Undecidability and Reductions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015

Undecidability

$$A_{\mathrm{TM}} = \{\langle M, w \rangle \mid \mathrm{Turing\ machine}\ M\ \mathrm{accepts\ input}\ w\}$$

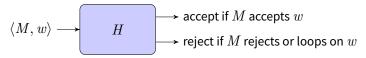
Turing's Theorem

The language A_{TM} is undecidable

Note that a Turing machine M may take as input its own description $\langle M \rangle$

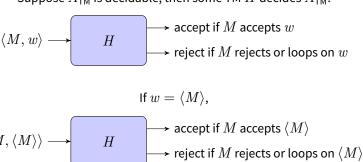
Proof by contradiction:

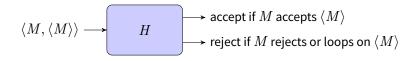
Suppose A_{TM} is decidable, then some TM H decides A_{TM} :



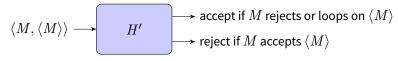
Proof by contradiction:

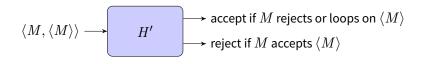
Suppose A_{TM} is decidable, then some TM H decides A_{TM} :



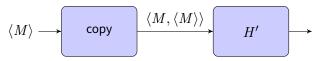


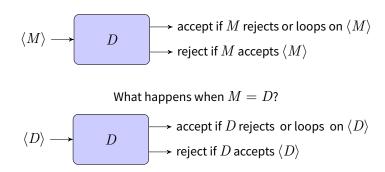
Let H' be a TM that does the opposite of H accept states in H becomes reject states in H', and vice versa

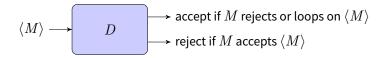




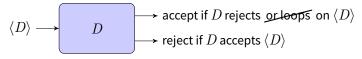
Let D be the following TM:







What happens when M=D?



H never loops indefinitely, neither does D

If D rejects $\langle D \rangle$, then D accepts $\langle D \rangle$

If D accepts $\langle D \rangle$, then D rejects $\langle D \rangle$

Contradiction! D cannot exist! H cannot exist!

Proof of Turing's theorem: conclusion

Proof by contradiction

Assume $A_{\rm TM}$ is decidable Then there are TM H, H' and D But D cannot exist!

Conclusion

The language $A_{\rm TM}$ is undecidable

		all possible inputs $\it w$				
		ε	0	1	00	
S	M_1	acc	rej	rej	acc	
ine	M_2	rej	acc	loop	rej	
ole ach	M_3	rej	loop	rej	rej	
ssik g m	M_4	acc	rej	acc	loop	
all possible Turing machines			:			
all Tu			•			

Write an infinite table for the pairs (M, w)

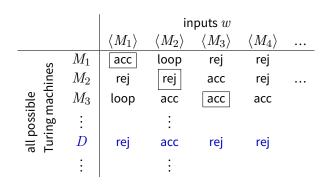
(Entries in this table are all made up for illustration)

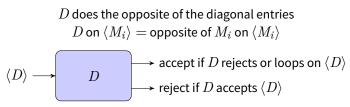
		\mid inputs w				
		$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$	
sible machines	M_1	acc	loop	rej	rej	
	M_2	rej	rej	acc	rej	
ole ach	M_3	loop	acc	acc	acc	
ssik g m	M_4	acc	acc	loop	acc	
all possible Turing mach			÷			

Only look at those \boldsymbol{w} that describe Turing machines

		ig inputs w				
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
all possible Turing machines	M_1	acc	loop	rej	rej	
	M_2	rej	rej	acc	rej	
	M_3	loop	acc	acc	acc	
	÷		:			
all poss Turing I	D	rej	acc	rej	rej	
10 —	÷		÷			

If $A_{\rm TM}$ is decidable, then TM D is in the table





		\mid inputs w					
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$
all possible Turing machines	M_1	acc	loop	rej	rej		loop
	M_2	rej	rej	acc	rej		acc
	M_3	loop	acc	acc	acc		rej
	÷		÷				
all poss Turing	D	rej	acc	rej	rej		?
	÷		:				

We run into trouble when we look at $(D,\langle D\rangle)$

The language A_{TM} is recognizable but not decidable

How about languages that are not recognizable?

$$\overline{A_{\rm TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that does not accept } w \}$$

$$= \{ \langle M, w \rangle \mid M \text{ rejects or loops on input } w \}$$

Claim

The language $A_{\rm TM}$ is not recognizable

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof of Claim from Theorem:

 $\frac{}{A_{\rm TM}} \ {\rm We\ know}\ A_{\rm TM} \ {\rm is\ recognizable}$ if $\overline{A_{\rm TM}}$ were also, then $A_{\rm TM}$ would be decidable

But Turing's Theorem says A_{TM} is not decidable

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let $M={
m TM}$ recognizing $L,M'={
m TM}$ recognizing \overline{L} The following Turing machine N decides L: On input w,

- 1. Simulate M on input w. If M accepts, N accepts.
- 2. Simulate M^{\prime} on input w. If M^{\prime} accepts, N rejects.

