
Progressive Skylining over Web-Accessible

Databases

Eric Lo a,1 Kevin Y. Yip b,1 King-Ip Lin c David W. Cheung d

aDepartment of Computer Science, ETH Zurich
bDepartment of Computer Science, Yale University

cDivision of Computer Science, The University of Memphis
dDepartment of Computer Science, The University of Hong Kong

Abstract

Skyline queries return a set of interesting data points that are not dominated on
all dimensions by any other point. Most of the existing algorithms focus on skyline
computation in centralized databases, and some of them can progressively return
skyline points upon identification rather than all in a batch. Processing skyline
queries over the web is a more challenging task because in many web applications,
the target attributes are stored at different sites and can only be accessed through
restricted external interfaces. In this paper, we develop PDS (progressive distributed
skylining), a progressive algorithm that evaluates skyline queries efficiently in this
setting. The algorithm is also able to estimate the percentage of skyline objects
already retrieved, which is useful for users to monitor the progress of long running
skyline queries. Our performance study shows that PDS is efficient and robust
to different data distributions and achieves its progressive goal with a minimal
overhead.

Key words: Distributed DBs, query optimization, information services on the
web, web-based information systems

Email addresses: eric.lo@inf.ethz.ch (Eric Lo), yuklap.yip@yale.edu
(Kevin Y. Yip), linki@msci.memphis.edu (King-Ip Lin), dcheung@cs.hku.hk
(David W. Cheung).
1 The work was done when the authors were with the University of Hong Kong

Preprint submitted to Elsevier Science 30 March 2005

2

4

6

8

10

2 4 6 8 100

Distance to
beach

Price
i

f

c

b

d

e

h

a

g

j

Fig. 1. Example dataset and skyline

1 Introduction

Many database users are interested in the “best” queries – queries that return
the objects that best fit a certain set of criteria. However, in many cases –
especially in multi-criteria decision making – there is no single best answer to
a query. Instead, we have a set of objects that satisfy some basic conditions
but none of them is absolutely better than the others.

For example, suppose we want to book a hotel. We may specify the room
price (the lower the better) and the distance of the hotel to the beach (the
shorter the better) as the evaluation criteria. A hotel is interesting only if
there does not exist another available hotel that is not more expensive, but
closer to the beach, or one that is not further away from the beach, but costs
less. Figure 1 shows ten hotel options, where the two axes represent the two
evaluation criteria in arbitrary scales. Following the arguments above, only
options b, c, f and i (marked by solid circles) are interesting. We cannot claim
any of them to be the best hotel without additional information about the
relative weights of the two criteria. However, the best hotel is always in this
set for all possible non-negative weights. We call such a set of objects the
skyline (since the line connecting them resembles a skyline), the objects in
the set the skyline objects, and the queries that retrieve all skyline objects the
skyline queries [1].

Skylines are useful for multi-criteria decision making as they represent sets of
objects (e.g. solutions to a problem) out of which no better objects can be
found. They can be used to filter sub-optimal objects, after which users can
focus on the small skyline and select the objects that fit their needs.

As a tremendous amount of data is spread all over the Internet, it is possible
that each criterion (represented by an attribute of an object) is stored at a

2

separate site. For our hotel example, the room prices and distances to the
beach could be stored at a broker web site and a digital map web site respec-
tively. It is thus important to devise algorithms that can answer this kind of
distributed skyline queries.

In real situations, it is very common for users to refine their queries several
times before getting the desired results. For example, if a user observes the
query results that based on the above two criteria contain some hotels that
are too far away from the airport, he may refine the query by adding the time
to the airport as a new evaluation criterion. A user may get frustrated if he
realizes that his query needs to be refined after waiting for a long processing
time. This means having a good response time is a crucial requirement for
algorithms that answer skyline queries. Rather than returning all skyline ob-
jects at the end of the query processing, the algorithms should return skyline
objects as long as they are ready since they may give important refinement
hints to users, who may decide to terminate the current query and start a
refined one immediately. We will devise one such progressive algorithm in this
paper. We will also minimize the number of remote data access, as the cost
of remote data access can be much higher than the computational cost [2,3].
The algorithm can be useful in applications such as interactive search engines.

Pioneering algorithms have been proposed to find skylines in centralized data-
bases in a batch [1], and in a progressive fashion [4–6]. [2] extends skyline
queries to the web environment described above. However, as far as we know,
there have been no previous works on finding skylines progressively in the
distributed environment described above. In this paper we will propose an
efficient progressive algorithm for processing skyline queries in such an envi-
ronment.

The main contributions of this study are: (1) We present a novel algorithm,
PDS (progressive distributed skylining), for evaluating skyline queries over
web data sources. Internally it uses R*-trees to efficiently determine whether
an object belongs to the skyline. (2) We propose a new linear-regression based
method to enable faster identification of skyline. (3) We extend PDS to evalu-
ate top-K skyline queries over web databases. (4) We propose ways to estimate
the percentage of skyline objects already retrieved, which is useful for users to
monitor the progress of long running skyline queries. (5) We show, by various
experimental results, that PDS outperforms and is more robust than the dis-
tributed skyline algorithms in [2] in terms of both the number of source access
and processing time.

The rest of the paper is organized as follows. Section 2 presents the related
work on skyline query processing. In Section 3, we review the basic blocking
skyline algorithms for the web, which solves a problem similar to ours, but
does not return skyline objects progressively. Section 4 describes the details

3

of PDS. In Section 5, we discuss how to extend PDS to evaluate other types
of skyline queries and to estimate the query progress. In Section 6, we report
the experimental results and finally in Section 7, we conclude the study with
some directions for future works.

2 Definition and Related Work

In this section we define the skyline query problem formally. We describe our
model for web data access. We also briefly introduce the related work in skyline
query processing.

2.1 Definition and model

Given a database, a user is interested in retrieving objects based on a set of
evaluation criteria. Each of them is modeled as an attribute of the objects
with totally ordered values. For simplicity, we assume each attribute value is
a non-negative real number, and smaller values are better. For instance, in our
hotel example, a lower price corresponds to a better choice. The algorithms to
be discussed in this paper can be modified in trivial ways to handle attributes
in which larger values are better.

Given a set of evaluation criteria, we say an object a is dominated by another
object b (or equivalently, b is said to dominate a) if b is not worse than a as
evaluated by all criteria, and is strictly better than a as evaluated by at least
one criterion. Intuitively, this means b is strictly better than a. Two objects
are incomparable if both of them are not dominated by the other. A set of
objects are pairwise incomparable if none of them is dominated by any other.
The skyline of a dataset is defined as the set of all data objects that are not
dominated by any other object in the dataset. It is easy to see that the skyline
of a dataset is unique, and the skyline objects are pairwise incomparable.

