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Abstract

Order-preserving submatrices (OPSM’s) have been
shown useful in capturing concurrent patterns in data when
the relative magnitudes of data items are more important
than their absolute values. To cope with data noise, re-
peated experiments are often conducted to collect multiple
measurements. We propose and study a more robust version
of OPSM, where each data item is represented by a set of
values obtained from replicated experiments. We call the
new problem OPSM-RM (OPSM with repeated measure-
ments). We define OPSM-RM based on a number of practi-
cal requirements. We discuss the computational challenges
of OPSM-RM and propose a generic mining algorithm. We
further propose a series of techniques to speed up two time-
dominating components of the algorithm. We clearly show
the effectiveness of our methods through a series of experi-
ments conducted on real microarray data.

1 Introduction

Among all data mining problems, Order-Preserving Sub-
matrix (OPSM) has important applications particularly in
the area of bioinformatics. The general OPSM problem ap-
plies to a matrix of numerical data values. The objective
is to discover a subset of attributes (columns) over which a
subset of tuples (rows) exhibit a similar pattern of rises and
falls in the tuples’ values. For example, when analyzing
gene expression data from microarray experiments, genes
(rows) with concurrent changes of mRNA expression levels
across different time points (columns) may share the same
cell-cycle related properties [11]. Due to the high level of
noise in typical microarray data, it is usually more mean-
ingful to compare therelative expression levels of differ-
ent genes at different time points rather than their absolute
values. Genes that exhibit simultaneous rises and falls of
their expression values across different time points or ex-
periments reveal interesting patterns and knowledge. As an
example, Figure 1 shows the expression levels (y-axis) of
two different sets of genes under four experimental condi-

tions (x-axis)1 in the two graphs. The two sets of genes
belong to different functional categories. From the figure
we see that genes of the same group exhibit similar expres-
sion patterns even though their absolute expression values
under the same experiment vary.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

gal1RG1 gal2RG1 gal3RG1 gal4RG1
Experiment (column)

E
xp

re
ss

io
n 

le
ve

l
YDR073W
YDR088C
YDR240C
YDR473C

0

0.2

0.4

0.6

0.8

1

1.2

gal1RG1 gal2RG1 gal3RG1 gal4RG1
Experiment (column)

E
xp

re
ss

io
n 

le
ve

l

YHR092C
YHR094C
YHR096C
YJL214W

Figure 1. Concurrent expression patterns of two
sets of genes from different functional categories

The original OPSM problem was first proposed by Ben-
Dor et al. [2].

Definition 1 Given ann×m matrix (dataset)D, an order-
preserving submatrix (OPSM) is a pair(R,P ), whereR is a
subset of then rows (represented by a set of row ids) andP
is a permutation of a subset of them columns (represented
by a sequence of column ids) such that for each row inR,
the data values are monotonically increasing with respect
to P , i.e.,DiPj < DiPj′ ,∀i ∈ R, 1 ≤ j < j′ ≤ |P |.2

For example, Table 1 shows a dataset with 4 rows and 4
columns. The values of rows 2, 3 and 4 rise froma to b, so
({2, 3, 4}, 〈a, b〉) is an OPSM. For simplicity, in this study
we assume that all values in a row are unique.

We say that a rowsupportsa permutation if its values
increase monotonically with respect to the permutation. In
the above example, rows 2, 3 and 4 support the permutation
〈a, b〉, but row 1 does not. For a fixed dataset, the rows that
support a permutation can be unambiguously identified. In

1See Section 7 for a description of the real dataset used.
2We useDpq to denote the data item in rowp and columnq.



a b c d
row 1 49 38 115 82
row 2 67 96 124 48
row 3 65 67 132 95
row 4 81 115 133 62

Table 1. A dataset without repeated measurements

the following discussion, we will refer to an OPSM simply
by its permutation, which will also be called apattern.

An OPSM (and its corresponding pattern) is said to be
frequent if the number of supporting rows is not less than a
support thresholdρ [4]. Given a dataset, the OPSM mining
problem is to identify all frequent OPSM’s. In the gene
expression context, these OPSM’s correspond to groups of
genes that have similar activity patterns, which may suggest
shared regulatory mechanisms and protein functions.

A drawback of the basic OPSM mining problem is that
it is very sensitive to noisy data. In microarray experiments,
each value in the dataset is a physical measurement that is
subject to different kinds of errors. To combat errors, ex-
periments are often repeated and multiple measured values
(called replicates) are recorded. The replicates allow a bet-
ter estimate of the actual physical quantity. Indeed, as the
cost of microarray experiments has been dropping, research
groups have been obtaining replicates to strike for higher
data quality. For example, in the microarray dataset we use
in our study, each experiment is repeated 4 times to produce
4 measurements of each data point. Studies have clearly
shown the importance of having multiple replicates in im-
proving data quality [8].

