Mining Order-Preserving Submatrices from Data with Repeated Measurements

Chun Kit Chui, Ben Kao Kevin Y. Yip Sau Dan Lee
Department of Computer Science Department of Computer Science Department of Computer Science
The University of Hong Kong Yale University The University of Hong Kong
{ckchui,kagd @cs.hku.hk yuklap.yip@yale.edu sdlee@cs.hku.hk
Abstract tions (x-axis} in the two graphs. The two sets of genes

belong to different functional categories. From the figure

Order-preserving submatrices (OPSM’'s) have been we see that genes of the same group exhibit similar expres-
shown useful in capturing concurrent patterns in data when sion patterns even though their absolute expression values
the relative magnitudes of data items are more important under the same experiment vary.
than their absolute values. To cope with data noise, re-
peated experiments are often conducted to collect multiple
measurements. We propose and study a more robust versic ;7[ot B
of OPSM, where each data item is represented by a set (s o5t ™. a DR Vo
values obtained from replicated experiments. We call the N
new problem OPSM-RM (OPSM with repeated measure A 4 = %= Vs
ments). We define OPSM-RM based on a number of pract 2 ‘ ‘ ¥ ” e
cal requirements. We discuss the computational challenge — eaer RCH GUORGH gaRGH RGH R gHORC gt
of OPSM-RM and propose a generic mining algorithm. We
further propose a series of techniques to speed up two time-
dominating components of the algorithm. We clearly show
the effectiveness of our methods through a series of experiz
ments conducted on real microarray data.

Expression level
- o
Expression level
)
>

Figure 1. Concurrent expression patterns of two
sets of genes from different functional categories

_ The original OPSM problem was first proposed by Ben-
1 Introduction Dor et al. [2].

Among all data mining problems, Order-Preserving Sub- Definition 1 Given amn x m matrix (dataset)D, an order-
matrix (OPSM) has important applications particularly in Preserving submatrix (OPSM) is a pdiR,), whereR is a
the area of bioinformatics. The general OPSM problem ap- subset of the: rows (represented by a set of row ids) aRd
plies to a matrix of numerical data values. The objective is & permutation of a subset of the columns (represented
is to discover a subset of attributes (columns) over which aby @ sequence of column ids) such that for each ro,in
subset of tuples (rows) exhibit a similar pattern of rises and the data values are monotonically mcreasmg with respect
falls in the tuples’ values. For example, when analyzing 1 P, i..,Dip, < Dip,,Vi € R,1 < j < j' <|P|?

ene expression data from microarray experiments, genes .
?rows) WIi:;h concurrent changes of mRKIA eipression Iegvels For example, Table 1 shows a dataset with 4 rows and 4
across different time points (columns) may share the same’ columns. The values of rows 2, 3 and 4 rise frotw b, S0
cell-cycle related properties [11]. Due to the high level of ({2,3,4}, (a,0)) is an OPS_M' For S|mpI|C|_ty, in this study
noise in typical microarray data, it is usually more mean- we assume that all values in a row are unique.
ingful to compare theelative expression levels of differ- . We say that a r-ovsupp.ortsa permutation if its vallues
ent genes at different time points rather than their absolute!Ncrease monotonically with respect to the permutation. _In
values. Genes that exhibit simultaneous rises and falls ofthe above example, rows 2, 3 anq 4 support the permutation
their expression values across different time points or ex- {a, b), but row 1 does not. For a fixed dataset, the rows that
periments reveal interesting patterns and knowledge. As an Support a permutation can be unambiguously identified. In
example, Figure 1 shows the expression levels (y-axis) of 1see Section 7 for a description of the real dataset used.
two different sets of genes under four experimental condi- 2We useD,, to denote the data item in rowand columny.

a b c d a definition should satisfy the following requirements:
rowl| 49 38 115 82 (1) If a pattern is supported by all combinations of the repli-
row2 | 67 96 124 48 cates of a row, the row should contribute a high support to
row3| 65 67 132 95 the pattern. For example, for row 3, the values of column
row4 | 81 115 133 62 are clearly smaller than those of columnAll 3 x 3 =9

replicate combinations df andc values(by, c1), (b1, c2),
Table 1. A dataset without repeated measurements ..., (b3, c3) support the(b, ¢) pattern. Row 3 should thus

strongly supportb, c).

(2) If the value of a replicate largely deviates from other

replicates, it is probably due to error. The replicate should
not severely affect the support of a given pattern. For exam-

An ORSM (and its corresponding patte_rn) is said to be ple, we see that row 2 generally supports the pattern) if
frequent if the number of supporting rows is not less than ae ignoreas, which is abnormally large (130) when com-

support threshol@ [4]. Given a dataset, the OPSM mining pared toa; (67) andas (54). The support ofa, ¢) con-

problem. is to identify all frequent OPSM's. In the gene tributed by row 2 should only be mildly reduced due to the
expression context, these OPSM's correspond to groups Ofpresence ofis.

genes that have similar act_ivity patterns, WhiCh may suggest(3) If the replicates largely disagree on their support of a
shared regulatory mechanisms and protein functions. pattern, the overall support should reflect the uncertainty.
A drawback of the basic OPSM mining problem is that g, example, in row 4, the values bfand ¢ are mingled.

it is very sensitive to noisy data. In microarray experiments, Thus, row 4 should natronglysupport(b, c) or {c, b).

eac_h value i_n the da’Faset is a physical measurement that is The first two requirements can be satisfied by summariz-

subject to different kinds of errors. To combat errors, ex- jnq the replicates by robust statistics such as medians, and

periments are often repeated and multiple measured valuegining the resulting dataset using the original definition of

(called replicates) are recorded. The replicates allow a bet-opgp. However, the third requirement cannot be satisfied

ter estimate of the actual physical quantity. Indeed, as they,y oy single summarizing statistic. This is because under

cost of microarray experiments has been dropping, researchye original definition, a row can only either fully support or

groups have been obtaining replicates to strike for higher iy not support a pattern. The information of uncertainty

data quality. For example, in the microarray dataset we US€jg thys |ost. To tackle this problem, we define a new OPSM

in our study, each experiment is repeated 4 times to prOdUCE‘probIem based on the conceptfctional support

4 measurements of each data point. Studies have clearly

shown the importance of having multiple replicates in im- Definition 2 The fractional suppors;(P) of a patternP

proving data quality [8]. contributed by a row is the number of replicate combina-
Different replicates, however, may support different tions of row: that support the pattern, divided by the total

OPSM's. In our previous example, if the value of column number of replicate combinations of the column#’in

is slightly increased in row 3, say from 65 to 69, then row

3 will no longer support the patterfa, b), but will support For example, for row 1, the patte(n, b, d) is supported