In this paper, we assume the evaluation criteria (object attributes) are dis-
tributed. Each attribute is supplied by a separate data source Di. Following
[3], we also assume each data source provides only two data access methods:
Sorted Access and Random Access. Sorted access is performed through the
getNext() function, which returns the best attribute value among those that
have not been accessed, and the ID of the object that owns the value. If there
are multiple objects that own the value, each getNext() call will return one of
them in an arbitrary order. Referring to Figure 1, if the getNext() function of
the digital map web site (that stores the distances to the beach) is called mul-
tiple times, it will return <i, 0> on the first call, <f , 1> on the second, <d, 3>

4

on the third, and so on. Random access is performed through the getScore()
function, which takes an object as input, and returns its attribute value. The
call getScore(h) to the digital map web site will return the value 7. We use
S(Di, O, VOi) to denote sorted access to data source Di that returns object O
and its attribute value VOi. The corresponding notation for a random access
is R(Di, O, VOi).

2.2 Related work

Skylines, and other directly related problems like maximum vector [7], con-
tour problem [8] and multi-objective optimization [9], have been well stud-
ied for conventional datasets. However, the algorithms do not work when
the dataset does not fit into main memory. In relational database context,
Borzsonyi et al. [1] first proposed two algorithms, namely Divide-and-Conquer
(D&C) and Block Nested Loops (BNL), to evaluate skyline queries. D&C di-
vides the dataset into several partitions such that each partition can fit into
memory. Skyline objects for each individual partition are then computed by a
main-memory skyline algorithm. The final skyline is obtained by merging the
skyline objects for each partition. BNL compares each object in a nested-loop
by keeping a list of candidate skyline objects in main memory. Dominated
objects are discarded during the comparisons. The efficiency of BNL is fur-
ther improved in [10] by sorting the entire dataset according to a monotonic
function a priori.

Tan et al. [6] presented two progressive skyline algorithms that require pre-
processing. The first algorithm encodes the dataset as a collection of bitmaps.
Decision on whether an object belongs to the skyline is based on some bit op-
erations. The second algorithm organizes a set of d-dimensional objects into d
lists such that an object o is assigned to list i if and only if its value at attribute
i is the best among all attributes of o. Each list is indexed by a B-tree, and the
skyline is computed by scanning the B-tree until an object that dominates the
remaining entries in the B-trees is found. Kossmann et al. [4] observed that the
skyline problem is closely related to the nearest neighbor (NN) search prob-
lem. They proposed an algorithm that returns skyline objects progressively by
applying nearest neighbor search on an R-tree indexed dataset. Papadias et
al. [5,11] surveyed most of the secondary-memory algorithms for centralized
database and proposed an I/O optimal algorithm that returns skyline pro-
gressively. More recently, Chan et al. [12] studied the computation of skyline
with partially-ordered domains. They proposed to transform each partially-
ordered attribute into a pair of integer attributes (interval) so as to enable
the use of index-based techniques as well as avoid the “dimensionality curse”
problem [1].

5

The above methods are designed for centralized databases and do not work
well in the distributed web environment because of two reasons. First, they
assume attribute values can be accessed at no (or negligible) cost. It is true in
a centralized database. However, running these algorithms in the distributed
setting may incur substantial amount of unnecessary network access. Second,
these centralized query processing techniques rely on indexes that build on all
attributes involved in the queries. However, these centralized data structures
are not available in a fully decentralized and distributed environment like the
Internet.

Very recently, Lin et al. [13] studied ways to support on-line skyline query
computation in a stream environment. Still, their work is different from what
we are studying because the data values of a object arrived from a data stream
are all known apriori, where it is not necessary true in the web.

Following the general query model [3] for the web environment, Balke et al. [2]
extended the skyline problem for the web in which the attributes of an object
are distributed in different web-accessible servers, as we have described in the
last section. They proposed two algorithms that compute the skyline in such
a distributed environment, which return all skyline objects at the end rather
than progressively. Since the problem that they study is similar to the one
of the current study, we will discuss them in detail in the next section as an
important reference to our new algorithm.

3 Skylining on the Web

3.1 Basic distributed skyline (BDS) algorithm

The basic distributed skyline (BDS) algorithm in [2] contains two phases. The
first phase identifies a subset of objects that include all the skyline objects
(probably with some other non-skyline objects). The second phase filters out
all the non-skyline objects in the subset.

In the first phase, data is retrieved by sorted access only, and each data source
is invoked in a round-robin fashion. To illustrate the idea, we extend our
hotel example by adding an extra evaluation criterion, time to the airport
(say, obtained from the web site of a shuttle bus company), and present it in
tabular format in Figure 2. Based on the round-robin scheme, BDS performs
sorted access to the database in the order S(D1, b, 0), S(D2, i, 0), S(D3, e, 1),
S(D1, a, 1), S(D2, f, 1), and so on. The algorithm avoids reading an excessive
amount of data by looking for a terminating object, which is the first object
with all its attribute values retrieved. In Figure 2, the terminating object is

6

Distance to Time to

Hotel Price Hotel the beach Hotel the airport

b 0 i 0 e 1

a 1 f 1 c 2

c 2 d 3 j 3

f 3 e 4 f 4

d 4 c 5 b 5

g 5 b 6 g 6

j 6 h 7 h 7

e 7 a 8 i 8

h 8 g 9 d 9

i 9 j 10 a 10

Broker (site D1) Digital map (site D2) Bus company (site D3)

Fig. 2. Example dataset with three attributes distributed at three different sites

f , which is detected after performing 12 sorted access. An important lemma
regarding the terminating object is proved in [2], which we rephrase in terms
of our notations as follows:

Lemma 1 When a terminating object T is detected and no more sorted access
to each data source Di can return a value equal to VTi (the attribute value of
T at Di), all objects not yet encountered cannot be in the skyline.

Since attributes are retrieved by sorted access, in order to guarantee that
no more attribute values from Di is equal to VTi, some extra sorted access is
performed on Di until an attribute value strictly larger than VTi is returned. If
all values are distinct for every attribute, the lemma simply states that phase
one is complete when the terminating object is detected, and all objects not yet
encountered cannot be in the skyline. In our example, assume attribute values
are distinct, then when f is detected as a terminating object, objects g and h
have not been encountered by sorted access and thus cannot be skyline objects.
Intuitively, this is because they have all attribute values larger than those of
f , i.e., they are dominated by f . If duplicate attribute values are allowed, the
following extra sorted access has to be performed to avoid missing any skyline
object: S(D1, d, 4), S(D2, c, 5) and S(D3, b, 5).

During phase one, for each attribute Di, a table Ki is created to store all the
attribute values (from Di or not) of the objects whose values at Di have been
retrieved. Figure 3 shows the tables for the three attributes of our extended
hotel example (assuming duplicate attribute values are allowed). These tables
are passed to phase two, at which the non-skyline objects are filtered by re-
trieving the missing attribute values through random access (e.g., R(D2, b, 6))
and performing a pairwise comparison between all objects in the tables. Ob-
jects found to be dominated by any other are filtered.

7

Hotel D1 D2 D3

b 0 5

a 1

c 2 5 2

f 3 1 4

d 4 3

K1

Hotel D1 D2 D3

i 0

f 3 1 4

d 4 3

e 4 1

c 2 5 2

K2

Hotel D1 D2 D3

e 4 1

c 2 5 2

j 3

f 3 1 4

b 0 5

K3

Fig. 3. The tables that store the data obtained from phase one of the BDS algorithm

To reduce the number of comparisons, it is observed in [2] that an object O can
only be dominated by other objects that exist in all tables that contain O. For
example, since table K1 contains object b but not e, b cannot be dominated
by e. It follows from the fact that the value of e at attribute D1 must not be
smaller than that of b since it is not retrieved before the completion of phase
one. Therefore, pairwise comparisons need to be performed between objects
that exist in the same table only.