Different replicates, however, may support different
OPSM’s. In our previous example, if the value of columna
is slightly increased in row 3, say from 65 to 69, then row
3 will no longer support the pattern〈a, b〉, but will support
〈b, a〉 instead. As another example, Table 2 shows a dataset
with two more replicates added per experiment. From this
new dataset, we see that it is no longer clear whether row 3
supports the〈a, b〉 pattern. For instance, while the replicates
a1, b1 support the pattern, the replicatesa2, b3 do not.

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

row 1 49 55 80 38 51 81 115 101 79 82 110 50
row 2 67 54 130 96 85 82 124 92 94 48 37 32
row 3 65 49 62 67 39 28 132 119 83 95 89 64
row 4 81 83 105 115 110 87 133 108 105 62 52 51

Table 2. A dataset with repeated measurements

Our examples illustrate that the original OPSM defini-
tion is not robust against noisy data. It also fails to take
advantage of the additional information provided by data
replicates. There is thus a strong motivation to revise the
definition of OPSM to handle repeated measurements. Such

a definition should satisfy the following requirements:
(1) If a pattern is supported by all combinations of the repli-
cates of a row, the row should contribute a high support to
the pattern. For example, for row 3, the values of columnb
are clearly smaller than those of columnc. All 3 × 3 = 9
replicate combinations ofb andc values(b1, c1), (b1, c2),
..., (b3, c3) support the〈b, c〉 pattern. Row 3 should thus
strongly support〈b, c〉.
(2) If the value of a replicate largely deviates from other
replicates, it is probably due to error. The replicate should
not severely affect the support of a given pattern. For exam-
ple, we see that row 2 generally supports the pattern〈a, c〉 if
we ignorea3, which is abnormally large (130) when com-
pared toa1 (67) anda2 (54). The support of〈a, c〉 con-
tributed by row 2 should only be mildly reduced due to the
presence ofa3.
(3) If the replicates largely disagree on their support of a
pattern, the overall support should reflect the uncertainty.
For example, in row 4, the values ofb andc are mingled.
Thus, row 4 should notstronglysupport〈b, c〉 or 〈c, b〉.

The first two requirements can be satisfied by summariz-
ing the replicates by robust statistics such as medians, and
mining the resulting dataset using the original definition of
OPSM. However, the third requirement cannot be satisfied
by any single summarizing statistic. This is because under
the original definition, a row can only either fully support or
fully not support a pattern. The information of uncertainty
is thus lost. To tackle this problem, we define a new OPSM
problem based on the concept offractional support:

Definition 2 The fractional supportsi(P ) of a patternP
contributed by a rowi is the number of replicate combina-
tions of rowi that support the pattern, divided by the total
number of replicate combinations of the columns inP .

For example, for row 1, the pattern〈a, b, d〉 is supported
by 8 replicate combinations:〈a1, b2, d1〉, 〈a1, b2, d2〉,
〈a1, b3, d1〉, 〈a1, b3, d2〉, 〈a2, b3, d1〉, 〈a2, b3, d2〉,
〈a3, b3, d1〉, and 〈a3, b3, d2〉 out of 33 = 27 possible
combinations. The fractional supports1(〈a, b, d〉) is
therefore 8/27. We usesni(P ) andsdi(P ) to denote the
numerator and the denominator ofSi(P ), respectively. In
our example,sn1(〈a, b, d〉) = 8 andsd1(〈a, b, d〉) = 27.

The definition of fractional support satisfies all the three
requirements we stated above. Firstly, if all replicate com-
binations of a row support a certain pattern, the fractional
support contributed will be 1. Secondly, if a replicate of
a columnj deviates from the others, the replicate can at
most change the fractional support by1r(j) , wherer(j) is
the number of replicates of columnj. This has small effects
when the number of replicatesr(j) is large. Finally, if only
a fraction of the replicate combinations support a pattern,
the resulting fractional support will be fuzzy (away from 0
and 1), which reflects the uncertainty.

2



The total fractional support of a patternP (or simply the
support ofP ), is defined as the sum of all the fractional sup-
ports ofP contributed by all the rows:s(P ) =

∑
i si(P ).

A pattern P is frequent if its support is not less than a
given support thresholdρ. Our new OPSM mining prob-
lem OPSM-RM (OPSM with repeated measurements) is to
identify all frequent patterns in a data matrix with replicates.

