ is reached:)
Cross off next 1 from first tape	O(n) steps
Cross off next 0 from second tape	J
If both tapes reach \square simultaneously, accept	O(n) steps
running time:	$\overline{O(n)}$

Running time vs model

How about a Java program?

```
L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geqslant 0 \}
```

```
M(int[] x) {
  n = x.len;
  if (n % 2 == 0) reject();
  for (i = 0; i < n/2; i++) {
    if (x[i] != 0) reject();
    if (x[n-i+1] != 1) reject();
  }
  accept();
}</pre>
```

running time: O(n)

Running time can change depending on the model 1-tape TM 2-tape TM Java

$$O(n \log n)$$
 $O(n)$ $O(n)$

Measuring running time

What does it mean when we say

This algorithm runs in time T

One "time unit" in

Java

if (x > 0)y = 5*y + x; Random access machine

write r3

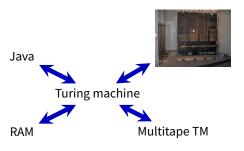
Turing machine

 $\delta(q_3,\mathbf{a})=(q_7,\mathbf{b},R)$

all mean different things!

Efficiency and the Church-Turing thesis

Church–Turing thesis says all these have the same computing power...



...without considering running time

Cobham-Edmonds thesis

An extension to Church–Turing thesis, stating

For any realistic models of computation M_1 and M_2 M_1 can be simulated on M_2 with at most polynomial slowdown

So any task that takes time t(n) on M_1 can be done in time (say) $O(t^3)$ on M_2

Efficient simulation

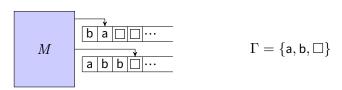
The running time of a program depends on the model of computation

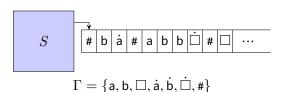
But if you ignore polynomial overhead, the difference is irrelevant

Every reasonable model of computation can be simulated efficiently on any other

Example of efficient simulation

Recall simulating two tapes on a single tape

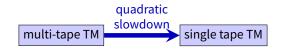




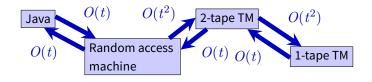
Running time of simulation

Each move of the multitape TM might require traversing the whole single tape

$$\begin{array}{ll} \mbox{1 step of 2-tape TM} & \Rightarrow & O(s) \mbox{ steps of single tape TM} \\ & s = \mbox{right most cell ever visited} \\ \mbox{after } t \mbox{ steps} & \Rightarrow & s \leqslant 2t + O(1) \\ t \mbox{ steps of 2-tape} & \Rightarrow & O(ts) = O(t^2) \mbox{ single tape steps} \end{array}$$



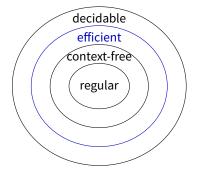
Simulation slowdown



Cobham-Edmonds thesis:

 ${\it M}_1$ can be simulated on ${\it M}_2$ with at most polynomial slowdown

The class P



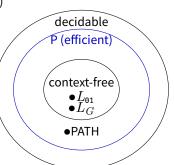
P is the class of languages that can be decided on a TM with polynomial running time

By Cobham–Edmonds thesis, they can also be decided by any realistic model of computation e.g. Java, RAM, multitape TM

Examples of languages in P

P is the class of languages that are decidable in polynomial time (in the input length)

$$\begin{split} L_{\mathbf{01}} &= \{\mathbf{0}^n \mathbf{1} \mid n \geqslant 0\} \\ L_G &= \{w \mid \mathsf{CFG}\ G \ \mathsf{generates}\ w\} \\ \mathsf{PATH} &= \{\langle G, s, t \rangle \mid \mathsf{Graph}\ G \ \mathsf{has} \\ &\quad \mathsf{a}\ \mathsf{path}\ \mathsf{from}\ \mathsf{node}\ s\ \mathsf{to}\ \mathsf{node}\ t\} \end{split}$$



Context-free languages in polynomial time

Let L be a context-free language, and G be a CFG for L in Chomsky Normal Form

```
\ell
CYK algorithm:
                                                5
If there is a production A \to x_i
                                                4
     Put A in table cell T[i, 1]
                                                3
For cells T[i, \ell]
                                                               S|C|S|A
                                                2
                                                    S|A
                                                           B
     If there is a production A \to BC
          where B is in cell T[i, j]
                                                          A|C|A|C|
                                                1
                                                                      B
                                                                           A|C
          and C is in cell T[i+j, \ell-j]
                                                                 3
                                                                            5
                                                           2
                                                                       4
     Put A in cell T[i, \ell]
                                                            а
                                                                 а
                                                                       b
                                                                            а
```

On input x of length n, running time is $O(n^3)$

PATH in polynomial time

$$\label{eq:path} \operatorname{PATH} = \{\langle G, s, t \rangle \mid \operatorname{Graph} G \text{ has} \\$$
 a path from node $s \text{ to node } t\}$

 ${\cal G}$ has n vertices, m edges

M= On input $\langle\,G,s,t\,
angle$ where G is a graph with nodes s and t Place a mark on node s Repeat until no additional nodes are marked: O(n) times Scan the edges of G. O(m) steps If some edge has both marked and unmarked endpoints Mark the unmarked endpoint If t is marked, accept

O(mn)

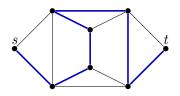
running time:

Hamiltonian paths

A Hamiltonian path in $\,G$ is a path that visits every node exactly once

$$\mbox{HAMPATH} = \big\{ \langle\, G, s, t \rangle \mid \mbox{Graph } G \mbox{ has a}$$

$$\mbox{Hamiltonian path from node } s \mbox{ to node } t \big\}$$



We don't know if HAMPATH is in P, and we believe it is not