(b, a) instead. As another example, Table 2 shows a datasePy 8 replicate combinations: (a1, b2, d1), (a1, bz, ds),

with two more replicates added per experiment. From this (@1,b3,d1), (a1,b3,d2), (a2, b3,d1), (a2,bs,da),

the following discussion, we will refer to an OPSM simply
by its permutation, which will also be calledoattern

new dataset, we see that it is no longer clear whether row 3{(as, b3, d1), and (a3, b3, d2) out of 3° = 27 possible
supports théa, b) pattern. For instance, while the replicates combinations. The fractional suppo#t ({a,b,d)) is
ai, bl Support the pattern, the rep"cateﬁ b3 do not. therefore 8/27. We USQTLZ'(P) and Sdi(P) to denote the
numerator and the denominator 8f(P), respectively. In
@ as ag| b by b o @ s |d d ds our examplesny ({a,b,d)) = 8 andsd; ({a, b,d)) = 27.
m; g;’ gi 128 32 gé g; Ei 18; ;2 ig 1;? gg The definition of fractional support satisfies all the three
row3 |65 49 62| 67 39 28| 132 119 83/ 95 89 64 requirements we stated above. Firstly, if all replicate com-
row4 |8l 83 105|115 110 87| 133 108 10562 52 51 binations of a row support a certain pattern, the fractional
support contributed will be 1. Secondly, if a replicate of
Table 2. A dataset with repeated measurements a columnj deviates from the others, the replicate can at

most change the fractional support % wherer(j) is
Our examples illustrate that the original OPSM defini- the number of replicates of columin This has small effects
tion is not robust against noisy data. It also fails to take when the number of replicate$;) is large. Finally, if only
advantage of the additional information provided by data a fraction of the replicate combinations support a pattern,
replicates. There is thus a strong motivation to revise thethe resulting fractional support will be fuzzy (away from 0
definition of OPSM to handle repeated measurements. Suchkand 1), which reflects the uncertainty.

The total fractional support of a pattefh(or simply the our discussion [5]. For each row, we sort all the values in
support ofP), is defined as the sum of all the fractional sup- ascending order, and record the resulting column names as a
ports of P contributed by all the rowss(P) = ", s,(P). data sequence. For example, row 1 in Table 2 is represented
A pattern P is frequent if its support is not less than a by the data sequenc®, a,d, b, a,c,a,b,d,c,d, c¢). The ad-
given support threshold. Our new OPSM mining prob- vantage of such a representation is that given airamd a
lem OPSM-RM (OPSM with repeated measurements) is to patternP, the countsn;(P) is equivalent to the number of
identify all frequent patterns in a data matrix with replicates. subsequences in the data sequence that nfatétor exam-

From the definition of fractional support, we can observe ple, sny({(a, b, d)) = 8 because there are 8 subsequences in
the combinatorial nature of the OPSM-RM problem — the (b,a,d, b, a,c, a,b,d,c,d, c) that match the patterfa, b, d).
number of replicate combinations grows exponentially with In the following discussion, when we mention a row, we re-
respect to the pattern length. One of the objectives of thisfer to the row’s sorted data sequence.
work is to derive efficient algorithms for mining OPSM-

RM. By proving a number of interesting properties and the- Theorem 1 Let P, and P, be two patterns such thag, is
orems, we propose pruning techniques that can significantlya subsequence @. For any rowi, s;(P,) < s;(Py).

reduce mining time.
Proof. It is sufficient to show that the theorem is true for

2 Related work patterns whose lengths differ by 1, i.€B,| = |P1| + 1.

We can repeat the argument to prove the theorem for pat-
terns of arbitrary lengths. Let be the column that is in

P, but not in P;, andr(j) be the number of replicates

in column j. Each subsequence of rowthat matches

?’1 can potentially be extended to matéh by inserting a
columnj replicate. Since there are ontyj) such repli-

The conventional order-preserving submatrices (OPSM)
mining problem was motivated and introduced in [2] to an-
alyze gene expression data without repeated measurement
In [2], it was proved that the problem is NP hard. A greedy

heuristic mining algorithm was proposed, which does not . h ; ibl
uarantee the return of all OPSM’s or the best OPSM’s cates, at most(j) such extensions are possible. Hence,
g "~ osni(Py) < r(j) - sny(Pr). On the other hand, the total

Since then, mining efficiency has been the main research b iol i binati . itiolied b
issue. In [4], themonotonicand transitive properties of number of possible replicate combinations is multiplied by
y ' a factor ofr(j), i.e., sd;(P2) = r(j) - sd;(P1). Therefore

OPSM's were proved. Based on the properties, a candidate sni(P2) _ r(j)-sni(P1)
set generation-and-test framework was proposed to mine aIISi(PQ) = S S T)sdiPy) si(P). U
OPSM's. It makes use of a new data structure, the head-
tail trees, for efficient candidate generation. The study re-
ported in [5] concerned the high computational cost of min-
ing OPSM'’s from massive data. They defined tiveg clus-
ters which are OPSM’s with large numbers of columns and
naturally low supports. They propose@&Vi framework to
gfficiently mine the twig clus_ters. None of the above stud- Proof. If P, is infrequent,s(P1) < p. By Theorem 1,
ies, however, handle data with repeated measurements. s:(Py) < si(Py) for all row . S0,s(Py) = 3. s:(Ps) <
The OP-clustering approach [9] generalizes the OPSMZ_ si(P1) = s(P,) < p. PatternP is thereforeLinfrequent.
model by grouping attributes into equivalent classes. A —*

depth-first search algorithm was proposed for mining all o
error-tolerated clusters. The model attempts to handle error e Apriori property ensures that an OPSM can be fre-
in single expression values rather than exploiting extra in- quent only if all its subsequences (i.e., sub-patterns) are fre-

formation obtained from repeated measurements. In [3], thegyent. This suggests an iterative mining algorithm as shown
problem of mining OPSM'’s over multiple time points was Figure 2.

considered. There are different experimental conditions in ag in frequent itemset mining [1], the algorithm itera-

each time_ point, .and a pattern !s required tp be consistentti\,e|y generates the setand, of length# candidate pat-
over the time points. An evolutionary algorithm was pro- terns, and verifies their supports. Those patterns that pass

The above monotonic property implies the following
Apriori property:

Corollary 1 Let P, and P, be two patterns such thd?, is
a subsequence @¢%. P, is frequent only ifP; is frequent.

posed to explore the search space. the support threshold are recorded in the Bet;,, which
) _ are then used to generate the candidates of the next iteration.
3 Basic algorithm We remark that in the original OPSM problem (without

data replicates), all candidates are by definition frequent and
In this section we discuss a straightforward algorithm for thus support verification is not needed. This is due to the
solving the OPSM-RM problem. We use an alternative rep- transitivity property: if a row supports both patterasb, c)
resentation of a matrix dataset that is more convenient forand (b, ¢, d), the value at columm must be smaller than

Algorithm OPSM-RM

INPUT : raw data matrixD, support thresholg
OUTPUT: the set of all frequent patterns

1: TransformD into sequence datasgX

2: Cand, :={all possible patterns of length} 2
3 k=2

4: Freq,, := verify(Candy, D', p)

5: while Freq, # 0 do

6: k=k+1

7 Candy, := generatd Freq;,_,)

8: Freq,, := verify(Candy,, D', p)

9: end while

10:return Freg, U ... U Fregq,,

Figure 2. An Apriori algorithm for OPSM-RM

that at columnd, and so it must also suppoft, b, ¢, d).
However, when there are replicates, the fractional support
of a pattern can be smaller than those of all its sub-patterns
For example, the sequen@ea, d, b, a,c,a,b,d, c,d, c) has

a fractional support of/9 for (a, b), 8/9 for (b, ¢c) and8/9

for (a, c), but the support fofa, b, ¢) is only 9/27 = 3/9.
Support verification is thus necessary for OPSM-RM.