Using the same argument, a missing value for attribute Di in a table cannot be
smaller than the largest Di value stored in the table. For example, according
to table K1, the value of d at D3 should be at least 5. This means d is proved to
be dominated by f (since d also has larger attribute values than f at D1 and
D2), without actually getting the value of d at D3 through a random access.
Some network overhead can thus be avoided.

3.2 Improved distributed skyline (IDS) algorithm

It can be seen from Figure 2 that if a terminating object is known a priori, it is
possible to perform less sorted access in phase one, have fewer objects stored in
the Ki tables, and perform less random access and fewer pairwise comparisons
in phase two. For example, if object f is predicted to be a terminating object,
once S(D2, d, 3) is performed, the sorted access to D2 can be stopped according
to Lemma 1.

Using the idea, an improved distributed skyline (IDS) algorithm, based on
a heuristic to predict the “most probable” terminating object, is proposed
in [2]. IDS tries to find an object whose attribute values can be fully retrieved
using the smallest number of sorted access. The heuristic works as follows:
initially a sorted access is performed on D1, and the object retrieved is treated
as the most probable terminating object. In our example, the object is b.
Unlike the original BDS algorithm that performs only sorted access in phase
one, the heuristic requires the other attribute values of the most probable
terminating object to be retrieved right away through random access, which
include R(D2, b, 6) and R(D3, b, 5). A score is then computed to estimate the

8

remaining number of sorted access required to reach all attribute values of b,
i.e., how much extra sorted access is required if b is used as the terminating
object. The score is calculated as the difference between the attribute values of
b and the last values retrieved through sorted access. Since no attribute values
at D2 and D3 have been retrieved through sorted access, the minimum value 0
is used. The score for object b at that moment is thus (0−0)+(6−0)+(5−0) =
11.

The algorithm then performs the next sorted access. Instead of doing it in
the round-robin fashion, the heuristic randomly selects one of the attributes
that the most probable terminating object has not been encountered through
sorted access. For object b, the attributes are D2 and D3. Suppose D2 is
selected randomly, then the sorted access S(D2, i, 0) is performed. Again, the
other attribute values of i are retrieved through random access R(D1, i, 9) and
R(D3, i, 8), and the score of it is computed as (9− 0) + (0− 0) + (8− 0) = 17.
Since the score is larger than that of b, intuitively the “distance” to reach b
through sorted access is shorter, so the heuristic keeps b as the most probable
terminating object and uses it to decide the next sorted access.

4 Progressive Distributed Skyline Algorithm

In this section we describe the details of our new algorithm PDS. For clarity,
we first assume that all the score values are distinct. Therefore, objects re-
turned by sorted access are sorted in a strictly ascending order like Figure 2.
Later we will consider the general case where duplicate values are allowed. In
Section 4.1, we present the shortcomings of BDS and IDS and the motivations
for PDS. Then we show how PDS could identify skyline objects progressively
in Section 4.2 and how PDS improves the performance of distributed skylining
by rank estimation in Section 4.3. Section 4.4 describes the basic PDS and we
generalize it to the case where duplicate values are allowed in Section 4.5. Fi-
nally, in Section 4.6, we provide a theoretical evaluation of our work in terms
of the desirable features of progressive algorithms listed in [14,4].

4.1 Motivations

Section 3 presented the BDS and IDS algorithms from [2]. While they perform
well in various cases, we believe there are grounds for improvement:

(1) In both algorithms, an object is confirmed as a skyline object only after the
pairwise comparisons in phase two is completed. In real-time applications this
may result in a long response time before the first skyline object is returned.

9

In fact, it is possible to identify skyline objects much earlier. For example, the
two sorted access S(D1, b, 0) and S(D1, a, 1) are sufficient to show that b is a
skyline object (since no other objects can have a value smaller than b at D1),
so it can be returned right away.

(2) While IDS reduces the number of data access, its success depends on the
accuracy of the heuristic to correctly predict the terminating object. Yet the
heuristic only works in some specific situations. In some cases, as we are going
to show in Section 6, the prediction is not accurate and the number of data
access is increased, rather than decreased, due to the extra random access
performed in phase one.

Thus, we propose a progressive distributed skylining (PDS) algorithm. PDS
does not wait till the end of the algorithm to start returning skyline objects. In
fact, if there are no duplicate score values in each data source, PDS determines
whether an object is a skyline object immediately after it is first retrieved and
outputs it right away if it is, which results in a short response time.

Moreover, we alleviate the problem of the existing heuristic by proposing the
use of the object ranks in various attributes for terminating object prediction.
We present a linear-regression-based method to estimate the ranks of the
object. We argue in Section 4.3 that rank is a more appropriate measure
to determine the terminating object. Experiments show that our estimation
is robust over various distributions. Moreover, it also works well when data
values in different sources are correlated or anti-correlated.

Below we discuss the two main ideas of PDS: progressiveness and rank esti-
mation.

4.2 Enabling progressiveness

To enable progressiveness, we need to determine whether an object belongs to
the final skyline as soon as its attribute values are retrieved. Achieving this
requires the following lemma:

Lemma 2 If the sorted access of a data source Di returns data values in
strictly increasing order, an object O retrieved from Di can only be dominated
by objects that are retrieved from Di before O.

Proof. By definition, if an object O is dominated by another object P , every
attribute value of P must be smaller than or equal to the corresponding at-
tribute value of O. Since Di returns no duplicate values, the value of P at Di

must be smaller than that of O. This means sorted access to Di must return
P before O.

10

Lemma 2 shows that if an object O is retrieved from a data source by sorted
access, we only need to test if O is dominated by any object that appears before
O in the same source. If no such dominating objects exist, O is definitely part
of the skyline – as all objects that appear after O cannot dominate O.

Take data source D3 in Figure 2 as an example. Object e(7, 4, 1) is first re-
trieved by invoking the getNext() function on D3 and is identified as part of
the skyline because no objects can dominate e on data source D3 (the attribute
values 7 and 4 of e are retrieved by random access 2 if necessary). Next, object
c(2, 5, 2) is retrieved and compared with all objects that appear before it (i.e.,
object e) and found to be incomparable with e. By Lemma 2, we know that
c would not be dominated by objects after it and thus c can be outputted as
part of the skyline immediately. Similarly, object j(6, 10, 3) is next retrieved
from D3. We compare it with e and c and found that j is dominated by e in
all dimensions and therefore j is not part of the skyline.

Still, Lemma 2 requires an object O to be compared to every object re-
trieved before it in the same source, which can be slow if the comparisons
are performed in a brute-force manner. We would like to reduce the num-
ber of pairwise comparisons. To this end, we propose using a main-memory
multidimensional index to speed up this process. We choose R*-tree [15] as
the index because of its efficiency and wide acceptance in the skyline litera-
ture [4,5]. Our approach differs from the R-tree algorithms that find skyline
in centralized databases [4,5] in that the target data set is not ready before
the evaluation of the query, which means the tree in our approach is built and
updated on-the-fly.