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let $M={
m TM}$ recognizing $L,M'={
m TM}$ recognizing \overline{L} The following Turing machine N decides L: On input w,

- 1. Simulate M on input w. If M accepts, N accepts.
- 2. Simulate M' on input w. If M' accepts, N rejects.

Problem: If M loops on w, we will never go to step 2

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let
$$M={
m TM}$$
 recognizing $L,M'={
m TM}$ recognizing \overline{L} The following Turing machine N decides L : On input w ,

For $t=0,1,2,3,\ldots$ Simulate first t transitions of M on input w. If M accepts, N accepts. Simulate first t transitions of M' on input w. If M' accepts, N rejects.

Reductions

Another undecidable language

$${\it HALT_{\rm TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$$
 We'll show:

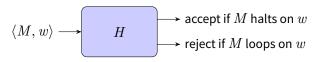
HALT_{TM} is an undecidable language

 $\label{eq:weight} \mbox{We will argue that} \\ \mbox{If HALT}_{\mbox{TM}} \mbox{ is decidable, then so is } A_{\mbox{TM}} \\ \mbox{...but by Turing's theorem, } A_{\mbox{TM}} \mbox{ is not} \\ \mbox{}$

Undecidability of halting

If ${\sf HALT_{TM}}$ can be decided, so can $A_{\sf TM}$

Suppose H decides HALT_{TM}



 $\langle M,w\rangle \longrightarrow \raiset{?} \begin{tabular}{ll} \begin{tabular}{ll} We want to construct a TM S that decides $A_{\rm TM}$ \\ \hline & & \begin{tabular}{ll} \be$

Undecidability of halting

```
\begin{aligned} \operatorname{HALT_{TM}} &= \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\} \\ A_{\operatorname{TM}} &= \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\} \end{aligned}
```

Suppose HALT $_{\mathrm{TM}}$ is decidable Let H be a TM that decides HALT $_{\mathrm{TM}}$ The following TM S decides A_{TM} On input $\langle M,w \rangle$:

Run H on input $\langle M,w\rangle$ If H rejects, reject If H accepts, run U on input $\langle M,w\rangle$ If U accepts, accept; else reject

Reductions

Steps for showing that a language ${\cal L}$ is undecidable:

- 1. If some TM R decides L
- 2. Using R, build another TM S that decides $A_{\rm TM}$

But A_{TM} is undecidable, so R cannot exist

$$A_{\mathrm{TM}}' = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$$

Is A'_{TM} decidable? Why?

 $A_{\mathsf{TM}}' = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$

Is A'_{TM} decidable? Why?

Undecidable!

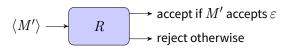
Intuitive reason:

To know whether M accepts ε seems to require simulating M But then we need to know whether M halts

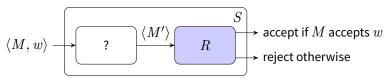
Let's justify this intuition

Example 1: Figuring out the reduction

Suppose A'_{TM} can be decided by a TM R



We want to build a TM ${\cal S}$



M' should be a Turing machine such that M' on input $\varepsilon=M$ on input w

Example 1: Implementing the reduction

M' should be a Turing machine such that M' on input $\varepsilon=M$ on input w

Description of the machine M': On input z

- 1. Simulate ${\cal M}$ on input ${\cal w}$
- 2. If M accepts w, accept
- 3. If M rejects w, reject



 $\label{eq:Description} \text{Description of } S \text{:} \\ \text{On input } \langle M, w \rangle \text{ where } M \text{ is a TM} \\$

1. Construct the following TM M':

 $M^\prime =$ a TM such that on input z, $\mbox{Simulate } M \mbox{ on input } w \mbox{ and accept/reject according to } M$

2. Run R on input $\langle M' \rangle$ and accept/reject according to R

Example 1: The formal proof

$$\begin{split} A_{\rm TM}' &= \{\langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon\} \\ A_{\rm TM} &= \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\} \end{split}$$

Suppose $A'_{\rm TM}$ is decidable by a TM R. Consider the TM $S\!\colon$ On input $\langle M,w\rangle$ where M is a TM

1. Construct the following TM M':

 $M^\prime =$ a TM such that on input z, $\mbox{Simulate } M \mbox{ on input } w \mbox{ and accept/reject according to } M$

2. Run R on input $\langle M' \rangle$ and accept/reject according to R

Then S accepts $\langle M, w \rangle$ if and only if M accepts w So S decides A_{TM} , which is impossible

$$A_{\rm TM}'' = \{\langle M \rangle \mid M \text{ is a TM that accepts some input strings} \}$$
 Is $A_{\rm TM}''$ decidable? Why?

$$A_{\rm TM}'' = \{\langle M \rangle \mid M \text{ is a TM that accepts some input strings} \}$$
 Is $A_{\rm TM}''$ decidable? Why?