The efficiency of the algorithm depends on the two core
functions generate and verify. For example, significant
speed-up can be achieved if effective pruning techniques ar
applied so thatjenerateproduces a smaller set of candidate
patterns. In the following we briefly describe the basic algo-
rithms for implementing thgenerateandverify functions.

Generate A convenient way to generate lengthecan-
didates from length4(-1) frequent patterns is to use the
head-tail trees. We briefly describe the data structure here
Readers are referred to [4] for details. Each leng#i-)
frequent patternP derives two length%-2) sub-patterns,
called a head patter®, and a tail pattern?,. P; is ob-
tained fromP by removing the last symbol a? while P,
is obtained by removing the first symbol. For example, i
P = {a,b,c) thenP; = (a,b) andP, = (b, ¢). All the head
patterns derived from all the lengtk-Q) frequent patterns

f

are collected and are stored as strings in a compressed dafa

structure. For each head pattefyp, a reference to all the
frequent patterns from whicl; is derived is also stored.
In our implementation, we use a prefix tree [7] to store the
head patterns. We call it the head tree. Similarly, tail pat-
terns are collected and are stored in a tail tree.

To generate length-candidates, the two trees are tra-
versed in parallel to identify frequent patterns with com-
mon sub-strings. For example, if bofh = (a,b,¢) and
P, = (b, ¢, d) are frequent patterns, then the common sub-
string (b, ¢) will appear in both the head tree (due &)
and the tail tree (due t®;). References td; and P, are

e

retrieved. The two patterns are then joined to derive the
candidat€a, b, ¢, d).

Verify. Candidate patterns obtained frogenerate
are stored as strings in another compressed data structure.
Again, we use a prefix tree implementation. To count the
candidates’ supports, we scan the dataset. For eachi, row
we traverse the candidate tree and locate all candidate pat-
terns that are subsequences of the data sequence af row
For each such candidate pattaf we increment its sup-
ports(P) by s;(P).

Support counting can be made more efficient by com-
pressing data sequences using run-length encoding. Given
a data sequence of a row, consecutive occurrences of the
same column symbol are replaced by one single symbol
and an occurrence count. For example, the data sequence
(d,d,d,a,a,b,b,c,c,b,c,a) of row 2 in Table 2 is com-
pressed tdd(3), a(2),b(2),¢(2),b(1),¢(1),a(1)). The ad-
vantage of compressing data sequences is that the com-
pressed sequences are shorter (in our example, 7 symbols)
than the originals (in our example, 12 symbols). The shorter
data sequences allow more efficient subsequence match-
ing in support counting. For example, the pattédnc, a)
matches the above compressed data sequences two times
(instead of 9 times against the uncompressed sequence):
(d(3),.,.,¢(2),.,.,a(1)) and{d(3), ., ., .,.,c(1),a(1)). To
determinesn;(P), we multiply the occurrences for each
match and sum the results. In the above example, we have
sna((d,c,a)) =3-2-1+3-1-1=09.

4 MinBound

From Theorem 1 we know that the support of a pattern
contributed by a row cannot exceed the corresponding sup-
ports of its sub-patterns. We can make use of this obser-
vation to help deduce an upper bound to the support of a
candidate pattern. If this upper bound is less than the sup-
port thresholg, the candidate pattern can be pruned. Fewer
candidates result in a faster verification and support count-
ing process, and thus a more efficient mining algorithm.

In this section we discuss a simple bounding technique
called MinBound. Recall that in candidate generation,
candidate patter® is generated by joining two sub-
patterns, say,P; and P,. For example, the candidate
{a,b, c,d) is obtained by joininda, b, ¢) and(b, ¢, d). Note
that both P, and P, must be frequent and therefore their
fractional supports given by each row of the dataset should
have already been previously computed. If such supports
are cached, we can determine an upper boundBj by

For example, for row 1 in Table 2; ({a,b,c)) = 9/27
and sy ((b,c,d)) = 7/27. Therefore an upper bound of

s1({a,b,c,d)) ismin{9/27,7/27} = 7/27. Note that the
exact value ok ({a, b, ¢, d)) is 6/81 = 2/27.

5 Computing supports by head-tail arrays

Generally, the upper bounds derived by MinBound are
not very tight. In this section we introduce head-tail arrays,
a data structure that allows the calculation of the exact sup-
port of candidate patterns. Although powerful, head-tail ar-
rays are very memory demanding and are thus impractical
Fortunately, the arrays can also be used to derive fairly tight
bounds for the support, in which case the memory require-
ments can be substantially reduced by maintaining only cer-
tain statistics. The details will be given in Section 6.

Recall that a lengtli- candidate patter® is generated
by two length-g-1) frequent sub-patterrid and P, which
correspond to the head (i.€%; = P[1..k-1]) and tail (i.e.,

P, = P[2..k]) of P. Given a rowi, our goal is to compute
the fractional suppor; (P) based on certain support count
information we have previously obtained abdetand P,
with respect to rowi. To illustrate, let us use row 1 in Ta-
ble 2 andP = (a, b, ¢, d) as a running example. Let

1
b,

2

ai

10

C7

11
d,

12

4
b c

3
S1=(d,)

be the data sequence of row 1. (Symbol indices are show
for ease of reference.) Also, we hat® = (a,b,c) and
P, = (b,c,d). The fractional support;(P) can be com-
puted by constructing the following two auxiliary arrays.

Thehead arrayH concerns the head sub-pattePn It
containsr(P[1]) entries (recall that(P[1]) is the number
of replicates of columrP[1]). Thel-th entry of the head
array records the number of timé$2..k-1] appear after the
I-th occurrence oP[1]in S;. In our exampleP[1] = a and
there arer(P[1]) = r(a) = 3 replicates, so the head array
has 3 entries. AlsaP[2..k-1] = (b, c). The 3 entries of the
head array thus record the number of tinjes:) occurs in
S after each of the 3@'s. The head array is thus:

H

The first entry is 5 because after the fitst(position
2), there are 5 occurrences @, ¢) in S;, at positions
(4,6), (4,10), (4,12),(8,10) and (8,12). Similarly, the
second entry is 2 because after the secerfdosition 5),
there are 2 occurrences (¥ ¢), at(8,10) and(8, 12).

Thetail array T' concerns the tail sub-pattef. It con-
sists ofsn;(P[2..k-1]) entries. Thd-th entry of the array
records the number of time3[k] appears after theth oc-
currence ofP[2..k-1] in S;, where the occurrences are in
lexicographic order according to the positions of the occur-
rences. In our exampleP[2..k-1] = (b, c¢) and there are
sn1({(b, c)) = 8 occurrences ofb, c) in S;. Inlexicographic
order, the positions of these occurrences ére6), (1, 10),

n

(1,12), (4,6), (4,10), (4,12), (8,10) and(8, 12). The tail
array thus has 8 entries, one for each occurrengg,af.
For our exampleP[k] = d. Each entry in the tail array thus
records the number afs that appear after the correspond-
ing (b, ¢) in S;. Our tail array is:

T:[2]1]0]2[1]0]1]0]

Since the first occurrence @, ¢) is (1,6) and there are 2
d’s after that (at positions 9 and 11), the first entry of the tail
array is 2. The other entries can be determined similarly.