An R*-tree Ri is built for each attribute i involved in the skyline query. Ri

contains the skyline objects discovered so far based on sorted access to Di. As
a result, for an object O retrieved from a data source Di, we can check to see
if there is any object in Ri that dominates O. If no such objects can be found,
O is identified as a skyline object immediately and is inserted into Ri.

In order to demonstrate the concept of R*-tree, let us consider data source
D3 again. Initially, the skyline object e is inserted into R3. Note that since the
score values of the objects retrieved from each source are strictly increasing,
we do not need to insert the i-th attribute value of an object into Ri. For
instance, the skyline object e(7, 4, 1) is inserted into R3 in the form of e(7, 4).

To test whether a newly retrieved object O is dominated by any object that
has been retrieved before from the same source Di, a containment query QO

is constructed, with the origin set as the lower-left corner and O set as the
upper-right corner, to see if any object in Ri is contained within QO. If the

2 Following [2,3], here we assume an object O must exist in every data source Di;
however in practice, we could discard O if it does not exist in all data sources.

11

2

4

6

8

10

2 4 6 8 100

y-axis
(Distance)

x-axis
(Price)

e

c

(a) Testing of c on R3

2

4

6

8

10

2 4 6 8 100

y-axis
(Distance)

x-axis
(Price)

e

j

c

(b) Testing of j on R3

2

4

6

8

10

2 4 6 8 100

y-axis
(Distance)

x-axis
(Price)

e

f

c

(c) Testing of f on R3

N1

2

4

6

8

10

2 4 6 8 100

y-axis
(Distance)

x-axis
(Price)

e

a

b
c

d

f
g

h

N2

N3

N4

N5

N6

x

(d) An example R*-tree

Fig. 4. R*-tree for dominance checking

result of QO is empty, no objects retrieved before O dominate it in all the
projected dimensions. In this case, O is a skyline object and can be outputted.
Conversely, if QO is non-empty, there exists at least one object, say S, that
is better than O in all projected dimensions. Since S is retrieved before O
from data source Di, this implies that S also has a better value in Di than O.
Therefore, O is dominated by S in all dimensions and does not belong to the
final skyline.

Let us revisit data source D3 as an example. Firstly, recall that object e(7, 4, 1)
is a skyline and is thus inserted into R3 in the form of e(7, 4). To test whether
the next retrieved object c(2, 5, 2) is a skyline, a containment query Qc[(0, 0)(2, 5)]
that is based on the projected dimensions D1 and D2 of c is executed on R3

(see Figure 4(a)). Since the result of Qc is empty, object c is outputted as a
skyline object and is inserted into R3. Next, to see if object j(6, 10, 3) belongs

12

Function isDominated(Object o, Attribute i, R*-tree Ri)

1. //Ri:the R*-tree storing skyline objects appears in attribute i

2. let N as the number of dimensions involved in the skyline

3. construct a (N − 1)d containment query Qo

4. set the origin as the lower-left corner of Qo (ignore dimension i)

5. set o as the upper-right corner of Qo (ignore dimension i)

6. if Ri.contain(Qo) returns true //o is not a skyline

7. return true

8. else //o is a skyline

9. construct a (N − 1)d containment query Qo

10. set o be the lower-left corner of Qo (ignore dimension i)

11. set infinity as the upper-right corner of Qo (ignore dimension i)

12. delete all objects falls in Qo

13. Ri.insert(Qo)

13. return false

End isDominated

Fig. 5. Dominance checking by R*-tree

to the skyline, we again execute another containment query Qj[(0, 0)(6, 10)]
on R3 (see Figure 4(b)). Query Qj returns c as an answer, thus object c
dominates j at all three attributes and thus j can be discarded. Similarly, the
containment query Qf [(0, 0)(3, 1)] for object f(3, 1, 4) has an empty result (see
Figure 4(c)), therefore f belongs to the skyline and is inserted into R3. Notice
that since f(3, 1) dominates e(7, 4) in R3, insertion of f into R3 should delete
objects that are dominated by f in order to make the R*-tree more compact
and efficient. In this example, e should be deleted from R3 after inserting f .

The benefits of using R*-tree to check domination of objects is two-fold. First,
the R*-tree built for each attribute is very compact in size since it stores
only the skyline objects that have the highest pruning power (e.g., object e is
deleted after the insertion of object f into R3). Second, the containment query
operation is very efficient because a containment query Q only visits objects
with minimum bounding boxes that overlap with Q in the compact R*-tree.
Figure 4(d) shows the node structure of an example R*-tree index. We can see
that the dominance checking function does not need to access node N6 and
its children for testing object x.

Summing up the above ideas, we first present an R*-tree based dominance
checking function isDominated in Figure 5. This function will be employed by
the main algorithm PDS later. It returns true if and only if an input object O
is dominated by an existing skyline object that appears before O in the same
data source.

13

4.3 Rank estimation

In order for the distributed skyline algorithm to be efficient, it is crucial to
find a good terminating object quickly. Here we argue that a good terminating
object is characterized by its rank in the sorted list of attribute values in each
of the sources.

We denote ranki(O) as the rank of object O in source Di. We adopt the
convention that the first object retrieved from the source has rank 1, the
second one has rank 2 and so on. We define sumrank(O) =

∑
i ranki(O) as

the sum of the ranks in all attributes of O. We note the following:

• If T is a terminating object, then the minimum number of access required
to locate it by sorted access only is sumrank(T).

• The number of objects that need to be compared increases when sumrank(T)
increases, though the increase is not necessarily linear. An increase in the
number of objects implies a higher number of random access (to retrieve all
the attributes) is required.

The smaller sumrank(O) is, the more preferable O is as the terminating ob-
ject. Thus we would like PDS to locate an object with the minimum sum of
all ranks as the terminating object. This implies that the minimum number of
sorted access (and likely, random access) is needed to pinpoint the terminating
object.

However, in our model the rank of an object in a data source Di is not readily
available. For instance, a random access supplies the attribute value of an
object, but it provides no hints to the number of objects appearing before
it. The only way to know the exact rank of O in Di is via sorted access
– if O is retrieved by the k-th sorted access, the rank of O in Di is k. As
a result, we need to estimate the rank of an object in each data source. If
one has the information about the distribution of values in a source, one can
tailor-make a function to accurately estimate the rank of an object in that
source. In this paper, however, we assume such information is not available.
Thus we have to devise a method to estimate the rank. While we would like
the method to be accurate, we would also like to avoid laborious calculations
that take extensive CPU time. We propose using linear regression as our rank
estimation method. For each source, PDS has the information about the ranks
of the objects already retrieved through sorted access. For a source Di, we use
the information to devise an equation of the form ranki = ai ∗ valuei + bi

such that the squared error of the estimated ranks of all retrieved values is
minimized, where valuei and ranki are the value and rank of an object in
source Di. Assume that we have made k sorted access to source Di, we can
obtain ai and bi by the following linear regression formulas, which can be found

14

in any standard numerical analysis textbook.

ai =
k

∑
rankivaluei − (

∑
valuei)(

∑
ranki)

k
∑

valuei
2 − (

∑
valuei)2

(1)

bi =
(
∑

ranki)(
∑

valuei
2)− (

∑
valuei)(

∑
rankivaluei)

k
∑

valuei
2 − (

∑
valuei)2

(2)

By utilizing the retrieved data values in rank estimation, the estimation ac-
curacy is not affected in some adverse situations such as having different
value ranges in different attributes, which can severely mislead the estima-
tion method of IDS.