Undecidable!

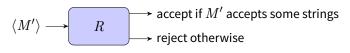
Intuitive reason:

To know whether M accepts some strings seems to require simulating M But then we need to know whether M halts

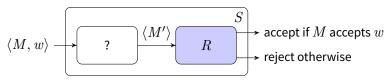
Let's justify this intuition

Eample 2: Figuring out the reduction

Suppose A''_{TM} can be decided by a TM R



We want to build a TM ${\cal S}$



 M^\prime should be a Turing machine such that M^\prime accepts some strings if and only if M accepts input w

Implementing the reduction

Task: Given $\langle M, w \rangle$, construct M' so that If M accepts w, then M' accepts some input If M does not accept w, then M' accepts no inputs

M'= a TM such that on input z,

- 1. Simulate ${\cal M}$ on input ${\cal w}$
- 2. If M accepts, accept
- 3. Otherwise, reject

Example 2: The formal proof

$$A_{\rm TM}'' = \{\langle M \rangle \mid M \text{ is a TM that accepts some input}\}$$

$$A_{\rm TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$$

Suppose $A''_{\rm TM}$ is decidable by a TM R. Consider the TM S: On input $\langle M,w\rangle$ where M is a TM

1. Construct the following TM M':

 $M^\prime =$ a TM such that on input z, $\mbox{Simulate } M \mbox{ on input } w \mbox{ and accept/reject according to } M$

2. Run R on input $\langle M' \rangle$ and accept/reject according to R

Then S accepts $\langle M,w\rangle$ if and only if M accepts w So S decides A_{TM} , which is impossible

$$E_{\rm TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$$
 Is $E_{\rm TM}$ decidable?

$$E_{\mathrm{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts no input} \}$$
 Is E_{TM} decidable?

Undecidable! We will show:

If $E_{\rm TM}$ can be decided by some TM R Then $A''_{\rm TM}$ can be decided by another TM S

 $A_{\mathrm{TM}}'' = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \}$

```
\begin{split} E_{\text{TM}} &= \{\langle M \rangle \mid M \text{ is a TM that accepts no input}\} \\ A''_{\text{TM}} &= \{\langle M \rangle \mid M \text{ is a TM that accepts some input}\} \end{split}
```

Note that E_{TM} and A''_{TM} are complement of each other (except ill-formatted strings, which we will ignore)

Suppose $E_{\rm TM}$ can be decided by some TM R Consider the following TM S: On input $\langle M \rangle$ where M is a TM

- 1. Run R on input $\langle M \rangle$
- 2. If R accepts, reject
- 3. If R rejects, accept

Then S decides A''_{TM} , a contradiction

$$\mathsf{EQ_{TM}} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \}$$
 Is $\mathsf{EQ_{TM}}$ decidable?

$${\rm EQ_{TM}}=\{\langle M_1,M_2\rangle\mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1)=L(M_2)\}$$
 Is EQ_{TM} decidable?

Undecidable!

We will show that EQ_{\rm TM} can be decided by some TM R then $E_{\rm TM}$ can be decided by another TM S

Example 4: Setting up the reduction

$$\begin{split} \mathrm{EQ_{TM}} &= \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2)\} \\ E_{\mathrm{TM}} &= \{\langle M \rangle \mid M \text{ is a TM that accepts no input}\} \end{split}$$

Given $\langle M \rangle$, we need to construct $\langle M_1, M_2 \rangle$ so that If M accepts no input, then M_1 and M_2 accept same set of inputs If M accepts some input, then M_1 and M_2 do not accept same set of inputs

Idea: Make $M_1=M$ Make M_2 accept nothing

Example 4: The formal proof

$$\begin{aligned} \mathrm{EQ_{TM}} &= \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2)\} \\ E_{\mathrm{TM}} &= \{\langle M \rangle \mid M \text{ is a TM that accepts no input}\} \end{aligned}$$

Suppose EQ_{\rm TM} is decidable and R decides it Consider the following TM S: On input $\langle M \rangle$ where M is a TM

- 1. Construct a TM M_2 that rejects every input z
- 2. Run R on input $\langle M, M_2 \rangle$ and accept/reject according to R

Then S accepts $\langle M \rangle$ if and only if M accepts no input So S decides E_{TM} which is impossible