By arranging the occurrences ¢f, ¢) in lexicographic
order, we ensure that all occurrences(fc) that appear
after a certain position iff; are all associated with the right-
most entries of the tail array. This helps us in determining
the number of occurrences of a pattern. For example, let us
determine the number @, b, ¢, d) in Sy that start with the
firsta (position 2). From the head array, we know that there
are 5(b, ¢)’s after the firsta. Because of the lexicographic
order, these b, ¢)’'s must be associated with the 5 right-
most entries of the tail array. According to the tail array,
there are 2, 1, 0, 1, andds after those 5b, c¢)'s respec-
tively. Therefore, thereare2+1+0+ 1+ 0 =#lc,d)’s
after the firstz. Similarly, there is Xb, ¢, d) after the second
a and 1 after the third. So in total there aré +1+1 =6
occurrences ofa, b, ¢, d) in Sj.

We can generalize the above computation for any head
array H and tail arrayl’. We call the resulting sum the “HT-
sum”, which can be expressed by the following formula:

|H| Hlp]

HT-sumH,T) = > " "T(|T| - q+1].

p=1¢=1

@)

Since sd;(P), the total number of replicate combina-
tions, is given byH‘j’;'lr(P[j}), the fractional support
si(P) = sn;(P)/sd;(P) can be readily determined.

6 HTBound

In Section 5 we show that given a lengtheandidate
patternP and its generating sub-patterfs and P, if we
have constructed the head arrély and the tail arrayrl’,
then sn;(P) (and thus the fractional suppast(P)) can
be computed by HT-sum. However, the tail array contains
sn;(P[2..k-1]) entries, which, in the worst case, is exponen-
tial to the pattern’s length. It is thus impractical to construct
or store all the tail arrays. In this section we show that it is
possible to compute ampper boundf the HT-sum by stor-
ing only 3 numbers without ever constructing the head and
tail arrays. We call this bound the HTBound. Similar to the
idea of MinBound, the HTBound allows us to prune candi-
date patterns for a more efficient mining algorithm. We will
show at the end of this section that HTBound is tighter than

MinBound. To better illustrate the concepts, we continue

with our running example considering the data sequéhce
the lengthk candidate patter® = (a, b, ¢, d), its head sub-
patternP; = (a, b, ¢) and tail sub-patter#, = (b, ¢, d).

To determine the HTBound aP, we need the follow-

Essentially, the push operations push values towards the
right and left of an array respectively. Here are two useful
properties of the push operations:

Lemma 1 With a fixed head array, each push-right opera-

ing three values, all obtainable in previous iterations of the tion on the tail arrayl” cannot reduce the HT-sum.

mining algorithm. (We show the corresponding values of
our running example in parentheses.)

e sn;(P1) (sni({a,b,c)) =9). This value is obtained in
the (k-1)-st iteration. Note that it is also equal to the
sum of the entries in the head array.

o sn;(P2) (sni({b,c,d)) = 7). This value is obtained in
the (k-1)-st iteration. Note that it is equal to the sum
of the entries in the tail array.

o sn;(P[2..k-1]) (sn1({b,c)) = 8). This value is ob-
tained in the §-2)-nd iteration. Note that this value is
equal to the number of entries in the tail array. Also,
no entry in the head array can exceed this value.

Proof. A formal proof is given in the Appendix. In sum-
mary, in the procedure of computing the HT-sum (Sec-
tion 5), for each entry in the head array, a number of right-
most entries of the tail array are summed. Since each push-
right operation off” transfers a positive value from an entry
to another entry on its right, the sum cannot be reduged.

Lemma 2 If the tail array is non-increasing, each push-left
operation on the head array cannot reduce the HT-sum.

Proof. A formal proof is given in the Appendix. Here, we
illustrate the proof by an example. Consider our example
head arrayd = [5,2,2]. If we push-left onH from entry
H|[3] to H[2] by a value of 1, we geHl = [5,3,1]. In
calculating the HT-sum, the entrié[2] = 2 andH[3] = 2

We assume that the number of replicates for each column i%ach requests the sum of the two rightmost entrie@",in

stored as metadata, i.e., we knegy) for all columnj. In
particular, we know-(P[1]) andr(P[k]). Note that the for-

i.e., T[t-1] and T'[t] wheret = |T|. On the other hand,
the entriesH[2] = 3 and H[3] = 1 request the sum of the

mer equals the number of entries in the head array, while nothree rightmost entries i’ (i.e., T[t-2.4]) and the value

entry in the tail array can exceed the latter. In our example,

r(P[1]) =r(a) = 3, soH has 3 entries, and P[k]) = r(d)
=3, so no entry irf” exceeds 3.

The above values thus constrain the sizes, sums and maxyT-sum(H, T') < HT-sum(H, T').

ima of H andT'. For convenience, we call them the “con-
straint counts”. The following property, easily verifiable by
the definition of head array, states another constrairifon

Property 1 The entries in the head array/ are non-
increasing (from left to right).

Our idea of upper bounding HT-su(7) is to show
that there exists a pair of arrays* andT™ that can be ob-
tained fromH andT through a series of transformations.
We will prove that (1) each transformation will not reduce
the HT-sum and hence HT-siid, T') < HT-sum(H*, T*);

(2) H* and T* can be constructed using solely the con-
straint counts. Because of (2}, and7 need not be materi-
alized and stored. We will show a closed-form formula for
HT-sum(@#E*,T*), which serves as an upper bound of HT-
sum(,T), in terms of the constraint counts. The transfor-
mations are based on the following “push” operations:

Definition 3 A push-right operation on an arrayl from
entry ! to entry!’ reducesA[l] by a positive value) and
increasesA[l’] by v, wherel < I'.

Definition 4 A push-left operation of an arrayt from entry
[to entryl’ reducesA[l] by one and increased[l’] by one,
wherel’ < 1.

of the rightmost entry iff” (i.e., T'[t]), respectively. So the
net difference HT-suf, T') — HT-sum(H, T) = T[t-2] -
T[t-1]. If T is non-increasingT[t-2] > T[t-1] and thus
O

Note that Lemma 2 is applicable only if the tail array is
non-increasing. In our running example, howevEérioes
not satisfy the non-increasing requirement. Fortunately, we
can show that by applying a number of push-right opera-
tions, we can transforr™ to a7” that is non-increasing.
With T, Lemma 2 applies, and we can perform a number
of push-left operations to transforfd to an H*. Finally,
we apply push-right operations to transfofthto a7*. In
this transformation process, by Lemmas 1 and 2, we have
HT-sum H,T) < HT-sum(H,T") < HT-sumH*,T") <
HT-sum(H*,T*). To complete the discussion, we need to
define the contents &f’, H* andT™, and to show that (1)
T’ so defined is non-increasing and that it can be obtained
by transformingI” via a number of push-right operations;
(2) H* can be obtained fronH via a number of push-
left operations, each of which preserves the non-increasing
property of the entries, and the contentff so defined
can be derived from the constraint counts; and(3)can
be obtained from¥” via a number of push-right operations
and its content so defined can be derived from the constraint
counts. To accomplish the above, we need to prove a few
properties off” first.