It is easy to determine the values of the coefficients ai and bi. Moreover, we
can maintain a current value of all the sums in the formulas, and update them
incrementally when new values come to get the updated coefficients. As we
need at least two values to evaluate the formulas, initially we make two sorted
access to each source, and evaluate the initial value of each ai and bi.

There are many ways to perform function estimation, and we understand the
simple linear least square method may not be always the best one. But in
general, it is simple, efficient and quite effective. We will show by experiment
that it works very well in various distributions – skewed or not. In more
complicated cases where the linear least square does not work well, our method
can easily be extended to more advanced methods such as least square fitting
to higher order polynomials.

4.4 Algorithm description

The pseudo-code of the main algorithm PDS is presented in Figure 6 and
its auxiliary functions are presented in Figure 7. At the beginning, the al-
gorithm performs two sorted access to each source. Consider Figure 2 again.
The objects and attribute values returned by the sorted access are: S(D1, b, 0),
S(D1, a, 1); S(D2, i, 0), S(D2, f, 1); S(D3, e, 1), S(D3, c, 2). Since the data val-
ues are sorted in a strictly increasing order, objects b, i and e are skyline objects
from attributes D1, D2 and D3 respectively. By Lemma 2, after retrieving the
unknown attribute values of objects b, i and e by random access, they are
reported as skyline objects by the OutputSkyline function immediately.

Now, the regression coefficients ai and bi can be calculated according to the
retrieved information. For example, given objects <e,1> (rank 1) and <c,2>

15

Algorithm PDS

1. Skyline = ∅ //list of skyline objects

2. Pruned = ∅ //list of pruned objects – object that are not skylines

3. Cand = ∅ //list of objects that are candidates for terminating object

4. for each data source Di

5. perform sorted access and retrieves the two topmost objects oi1, oi2

6. perform necessary random access to oi1, oi2

7. OutputSkyline(oi1, i)

8. initialize regression coefficients ai, bi

9. CheckSkyline(oi2, i)

10. add oi1, oi2 to Cand

11. end for

12. while no objects have all attribute values retrieved by sorted access

13. T = PickNextTermObject()

14. let D′ = set of all data sources of which the attribute values of T have not been retrieved by sorted access

15. Randomly pick one data source D′
i from D′

16. perform sorted access to D′
i, let oi be the object retrieved

17. add oi to Cand

18. update regression coefficients ai, bi

19. if oi 6∈ Pruned or Skyline

20. CheckSkyline(oi, i)

21. end while

End PDS

Fig. 6. The PDS algorithm

(rank 2) from data source D3, the values of a3 and b3 are:

a3 =
2(1 · 1 + 2 · 2)− (1 + 2)(1 + 2)

2(12 + 22)− (1 + 2)2
= 1

b3 =
(1 + 2)(12 + 22)− (1 + 2)(1 · 1 + 2 · 2)

2(12 + 22)− (1 + 2)2
= 0

After the initialization of the regression coefficients ai and bi, PDS invokes
the CheckSkyline function to determine whether the second-ranked objects
a, f and c belong to the skyline. Essentially, CheckSkyline checks if the
input object is dominated by any other object by calling the isDominated

function, which we have presented in the previous section. If the input object
is dominated by any other object, it would be discarded; otherwise, it would
be reported as a skyline object by the OutputSkyline function. After the
regression coefficients are updated, one of the skyline objects is selected by
the function PickNextTermObject as the “most probable” terminating object.

16

Function CheckSkyline(Object o, Attribute i) //check if o is a skyline point

1. if isDominated(o, i, Ri)

2. add o to Pruned

3. else

4. OutputSkyline(o, i)

End CheckSkyline

Function PickNextTermObject() //Find the most probable terminating object

1. for each o in Cand

2. ranko = 0;

3. for each data source Di

4. if o’s rank in Di is known

5. ranko += o’s rank in Di

6. else

7. ranko += ai * oi.value + bi

8. end for

9. return o with the minimum ranko

End PickNextTermObject()

Function OutputSkyline(Object o, Attribute i) //report a skyline to user

1. report o as a skyline

2. add o to Skyline

End OutputSkyline()

Fig. 7. The auxiliary functions of PDS

Object Values Ranks Sum of Ranks

b (0, 6, 5) (1 ,7, 5) 13

a (1, 8,10) (2 ,9, 10) 21

i (9, 0, 8) (10,1, 8) 19

f (3, 1, 4) (4 ,2, 4) 10

e (7, 4, 1) (8 ,5, 1) 14

c (2, 5, 2) (3 ,6, 2) 11

Table 1
The ranks of objects in the example

Table 1 shows an instance of the ranks of objects after the initialization step.
Note that the estimated ranks of the objects are underlined. Referring to the
table, object f is chosen as the most probable terminating object T because
its sum of ranks, 10, is the smallest.

PDS then iteratively picks an attribute of which the value of the current
terminating object has not been retrieved by sorted access in random as the
next source to perform sorted access. Assume D3 is the selected source, then
object j will be retrieved by sorted access S(D3, j, 3). Afterwards, the unknown
attribute values of j are retrieved by random access and the isDominated

function will be invoked to check if j is a skyline object. The process repeats

17

Distance to Time to

Hotel Price Hotel the beach Hotel the airport

b 0 i 0 e 1

a 1 f 2 h 2

i 2 j 2 c 3

f 3 c 4 j 3

d 3 e 5 f 4

g 5 b 6 g 5

j 5 h 7 b 7

c 6 a 8 i 8

h 8 g 9 d 8

e 9 d 9 a 10

Broker (site D1) Digital map (site D2) Bus company (site D3)

Fig. 8. A dataset with duplicate values

until there is an object whose attribute values have all been retrieved by sorted
access, at which time the whole query processing is complete.

4.5 Handling duplicate values

So far our discussions assume the data values returned by sorted access are
distinct and sorted in a strictly increasing order. Essentially, Lemma 2 states
that an object O retrieved from data source Di can be outputted as a skyline if
no objects retrieved before O from the same source dominate it. However, the
lemma does not applied directly when it is possible to have duplicate attribute
values. Consider the dataset in Figure 8. Objects c and j share the same data
value 3 in D3. Assume that after performing two sorted access to each source,
PDS regards f as the terminating object and selects data source D3 to perform
the next sorted access. Although object c(6, 4, 3) retrieved from D3 is strictly
better than both e(9, 5, 1) and h(8, 7, 2) on the projected dimensions D1 and
D2, c is not a skyline object. It is because there is an unencountered object
j(5, 2, 3) that is as good as c along dimension D3 (due to duplicate values)
and is better than c along all other dimensions.