Recall thatl’ containssn;(P[2..k-1]) entries and that the
I-th entry of T records the number d?[k| that appears after

thel-th occurrence of’[2..k-1] in the data sequencg. In
our example P[2..k-1] = (b, ¢) and there are 8 occurrences
ofitin Sy at positiong1, 6), (1,10), (1,12), (4,6), (4,10),
(4,12), (8,10) and(8, 12). Let us group the entries together
if they correspond to the same occurrenceP§2]. In our
example,P[2] = b. The three occurrences éfare posi-
tions (1), (4) and (8). So we group the first 3 entries (which
correspond tdb, ¢) at(1, 6), (1,10), (1,12)) together. Sim-
ilarly, the remaining entries ifi" are divided into two more
groups. We note that each group forms a segment ifi’'the
array, called ainterval. In our example, the intervals are:

T:[2]1]o0f2]1]0]1]0]

Given an intervall in T, we define thenterval average

of I as the average of the entries in For example, the
interval averages of the 3 intervals in our exaniplare 1,

1, and 0.5, respectively. Here is an important property of
the interval averages:

Lemma 3 The interval averages are non-increasing.

Proof. A formal proof is given in the appendix. In sum-
mary, consider any intervdland its immediate right neigh-
bor intervalI’. We can show thaf must contain/’ as its
rightmost entries (e.g., the second interval ([2,1,0]) contains
the third interval ([1,0]) at its right end). We can also show
that if I contains additional entries (other than thosed'df

(b): A formal proof is given in the appendix. In sum-
mary, for each interval of’, we use push-right operations
to obtain the corresponding interval Bf. Here we use our
example to illustrate. The entries of the first intervallof
are non-increasing, therefore we can repeatedly move the
excessive values from the leftmost entry to the next one by
push-right operations, forming, 2,0) and then(1, 1,1). 5

Next, we defineH*. Recall that the-th entry of H
records the number of times the pattaP..k-1] occurs
after thei-th P[1] in S;. So, no entry inH can exceed
sn;(P[2..k-1]). H* is obtained fromH by pushing as much
value to the left as possible, subject to the constraint that no
entry in H* exceedsn;(P[2..k-1]). H and H* thus have
the same size and sum. Letbe the number of entries in
H, y=sn;(P[2..k-1]), andz be the sum of all entries iH.

H* is given by

Yy 1<m< L;j
H*lm]=4{ zmody m=|[Z]+1 2
0 [Z]+2<m<u
In our exampley = 3,y = 8, andz = 9. H* is thus:
H: |[5(2]2
H*|8|1]|0

Note thatz, y, andz can be obtained from the constraint

the average of these additional entries must be at least a§0unts, soH* can be constructed directly from the con-

large as the interval average Bf(e.g., the additional entry
[2] in the second interval is larger than the third interval’s
average, which is 0.5). Therefore, the interval averagk of
must not be smaller than the interval averagé’ofHence,
the interval averages are non-increasing. 0

With the concept of intervals, we are ready to defitie

Definition 5 Array 7" is the same a%’ in terms of its size,
the number of intervals, and the length of each interval. For
each intervall in 7", the value of each entry ihis equal

to the average value of the corresponding interval'in

With our running example, we have,

T: 12(1]0|2|1|0]1
T:11|1(1]1|212|1]05

0
0.5

The following lemma states the desired properties’of

Lemma4 T" is (a) non-increasing, and (b) obtainable
fromT" via a number of push-right operations.

Proof. (a): Within each interval, entries ifi” share the

straint counts based on Equation 2 without materializihg

Lemma5 H* is obtainable fromH by a number of push-
left operations that preserve the non-increasing property.

Proof. There are three types of entriesffi: (1) 0-valued
entries, all rightmost; (2) max-valued entries, all leftmost;
(3) zero or one remainder entry. For any entrgf H, we

call it a donor, a receiver or a remainder entry if théh
entry of H* is of type-1, type-2 or type-3, respectively. We
repeatedly perform the following: take the rightmost donor
that is non-zero, and use a push-left operation to move one
from it to the leftmost receiver that is not equal to the max-
imum valuey yet, or to the remainder entry if all receivers
are already equal tg. After all the donors are made 0 by
the above procedure, if there is a receiver that is still smaller
thany by an amountv, we pushw from the remainder entry

to the receiver to obtaif/*. It is easy to see that each op-
eration preserves the non-increasing property of the array.

O

For our example, there is a donHi{3], a receivetH [1],
and a remainder entff [2]. We first use two push-left oper-

same value, so they are non-increasing. Also, the entries irations to move 2 fron# [3] to H[1] to form (7,2,0). Then

T’ contain the interval averages 6f By Lemma 3, these
averages are non-increasing. So, the entriég iare non-
increasing across intervals.

since the receiver still has not reached the maximum value
y = 8, we use a push-left to move 1 frofi[2] to H[1] to
form (8,1, 0), which is equal taH *.

Finally, we defineT™* and show how it can be obtained (see Section 4). HTBound is thus much tighter than Min-
from T’. Recall thatT hassn;(P[2..k-1]) entries with a Bound in this example. This is not mere coincidence. We
sum ofsn;(P,). Letx = sn;(P[2..k-1]) andz = sn;(P). can show that the HTBound is indeed theoretically guaran-
T* is constructed by distributing an integral amountzof teed to be better than the MinBound.
evening among the entries, with the reminder distributed

to the rightmost entries &f*. That is, Lemma 7 HTBound is always at least as tight as Min-

2| << d Bound.
T*[m]:{ L1Z] <m <z — (zmod x)

2] z—(zmodz) +1<m<z Due to space limitation, readers are referred to the Ap-

In our exampleg = 8 andz = 7. T* is thus: pendix for a proof of Lemma 7.

T: (1|11 1|1|1] 05|05
71011} 1|1]1)1 |1

7 Experiments

Itis obvious thafl™ can be constructed from the constraint |, thjs section we evaluate our methods using a real mi-

counts alone. croarray dataset that was also used in some previous stud-
ies on mining data with repeated measurements [10, 12].
It is a subset of a dataset obtained from a study of gene re-
sponse to the knockout of various genes in the galactose uti-
lization (GAL) pathway of the yeast Saccharomyces cere-
visiae [6F. In our dataset, the columns correspond to the

sponding entries in the two arrays are equal and no push-knod_(’:’u_t exper_ime_nts of 9 GAL genes and _the_wild type,
right operations are needed. Otherwig&1] > T*[1], and growing in media with or without galactose, yielding a_total
we can move the differenc[1] — 7*[1] to T"[2] by a push- of 2(9 + 1) = 20 experiments (columns). Each experiment
right operation. If we now ignore the first entry of each ar- has 4 replllcates. There are 205 rows corresponding to genes
ray, the same argument then applies to the second entry. Wéhat exhibit responses to the knockouts. The genes belong

can repeat the process to equalize every pair of correspondt-o f_our dl_fferent F:Iasses_, according to their functional cate-
gories. Figure 1 in Section 1 shows some example values of

Lemma6 T* can be obtained fronY” by a number of
push-right operations.