This problem can be solved by keeping a buffer Bi for each data source Di.
Whenever an object is retrieved from Di and is identified as a possible skyline
object by the isDominated function, it is inserted into Bi instead of reported
as a skyline object immediately. Essentially, the buffer Bi is another R*-tree
that holds possible skyline objects all with the same value in attribute Di at
a particular instant. The steps of inserting a possible skyline object into the
buffer is identical to those of testing dominance of newly retrieved objects and
thus can reuse the isDominated function. Therefore, for each possible skyline
object s that is inserted into the buffer Bi, we check if s is dominated by

18

Function OutputSkyline(Object o, Attribute i) //handle duplicate values version

1. //Bi : an R*-tree buffer on dimension i

2. if value of object o > current value in buffer in dimension i

3. flush all objects in the buffer Bi into Skyline and report them as skyline

4. clear buffer Bi

5. if isDominated(o,i, Bi)

6. insert object o into Bi

7. else

8. discard o

End OutputSkyline

Fig. 9. Revised OutputSkyline function

any object in the buffer. If this is the case, s will be discarded. Otherwise, all
objects in the buffer that are dominated by s will be removed. When an object
with a larger value in data source Di is inserted into Bi, objects that are still
in Bi are outputted as skyline and the buffer is cleared. Figure 9 presents the
revised OutputSkyline function that handles duplicate values.

4.6 Effectiveness evaluation

Now, we give a theoretical evaluation of the effectiveness of PDS according to
the criteria listed in [14,4].

1. Progressiveness : the first results should be returned to the users almost
instantaneously, and the rest of the results should be returned progressively
given more time.

2. Completeness : given enough time, the algorithm should return the full sky-
line completely.

3. Correctness : the algorithm should return objects that are definitely in the
final skyline. That is, the algorithm should not return objects that will be
later replaced.

4. Fairness : the algorithm should not favor objects that are particularly good
in one dimension.

5. Support user preferences : users are allowed to control the order of skyline
objects returned according to their preferences.

6. Universality : the algorithm should be applicable to skyline queries with
different dimensionality and dataset, but require no special data structures.

By using the R*-tree approach, PDS returns the first results almost instantly

19

and fulfills criterion (1). Since PDS stops only when it finds a terminating ob-
ject T with all attribute values retrieved by sorted access, objects that belong
to the skyline (i.e., incomparable with T) must have at least one attribute
value better than T and which must have been retrieved before T is deter-
mined as a terminating object. Thus criterion (2) is also satisfied. Lemma 2
guarantees criterion (3). Since processing queries on the web has to deal with
restrictive accessing interfaces (e.g., sorted access and random access only),
the order of data retrieved from each source is fixed. Criterion (4) that is suit-
able for the centralized environment like [14,4] is inapplicable to the problem
we are studying. As we will show in the next section, PDS is able to support
user preference queries like top-K skyline queries, thus criterion (5) is also
fulfilled. Finally, PDS satisfies criterion (6) because it supports skyline queries
that involve any number of dimensions, and it is based on a standard index
structure (R*-tree) that supports dynamic updates and is independent of the
data distribution.

5 Extensions of PDS

Next we propose two interesting extensions of PDS. Section 5.1 discusses how
PDS can be applied to processing top-K skyline queries and Section 5.2 shows
how PDS can estimate the percentage of skyline objects already retrieved,
which is useful for users to monitor the progress of long running skyline queries.

5.1 Evaluation of top-K skyline queries

While skyline queries return the set of all potentially interesting objects, the
set can be too large for a human user to process. Therefore one may want to
rank the skyline objects according to a preference function f . Consider the
running example in Figure 1. A user may be interested in the top-2 skyline
hotels that minimize the function f(price, distance) = price + distance. The
outputted skyline hotels should be <f ,4>, <b, 6> in this order (each number
is the score of the corresponding hotel according to f). Here, we require that
a smaller f value indicates a better choice, and the f value of a non-skyline
object is always larger than that of one of the skyline objects. The latter
requirement ensures that the desired result is a subset of the skyline.

PDS can easily handle such queries by keeping a priority queue P to keep
the top-K objects along the skyline evaluation process. A skyline object s
would be inserted into P if s has a lower score than an object o in P . For
illustration, consider the above function f . Let boundi be the value retrieved
by the last sorted access to data source Di, i.e., the lower bound value of

20

objects that have not yet seen in Di. Originally, PDS terminates when there
is an object with all attribute values retrieved by sorted access. Now, PDS
terminates when the k-th object in P has a score less than the sum of the
lower bounds in all attributes, i.e., score(k) <

∑
i boundi. It is because we

know that the scores of all unseen objects must be larger than the score of
the k-th object. For the same reason, an object o in P could be outputted
as a top-K skyline once score(o) <

∑
i boundi during the evaluation process.

Finally, for an object o with an attribute value newly retrieved by a sorted
access, o can be discarded immediately if its score is higher than the score of
the k-th object in P , i.e., score(o) > score(k). Note that we could calculate
the score of o without retrieving all its unknown attribute values by random
access but to use the value boundi instead.

In fact, the evaluation strategy of top-K skyline by PDS can be extended to the
case where only one source supports sorted access (denoted as the S-Source)
and the rest supports only random access (denoted as the R-Sources) [3]. It
is a realistic situation because the web abounds sources that support random
access only (e.g., the MapQuest site 3). While it is obvious that all distributed
algorithms must scan the S-Source once in order to compute the full skyline
under this model, we could evaluate top-k skyline instead of the full skyline
by disabling the rank estimation method of PDS and performing sorted access
to the S-Source only.

5.2 Progress estimation

A useful application of the terminating object prediction method is to estimate
the amount of remaining query time, so that users can determine whether to
wait for the completion of the query, or to make a decision based on the current
set of results [16,17] (see Figure 10). In PDS, the estimation can be done as
follows: suppose object O is the current most probable terminating object
with rank (confirmed by sorted access or approximated by linear-regression)
Roi on source Di. Also let Ri be the rank of the last object retrieved from
Di by sorted access. The values

∑
i Roi and

∑
i Ri indicate the estimated total

number of sorted access required by the whole query and the number of sorted
access already performed respectively. We estimate the completed portion of
the query, p, by the following formula:

p =
∑

i

min(Roi, Ri)/Roi

Given p, the estimated remaining query time can be derived from p easily.

3 http://www.mapquest.com

21

Fig. 10. Query progress estimation

The use of min(Roi, Ri) in the numerator is to handle the case Ri > Roi,
which happens when more than Roi sorted access have been performed at
Di before O is identified as the most probable terminating object. Notice
that the formula considers sorted access only. Since in the later stage some
values retrieved by sorted access belong to objects that have already been
encountered, the number of random access per sorted access is expected to
decrease with time. In other words, the formula is a conservative one. In general
the value of p has an increasing trend. But decreases could occur locally, due
to imprecise estimated ranks or a change of the choice of the most probable
terminating object. Smoothing techniques can be applied to eliminate the
local fluctuations, such as reporting the average value of p in the last few
estimations instead of p.

6 Experimental Evaluation

To evaluate the effectiveness and efficiency of PDS, we evaluated the perfor-
mance of PDS against three distributed skylining algorithms on both real and
synthetic datasets. The first two algorithms are BDS (Section 3.1) and its
variant IDS that is based on distance optimization (Section 3.2). The last
algorithm Optimal is an optimal version of PDS that has complete knowledge
of the target datasets. Optimal determines the best terminating object T by
scanning the whole dataset once, and then calculates the number of necessary
sorted access and random access according to T . Of course Optimal is not ap-
plicable in the real situations. It is included to show the best case performance
for comparisons.

In Section 6.1, we first evaluate the performance of PDS on a real data set.
Then we study the performance of PDS in terms of the number of source
access under different settings in Section 6.2. Section 6.3 studies the progres-

22

BDS IDS PDS Optimal

Time for first 10 objects (sec) 46 172 <1 n/a

Completion time (sec) 46 172 43 n/a

Source access (K) 35.3 37.1 28.0 24.2
Table 2
Real datasets

(a) Uniform dataset (b) Non-uniform dataset

Dimension Independent Anti-correlated Random Denormalized

10K 50K 10K 50K 50K 50K

3 50 64 367 812 61 68

4 167 266 914 2341 234 277

5 430 792 1886 5166 764 751
Table 3
Average numbers of skyline objects

sive behavior of PDS and finally Section 6.4 evaluates the effectiveness of our
proposed progress estimation.

The programming language used to implement all algorithms is Java. The
R-*trees being built uses a page size of 4Kbytes. Since the size of the main-
memory buffer pool gives marginal impact on Skyline algorithms [1], we fol-
low [1] and set the size of the main-memory buffer pool as 10 percent of the
size of the database. A Pentium III Xeon 700MHz PC with 1Gbytes RAM is
used for all experiments.

6.1 Experiments on real data

To validate PDS on real data distributions, we performed experiments on the
Cover data set [18]. The real data set is used for predicting forest cover types
from cartographic variables and was employed by [19] to experimentally eval-
uate top-K algorithms over web-accessible data sources. The dataset contains
information about various wilderness areas. Specifically, we consider three at-
tributes: Elevation (in meters), aspect (in degrees azimuth), and horizontal
distance to roadways (in meters). For the experiments, we extracted a subset
of 60,000 objects from the Cover dataset. The skyline results consist of 182
objects. Table 2 shows that PDS returned the first 10 skyline objects almost
instantaneously. Further, it returned the full skyline before both PDS and IDS
reported the first results. PDS also outperformed BDS and IDS in terms of
source access and was close to Optimal.

23

6.2 Number of source access

In the coming subsections we present results on synthetic datasets with various
sizes and dimensionalities. The values of an attribute were generated according
to either uniform, Gaussian or negative exponential distribution in ways to be
described later. The attributes were either independent, correlated or anti-
correlated [1]. In the first case, the values of each attribute were generated
independently according to its own distribution. In the correlated and anti-
correlated cases, the values of the first attribute were generated independently,
and those of each subsequent attribute were generated as a linear combination
of the previous attribute value of the same object and a random value sampled
from the corresponding distribution. For the correlated case, the coefficient for
the previous attribute value was positive so that the attributes were positively
correlated, while in the anti-correlated case, the coefficient was negative so that
each attribute had a negative correlation with the previous attribute.

Following the common methodology in the literature, we first study the num-
ber of source access for independent and anti-correlated datasets with 3–5
data sources 4 , having 10K and 50K objects. Table 3a shows the sizes of the
skylines in datasets with different dimensions (# of attributes) and dataset
sizes where attribute values are generated according to uniform distributions.
We can see the size of the skyline increases with the number of dimensions
but not the dataset size. In addition, the size of the skyline in anti-correlated
datasets is larger than the corresponding independent datasets.

The number of source access versus dataset dimensionality for independent
and anti-correlated datasets with 10K objects are shown in Figure 11(a) and
Figure 11(b). IDS and PDS made fewer source access than BDS in both kinds
of datasets. The results were similar when we scaled up the size of the dataset
to 50K objects (see Figure 12(a) and Figure 12(b)). PDS and IDS could make
fewer source access because they could reach the terminating object earlier
than BDS. The figures also show that the performance of IDS and PDS were
close to Optimal, which indicates that PDS and IDS estimated a set of very
good terminating objects under uniform distribution. In Figure 11(b) and Fig-
ure 12(b), we observe that the improvement of PDS and IDS was less obvious
when the dataset was anti-correlated. This is because the best terminating
object in anti-correlated datasets usually had value ranks around half the
number of objects, in which case the performance of the simple round-robin
mechanism of BDS was also close to optimal.

To illustrate the robustness of the algorithms under different situations, we
generated another set of datasets with dimensionalities in the range [3,5] and

4 It is commonly accepted that skyline queries in high dimensional space yields no
sensible results [1,4,2]

24

0

5

10

15

20

25

3 4 5
Dimensionality

A
vg

. n
o.

 o
f

so
ur

ce
 a

cc
es

se
s

(K
)

BDS (10K)

IDS (10K)

PDS (10K)

Optimal

(a) Independent

0

5

10

15

20

25

30

35

40

45

50

3 4 5
Dimensionality

A
vg

. n
o.

 o
f

so
ur

ce
 a

cc
es

se
s

(K
)

BDS (10K)

IDS (10K)

PDS (10K)

Optimal

(b) Anti-Correlated

Fig. 11. Average number of source access under uniform dataset (10K objects)

with 50K objects. The distribution of each dimension was randomly picked
from the following distributions: Uniform; Normal (Gaussian); and Negative
Exponential. Figure 13(a) shows the experimental results. Note that IDS per-
formed significantly worse than BDS in this set of experiments. Since the
skyline sizes of the random distribution datasets are similar to that of the in-
dependent uniform distribution datasets (see Table 3), the degradation of IDS
was solely due to its error in estimating terminating objects. The error was
mainly due to the fact that IDS implicitly assumes uniform data distributions,
which is not always true in practice. On the other hand, the performance of
PDS was still close to Optimal and outperformed both BDS and IDS in the
experiments.

We now present the performance of the three algorithms when the values of
each attribute are not normalized to the same range in Figure 13(b). We ob-
serve that IDS made more source access than PDS because it assumes all
attributes are normalized to the same data range, e.g., [0,10]. Again, since the
skyline sizes in this setting were close to that of the independent datasets (see
Table 3), the degradation of IDS was caused by imprecise prediction of termi-
nating object when the attributes had different value ranges. In contrast, PDS

25

0

20

40

60

80

100

120

3 4 5
Dimensionality

A
vg

. n
o.

 o
f

so
ur

ce
 a

cc
es

se
s

(K
)

BDS (50K)

IDS (50K)

PDS (50K)

Optimal

(a) Independent

0

50

100

150

200

250

3 4 5
Dimensionality

A
vg

. n
o.

 o
f

so
ur

ce
 a

cc
es

se
s

(K
)

BDS (50K)

IDS (50K)

PDS (50K)

Optimal

(b) Anti-Correlated

Fig. 12. Average number of source access under uniform dataset (50K objects)

was unaffected by the value ranges because it imposes no such assumptions.