Proof. Since the entries ifi” are non-increasing and those
in T* are non-decreasing, T'[1] = T*[1], then all corre-

ing entries of the two arrays. 0 : -
our dataset (only 1 replicate per column is shown).
One can verify the following closed-form formula of HT- We compare the performance of three methods Bé)
sum@E*,T*). For clarity, let us define a few values: sic, which applies the basic Apriori algorithm (see Figure 2)
with data compression, (3linBound, which is the Basic
- {Sm(P[Lk - 1])J method plus candidate pruning using MinBound, and (3)
sn;(P[2.k—1])] HTBound, which is the Basic method plus candidate prun-
hy = sni(P[1.k—1]) mod sn;(P[2..k — 1]), ing using HTBound. To test the scalability of the methods,
sni(P[2..k]) we insert synthetic replicates, columns and rows to form
t1 = an(m’f—l])J) larger datasets. To synthesize additional replicates, for each

gene and each experiment, we follow standard practice to
model the values by a Gaussian distribution with the mean
and variance equal to the sample mean and variance of the
4 replicates. The expression values of new replicates are
HT-sum(H*, T*) then sampled from the Gaussian. New columns are synthe-
= e sna(PRK]) + sized py_randomly d_rawmg an existing c_olumn, (_Jllscardmg
ST N the existing expression values, but keeping the fitted Gaus-
{ ha(t1 +1) if hy < £ @) sians and sampling new values from them. This way of
ta(t1 +1) + (h2 —t2)t1 otherwise construction mimics the addition of knockout experiments
of genes in the same sub-paths of the original ones. Fi-
nally, new rows are synthesized as in the synthesis of new
columns, but with an existing row as template instead of
a column. This way of construction mimics the addition of
genes that have similar responses as some existing ones, due

to (sn;(P[2..k]) mod sn;(P[2..k — 1])),

Finally,

Note that the above computation only requires the constraint
counts. Therefore HT-sum{(*,7*) can be calculated with-
out materializing any off, H*, T, T' or T*. For our
running exampleh; =1, ho = 1, ¢; =0, t, = 7, and
HT-sum H*,T*) = 1x7+1x (0+1) = 8. Our HTBound

thus equals HT'SleOH*»T*)/Sdl (P) = 8/81-. Note that 3The dataset can be downloaded Hatp://genomebiology.
the exact support is 6/81 and the MinBound is 7/27 = 21/81 com/content/supplementary/gh-2003-4-5-r34-s8.txt

to co-occurrence in the same downstream pathways. In the
experiments, the default support threshold is 20%.

We first compare the patterns mined under three differ-
ent settings: (1) Apply the original OPSM method on only
one set of replicates at a time. Since there are 4 replicates & '*f E*
per column, the basic OPSM method is applied 4 times. We [_ &
call these OPSM-(i = 1..4). (2) Replace replicates by !
their averages and apply the basic OPSM method (OPSM-
avg). (3) Consider all replicates and apply our approach
(OPSM-RM). We use Fisher’s exact test [5] to compute the Figure 3. Speed performance in different iterations
p-value of each pattern. Intuitively, a small p-value indi-
cates that the genes that support the pattern are highly likely

to belong to the same biological class. A pattern is said to close to the act_ual number of frequ_ent patterns. In partic-
be significantif its p-value is less than 0.01. In microar- ular, there are in total 17,900 candidates generated by the

ray data analysis, the classes are usually unknown and th(%"’ls'cf metf;gdl,Afagmofng which 4’732 are freSudent.HTrgre a(;e
mined patterns help identify genes that are biologically re—t erefore 13, Infrequent candidates. Under ound,

lated. Biologists need to perform costly small-scale exper- ghgges ngsc)lnl_yYZ,;SSS L_Jr}prunedtcgndﬁ_artBes, a:jmhong wh|c2
iments to verify the results. A successful mining algorithm 275" - are infrequent. o, ound has prune

should therefore return as few insignificant patterns as pos-(13149'787)/13149 = 94% of all infrequent candidates.
To study the effect of the support threshold, we repeat

sible, in order to minimize the cost. th) ¢ diff L thresholds. A dataset with 205
From the mined patterns, we observe that OPSM-RM € comparisons at ditterent thresnholds. ataset wi !
rows is used in this experiment. The results are shown in

always returns fewer |nS|gn|_f|cant Ipng patterns at various Figure 4. The left panel shows the running times, and the
support thresholds. As an illustration, Table 3 shows the fiaht panel shows the running times as percentaces of the
number of insignificant patterns of length 4 or more at 20% gnt p 9 P 9

T T T T T T 9000 T T T T T
Basic ExXx= 8000

250 |- MiBound £23573 7000

HTBound e

200 |- B 6000
5000

4000
3000
2000

i
IEIW_L ;
4 5 6

Basic ExXxXx
MinBound .
HTBound
Frequent
patterns

150 q

Running time (s)

Number of candidates

1000

\ ! ETED';‘_#

N
w

Iteration Iteration

Basic method.

support threshold.
[OPSM-1 OPSM-2 OPSM-3 OPSM-4 OPSM-avg OPSMHM 900 T T — T ~ — T
[11 6 33 53 14 0] 800 | Basic —— | g 100r e
% 700 MinBound -——-x-- - @ asic —i—
FER O e T Sl I iy
. . . £ % s X
Table 3. Number of insignificant long patterns F T 05 OO M e]
£ ol] %’ a0k R
)) Z 200 | 1 £ o}]
Our result shows that if we consider only one set of oo e P -
replicates (OPSM3}, or only the averages of the replicates © 5 10 15 20 25 30 0 5 10 15 20 2 3

Support (%) Support (%)

(OPSM-avg), many insignificant long patterns are returned.
Some genes that may not be functionally related could sup-
port the same long patterns due to noise in data. Since thesleigure 4. Running time at various support thresh-
insignificant patterns are not returned by OPSM-RM, our 54
result shows that OPSM-RM is robust against data noise.

We now focus on the OPSM-RM model. First, we com-
pare the efficiency of the three methods (Basic, MinBound, In general, the bounding methods significantly improve
HTBound) by applying them to a dataset with 5,000 rows. the efficiency of the mining algorithm, and HTBound is
We report the running time (Figure 3 left) and the number of more effective than MinBound in all cases. We observe that
unpruned candidates that need verification (Figure 3 right) at higher support thresholds, the two bounds are capable of
in different iterations of the algorithms, i.e., for different pruning more candidates. Yet even at low thresholds, the
pattern lengthg. For the graph on the right, we also show bounds could still provide substantial performance gains.
the actual number of frequent patterns mined for reference. Next, we study the scalability of the methods by varying

The figure shows that the two bounding techniques arethe number of rows, columns, and replicates per column.
very effective in speeding up the mining time by pruning The results are shown in Figures 5, 6 and 7, respectively.
infrequent candidates. The pruning effectiveness is most The relative pruning power of the two methods as com-
pronounced in iteration 4, in which the number of candi- pared to the basic algorithm remains largely stable in all
dates is the highest. In addition, the pruning power of the three sets of experiments. Also, the running time remains
HTBound is always stronger than MinBound, which is con- reasonable when there are many replicates, columns or
sistent with Lemma 7. From the figure, we also see thatrows, which demonstrates the practicality of our new def-
the number of unpruned candidates under HTBound is veryinition of OPSM in analyzing large datasets.

1800
1600
1400
1200
1000
800
600
400
200

T T T T T T T T T T T T T T T
100 b
Basic —+—
MinBound ---*--- -

HTBound ---%---

Basic ——
MinBound ---%---

HTBound ---%--- 80 I

60 pe-seoye

40 Bk N B

Running time (s)
T T T T T T

Running time (% of Basic)

20 b

0

VI T T N
01234567

1
8
Number of rows (in K) Number of rows (in K)

Figure 5. Scalability w.r.t. number of rows

180 T T T T T T T
100

T

Basic —+—
MinBound ---x---
HTBound ---%---

Basic ——
MinBound ---%--- -
HTBound ---%---

80

60

qo g

Running time (s)
T T T T T T
PRI VTR,

o
g
0 St L ! ! 0 ! ! ! !
22 24 26 28 20 24 26

Number of columns Number of columns

20 q

Running time (% of Basic)

Figure 6. Scalability w.r.t. number of columns

8 Concluding remarks

In this paper we have described the problem of high
noise level to the mining of OPSM’s, and discussed how
it can be alleviated by exploiting repeated measurements.
We have listed some practical requirements for OPSM-RM,
and proposed a concrete definition that fulfills the require-
ments. We have described a basic Apriori mining algo-
rithm that utilizes a monotonic property of the definition.
Its performance depends on the component functiars
erate andverify. We have suggested a sequence compres-
sion method for reducing the running time \drify. For
generate we have proposed two pruning methods based on
the MinBound and the HTBound. The latter makes use of
the head and tail arrays, which are useful both in construct-
ing and proving the bound. We have performed experiments
on real microarray data to demonstrate the effectiveness of
the pruning methods, and the scalability of the algorithm.

We will continue our study on the head and tail arrays (1

to see if it is possible to further improve the HTBound. We
will also apply our technique to the analysis of other mi-
croarray datasets, to look for new findings due to our new
definition of OPSM.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules in large databases. Rnoceedings of the 20th
International Conference on Very Large Data Baseages
487-499, 1994.

[2] A. Ben-Dor, B. Chor, R. M. Karp, and Z. Yakhini. Dis-
covering local structure in gene expression data: the order-
preserving submatrix problemJournal of Computational
Biology, 10(3-4):373-384, 2003.

10

(11]

[12

700 T T T T T —~ T T T T T
600 | Basic —+— | 2 100 -
@ MinBound ---%--- 8 ~ Basic —+—
=~ 500 - HTBound ---%--- g 5 80 F MinBound ---x--- -
g < HTBound ---%---
b= 400 - A \': 60 oo o
é 300 - /x"v 3 £ 40 Fereeoee X AR
g w0p o 2
100 | g 1 £ 21 b
s S
0 i L L L o© 0 L L L L L
4 5 6 7 8 9 10 4 5 6 7 8 9 10

Number of replicates Number of replicates

Figure 7. Scalability w.r.t. number of replicates

[3] S. Bleuler and E. Zitzler. Order preserving clustering over
multiple time course experiments. EvoWorkshops 2005
volume 3449 oLNCS pages 33-43, 2005.
L. Cheung, K. Y. Yip, D. W. Cheung, B. Kao, and M. K.
Ng. On mining micro-array data by order-preserving sub-
matrix. International Journal of Bioinformatics Research
and Applications3(1):42-64, 2007.
B. J. Gao, O. L. Griffith, M. Ester, and S. J. M. Jones.
Discovering significant opsm subspace clusters in massive
gene expression data. Froceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining pages 922-928, 2006.
T. Ideker, V. Thorsson, J. A. Ranish, R. Christmas, J. Buh-
ler, J. K. Eng, R. Bumgarner, D. R. Goodlett, R. Aebersold,
and L. Hood. Integrated genomic and proteomic analyses
of a systematically perturbed metabolic netwoigcience
292(5518):929-934, 2001.
D. Knuth. The Art of Computer Programming, Volume
3: Sorting and Searching, Third EditiorAddison-Wesley,
1997.
M.-L. T. Lee, F. C. Kuo, G. A. Whitmore, and J. Sklar. Im-
portance of replication in microarray gene expression stud-
ies: Statistical methods and evidence from repetitive cDNA
hybridizations Proceedings of the National Academy of Sci-
ences of the United States of Ameri€&(18):9834—-9839,
2000.
[9] J. Liuand W. Wang. OP-Cluster: Clustering by tendency in
high dimensional space. Rroceedings of the Third IEEE
International Conference on Data Miningages 187—194,
2003.
M. Medvedovic, K. Y. Yeung, and R. E. Bumgarner.
Bayesian mixture model based clustering of replicated mi-
croarray dataBioinformatics 20(8):1222—-1232, 2004.
P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. lyer, K. An-
ders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher.
Comprehensive identification of cell cycle-regulated genes
of the yeast saccharomyces cerevisiae by microarray hy-
bridization. Molecular Biology of the Cell9(12):3273—
3297, 1998.
] K.Y. Yeung, M. Medvedovic, and R. E. Bumgarner. Clus-
tering gene-expression data with repeated measurements.
Genome Biology4(R34), 2004.

(4]

(5]

(6]

(8]

0]

Appendix A Proofs Ha|a] H[a]
= | DTN —a+1] = > TIT|—q+1]| +
q=1 q=1

Hs[y] Hily]
Proof. Let H be a head array, arid and7» be two arrays Z T'[|T'| - Z T'|T'| — q + 1]
with |T}| = |T»|, whereT is produced by a push-right -
operation that moves a positive valuérom thez-th entry
of Ty to they-th entry, withz < y. Then,

Lemmal

~T'|T'| = Hy[o] + 1] + T'[lT'I — Haly] +1]
0

Y

HT-suniH, T) — HT-sum{H, T}) Therefore the HT-sum is not reduced. 0

|H| Hlp] |H| Hlp] Lemma 3
= | Tz| — 1] - T[Ty — 1 i .
Z Z 272l — g+ Z Z Tl =a+1] Proof. Without loss of generality, let us compare the aver-

pebat =t ages of the first and second intervals. Each entry in the sec-
A [Hr] ond interval corresponds to an occurrencéf8..k-1] after
= D (X BTl —a+1] =) Tl —q+1] the second occurrence Bf2], which is in turn after the first
p=1 \e=1 =t occurrence ofP[2]. Therefore each entry in the second in-
|H (0 if|Ty|—Hpl+1<zx terval has a corresponding entry in the first interval with the
= Z 0 if|Ty|—Hp|l+1>y same value. The first interval may contain additional en-
p=1 | v otherwise tries, corresponding to occurrenceskB..k-1] where the
> 0 PI[3] is before the second occurrencefjR]. Since the en-
tries are in lexicographic order, these additional entries must
Therefore the HT-sum is not reduced. O be the leftmost entries of the first interval. Let us call the
additional entries the leading group and the remaining ones
Lemma 2 the trailing group. We will prove that the average of the

leading group is no smaller than that of the trailing group,
which is sufficient to show that the average of the first inter-
val is not smaller than that of the second interval. We prove