6.3 Progressive behavior

Next we evaluate the speed of the algorithms in returning the skyline points
progressively. Figure 14 shows the time for PDS to evaluate a 4-d skyline
query verses the percentage of points returned for an anti-correlated dataset
with 50K objects. Figure 14 shows that PDS returned the first few skyline
objects almost instantaneously. It returned the skyline objects continuously
and half of the skyline objects were returned within a minute. Furthermore,
PDS outputted the entire skyline before both BDS and IDS reported the first
results. The speedup of PDS was brought by the rank estimation and the
R*-tree structure. First, the rank estimation of PDS reduced the number of
source access effectively and thus the algorithm could be terminated earlier.
Second, PDS used R*-tree to reduce the number of comparisons required after
the terminating object is found. From the experimental results of both real
and synthetic datasets, we assert that the operations of R*-tree in PDS are

26

0

20

40

60

80

100

120

140

160

180

3 4 5
Dimensionality

A
vg

. n
o.

 o
f

so
ur

ce
 a

cc
es

se
s

(K
)

BDS (50K)

IDS (50K)

PDS (50K)

Optimal

(a) Random Distribution

0

20

40

60

80

100

120

3 4 5
Dimensionality

A
vg

. n
o.

 o
f

so
ur

ce
 a

cc
es

se
s

(K
)

BDS (50K)

IDS (50K)

PDS (50K)

Optimal

(b) Denormalized Domain

Fig. 13. Average number of source access under various dataset combinations

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

% of answers output

tim
e

(s
)

BDS
IDS
PDS

Fig. 14. Progressive behavior (4-d 50k objects, anti-correlated data)

much more efficient than the pairwise comparison approach of BDS and IDS.
The running time of IDS was longer than BDS even though it made fewer
source access than BDS (see Figure 11(b)) because BDS could discard non-
skyline objects in the second phase by using the upper bound information as
discussed in Section 3.

27

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

time (1000s)

%
 c

om
pl

et
e

estimated % complete

actual % complete

Fig. 15. Estimated completion % vs time (4-d 50k objects, anti-correlated data)

6.4 Effectiveness of progress estimation

Finally, we evaluate the effectiveness of our proposed progress estimation by
comparing the estimated completion percentages reported by PDS with the
actual percentages. The experimental setting was same as in the previous
experiments. In Figure 15, the actual completion percentages of the query over
time are shown by the dotted line and the completion percentages estimated
by PDS are shown by the solid line. We can see that the estimation of PDS
was fairly close to the actual percentages at the beginning and closer in the
later stage. The unstable estimation of PDS at the early stage was due to
inadequate data for the linear regression method to find a good fit. When
more objects were visited by PDS, the regression coefficients continued to be
refined and yielded a better result.

7 Conclusion

Skyline queries are important for database applications like decision support
and customer information systems. In this paper, we proposed PDS, a novel
progressive algorithm that computes skyline queries over web-accessible data-
bases. Users execute skyline queries over web data sources by PDS and re-
trieve the results incrementally. As a result, users could make their decisions
in real-time. By making use of a simple estimation based on linear regression
and a standard index structure R*-tree, PDS evaluates skyline efficiently in
terms of both the number of source access and the computational time over
various kinds of data distributions. Furthermore, it does not require any pre-
computation (the R*-tree is created on-the-fly) of the remote data and can
also be easily extended to evaluate top-K skyline under the web environment.
In addition, PDS is user-friendly by supporting a progress estimation such
that users know the headway of the query evaluation process and can make
early decisions accordingly.

28

There are several avenues for future work. First, we plan to improve the usabil-
ity of PDS by allowing users to barter between progressiveness and efficiency.
It is because we found that the number of source access could be saved by
reporting skyline points less frequently.

Second, distributed query processing on mobile devices has also drawn much
attention in recent years [20]. Thus, we plan to evaluate distributed skyline on
devices with tight memory requirements (e.g., PDA and cell phone). It would
be useful and convenient if users could execute skyline queries through such
devices.

Acknowledgment

We would like to thank Benjamin Kao and Nikos Mamoulis for their helpful
comments and suggestions. We would also like to thank Marios Hadjielefthe-
riou for providing his code library for this project.

References

[1] S. Borzsonyi, D. Kossmann, K. Stocker, The skyline operator, in: Proc. of ICDE,
2001, pp. 421–430.

[2] W.-T. Balke, U. Guntzer, J. X. Zheng, Efficient distributed skylining for web
information systems, in: Proc. of Extending Database Technology (EDBT),
2004, pp. 256–273.

[3] N. Bruno, L. Gravano, A. Marian, Evaluating top-k queries over web-accessible
databases, in: Proc. of ICDE, 2002, pp. 369–382.

[4] D. Kossmann, F. Ramsak, S. Rost, Shooting stars in the sky: An online
algorithm for skyline queries, in: Proc. of VLDB, 2002, pp. 275–286.

[5] D. Papadias, Y. Tao, G. Fu, B. Seeger, An optimal and progressive algorithm
for skyline queries, in: Proc. of ACM SIGMOD, 2003, pp. 467–478.

[6] K.-L. Tan, P.-K. Eng, B. C. Ooi, Efficient progressive skyline computation, in:
Proc. of VLDB, 2001, pp. 301–310.

[7] J. Matousek, Computing dominances in En, Information Processing Letters
38 (5).

[8] D. H. McLain, Drawing contours from arbitrary data points, The Computer
Journal 17 (4) (1974) 318–324.

[9] R. Steuer, Multiple criteria optimization, Wiley, 1986.

29

[10] J. Chomicki, P. Godfrey, J. Gryz, D. Liang, Skyline with presorting, in: Proc.
of ICDE, 2003, pp. 717–816.

[11] D. Papadias, Y. Tao, G. Fu, B. Seeger, Progressive skyline computation in
database systems., To appear in ACM Transactions on Databases Systems.

[12] C.-Y. Chan, P.-K. Eng, K.-L. Tan, Stratified computation of skylines with
partially-ordered domains, in: To appear in Proc. of ACM SIGMOD, 2005.

[13] X. Lin, Y. Yuan, W. Wang, H. Lu, Stabbing the sky: Efficient skyline
computation over sliding windows., in: To appear in ICDE, 2005.

[14] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth,
P. J. Haas, Interactive data analysis: The control project, IEEE Computer 32 (8)
(1999) 51–59.

[15] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-tree: An efficient
and robust access method for points and rectangles, in: Proc. of ACM SIGMOD,
1990, pp. 322–331.

[16] G. Luo, J. F. Naughton, C. J. Ellmann, M. W. Watzke, Toward a progress
indicator for database queries, in: Proc. of ACM SIGMOD, 2004, pp. 791–802.

[17] S. Chaudhuri, V. R. Narasayya, R. Ramamurthy, Estimating progress of long
running sql queries, in: Proc. of ACM SIGMOD, 2004, pp. 803–814.

[18] C. Blake, C. Merz, UCI repository of machine learning databases (1998).
URL http://www.ics.uci.edu/∼mlearn/MLRepository.html

[19] A. Marian, N. Bruno, L. Gravano, Evaluating top-k queries over web-accessible
databases, ACM Transaction on Database System 29 (2) (2004) 319–362.

[20] E. Lo, N. Mamoulis, D. W. Cheung, W. S. Ho, Processing ad-hoc joins on mobile
devices, in: Proc. of Database and Expert Systems Applications (DEXA), 2004,
pp. 611–621.

30