Proof. Let T’ be an array with non-increasing entrids,
be a head array, anH, be an array withH,| = |Hs|,
where H, is produced by a push-left operation t.hat moves .o proposition by mathematical induction.

one from thez-th entry of H; to they-th entry, withz > Base casek-1=3. As discussed, the entries in the lead-

y. Due to the push-left operation and the non-increasing; ing group all have theiP[k-1]=P[3] before the second oc-
property of head arrays, currence ofP[2] while the entries in the trailing group all
have theirP[k-1] after it. Since the value of an entry equals
the number ofP[£]'s after its P[k-1], each entry in the lead-
ing group must be not smaller than every entry in the trailing
group. The average of the leading group must therefore be
Hilz] < Ha[y] not smallgr than the average of the trailing group.
, , Inductive caseNow assume the proposition is true up to
= Tl = Hfe] +1> |T"| - Haly] + 1 k-1=1, for somel > 3. For k-1=/+1, we transform the se-
= T'(|T'| - Hilz] + 1] < T'[|T"| - Haly] + 1] quence by keeping only elements after the first occurrence
= —T'|T'|— Hilz] + 1]+ T'[|T'| — Ha[y] +1] > 0 of P[2], and then remove all occurrencesiR] in the re-
sulting subsequence. Then each entry in the first interval
where the third line is due to the non-increasing property of of the original sequence corresponds to the number of oc-
T’. Now, currences ofP[k] after a P[3..k-1] in this transformed se-
guence. We again partition the transformed sequence into
intervals by grouping entries that share the same occurrence

Hafa] = Hi[o]~1 < Hile] < Hily) < Hilyl+1 = Haly)

We have

HT-suntH,, T") — HT-sun{H,,7") of P[3] together. If we can show the averages of these in-
| Hz| Hz[p] |H1| Hilp] tervals are non-increasing, then certainly the average of the
= Z Z TT'| — Z Z T'|T'| —q+1] leading group, which is composed of the leftmost intervals,
p=1 ¢=1 p=1 ¢=1 must be not smaller than the average of the trailing group,
|Hy| [Halp] H[p] which is composed of the rightmost intervals. But this is ex-
= TT'| —q+1] - Z T(T'| - q+1] actly the inductive assumption. Therefore by mathematical
=1 \ ¢=1 induction, the proposition is true for ail > 4. O

11

Lemma 4(b) where the last line is due to the sum constraint of the head

array. Normalizing the HT-sum by the number of replicate
Proof. We will prove that for each interval af, we canuse ~ combinations, we get the part of MinBound due to the head:
push-right operations to obtain the corresponding interval of

T’. Again, we will use mathematical induction. HT-sum(H, T')
Base case k-1=3. As proved in the base case of —P
Lemma 3, the entries in the interval are non-increasing in H (Pl
T. We repeat the following: take the leftmost entry in the _ r(P[k])sn;(P[1..k —1])
interval that is larger than the average, and use a push-right B H (P[]
operation to move the difference to the next entry. The re-
L) i an(P[Kk —1])
sulting interval will have all entries equal to the average, = —_—
which is the same as the corresponding interval'in H; 1 7”(i)
Inductive caseNow assume the proposition is true up to = s(P[1..k—1])

k-1=l, for somel > 3. Fork-1=[+1, we first partition the
entries in the interval of” into sub-intervals according to
which P[3] they refer to. As proved in the inductive case
of Lemma 3, the averages of these sub-intervals are non-
increasing. We use push-right operations to make them all

Since the bounding tail arréy* cannot contain any en-
try larger than the maximum, HT-sud(, 7) must not be
larger than HT-sundq, 71):

have the same average as follows: repeatedly we pick the |H"| H*[p]

leftmost sub-interval with an average larger than the average HT-sum H*,T*) = Z T*[|T*| —q + 1]

of the whole interval. Then we move the difference from the p=1 g=1

last entry of the sub-interval to the first entry of the next sub- |H*| H*[p]

interval. After that, the sub-intervals all have an average < r(P[k])

equal to the average of the corresponding sub-intervals of =1 g=1

T’. Therefore by the inductive assumption, each of these |H|

sub-intervals of can be obtained by push-right operations = r(P[k]) Z H*[p]

of the corresponding sub-interval &t O

Lemma. 7 r(Plk])sn;(P[1..k — 1])
HT-sum(H, T")

Proof. For any patterrP[1..k] and each row, MinBound Therefore the corresponding bound £g(P) is also not

is composed of two parts due to the haggd...k-1] and the larger than that from the part of MinBound due to the head.

tail P[2..k], with valuess;(P[1..k-1]) and s;(P[2..k]) re- Similarly, the part of MinBound due to the tail assumes

spectively. The part due to the head assumes the extremehe extreme case that each occurrence of the tail is preceded

case that each occurrence of the head is followee Byk]) by r(P[1]) occurrences aP|[1] earlier in the sequence. This

occurrences of[k] later in the sequence. It is interesting part of the bounds;(P[2..k]), can be obtained from HT-
that this part of the bounds;(P[1..k-1]), can be obtained sum(@',T), whereT is the actual tail array oP and H'

from HT-sum(, T'), where H is the actual head array of is an array with the same number of entries as the actual
P andT' is an array with the same number of entries as the head array of?, but every entry takes the maximum allowed
actual tail array ofP, but every entry takes the maximum valuesn;(P[2..k-1]) of the array, which is also equal to the

allowed valuer(P[k]) of the array: number of entries of:
|H| Hp] |H'| H[p]
HT-sum(H,T) = Y > T[T - q+1] HTsum(Ht, 1) = > 3 77| —q+1]

ZI)H\ Zl[p] |HT| sn;(P[2..k—1])

= S5 PR = > > TITI-q+1]
p=1qg=1 p=1 g=1

|H| |HT|
= r(P[K]))_ HIp) = 3 sni(P[2.k))
= r(P[k])sn;(P[1l..k —1]) = r(P[1])sn;(P[2..k])

12

where the third line is due to the sum constraint of the tall
array and the fourth line is due to the size constraint of the
head array.

Again, we can show that it is no better (smaller) than
HT-sum®E*,T™) :

|H™| H"[p]
HT-sum(H*,T*) = THT*| - q + 1]

p=1 g¢=1

|H*| sn;(P[2..k—1])

< S T g+ 1]
p=1 qg=1
|H™|

= sn;(P[2..k])
p=1

= r(P[1])sn;(P[2..k])
= HT-sumH',T)

Combining the two parts of results, HTBound is always
at least as tight as MinBound. 0

13