From the definition of fractional support, we can observe
the combinatorial nature of the OPSM-RM problem — the
number of replicate combinations grows exponentially with
respect to the pattern length. One of the objectives of this
work is to derive efficient algorithms for mining OPSM-
RM. By proving a number of interesting properties and the-
orems, we propose pruning techniques that can significantly
reduce mining time.

2 Related work

The conventional order-preserving submatrices (OPSM)
mining problem was motivated and introduced in [2] to an-
alyze gene expression data without repeated measurements.
In [2], it was proved that the problem is NP hard. A greedy
heuristic mining algorithm was proposed, which does not
guarantee the return of all OPSM’s or the best OPSM’s.

Since then, mining efficiency has been the main research
issue. In [4], themonotonicand transitive properties of
OPSM’s were proved. Based on the properties, a candidate
set generation-and-test framework was proposed to mine all
OPSM’s. It makes use of a new data structure, the head-
tail trees, for efficient candidate generation. The study re-
ported in [5] concerned the high computational cost of min-
ing OPSM’s from massive data. They defined thetwig clus-
ters, which are OPSM’s with large numbers of columns and
naturally low supports. They proposed aKiWi framework to
efficiently mine the twig clusters. None of the above stud-
ies, however, handle data with repeated measurements.

The OP-clustering approach [9] generalizes the OPSM
model by grouping attributes into equivalent classes. A
depth-first search algorithm was proposed for mining all
error-tolerated clusters. The model attempts to handle error
in single expression values rather than exploiting extra in-
formation obtained from repeated measurements. In [3], the
problem of mining OPSM’s over multiple time points was
considered. There are different experimental conditions in
each time point, and a pattern is required to be consistent
over the time points. An evolutionary algorithm was pro-
posed to explore the search space.

3 Basic algorithm

In this section we discuss a straightforward algorithm for
solving the OPSM-RM problem. We use an alternative rep-
resentation of a matrix dataset that is more convenient for

our discussion [5]. For each row, we sort all the values in
ascending order, and record the resulting column names as a
data sequence. For example, row 1 in Table 2 is represented
by the data sequence〈b, a, d, b, a, c, a, b, d, c, d, c〉. The ad-
vantage of such a representation is that given a rowi and a
patternP , the countsni(P ) is equivalent to the number of
subsequences in the data sequence that matchP . For exam-
ple,sn1(〈a, b, d〉) = 8 because there are 8 subsequences in
〈b, a, d, b, a, c, a, b, d, c, d, c〉 that match the pattern〈a, b, d〉.
In the following discussion, when we mention a row, we re-
fer to the row’s sorted data sequence.

Theorem 1 Let P1 andP2 be two patterns such thatP1 is
a subsequence ofP2. For any rowi, si(P2) ≤ si(P1).

Proof. It is sufficient to show that the theorem is true for
patterns whose lengths differ by 1, i.e.,|P2| = |P1| + 1.
We can repeat the argument to prove the theorem for pat-
terns of arbitrary lengths. Letj be the column that is in
P2 but not in P1, and r(j) be the number of replicates
in column j. Each subsequence of rowi that matches
P1 can potentially be extended to matchP2 by inserting a
column j replicate. Since there are onlyr(j) such repli-
cates, at mostr(j) such extensions are possible. Hence,
sni(P2) ≤ r(j) · sni(P1). On the other hand, the total
number of possible replicate combinations is multiplied by
a factor ofr(j), i.e., sdi(P2) = r(j) · sdi(P1). Therefore
si(P2) = sni(P2)

sdi(P2)
≤ r(j)·sni(P1)

r(j)·sdi(P1)
= si(P1).

The above monotonic property implies the following
Apriori property:

Corollary 1 LetP1 andP2 be two patterns such thatP1 is
a subsequence ofP2. P2 is frequent only ifP1 is frequent.

Proof. If P1 is infrequent,s(P1) < ρ. By Theorem 1,
si(P2) ≤ si(P1) for all row i. So,s(P2) =

∑
i si(P2) ≤∑

i si(P1) = s(P1) < ρ. PatternP2 is therefore infrequent.

The Apriori property ensures that an OPSM can be fre-
quent only if all its subsequences (i.e., sub-patterns) are fre-
quent. This suggests an iterative mining algorithm as shown
in Figure 2.

As in frequent itemset mining [1], the algorithm itera-
tively generates the setCandk of length-k candidate pat-
terns, and verifies their supports. Those patterns that pass
the support threshold are recorded in the setFreqk, which
are then used to generate the candidates of the next iteration.

We remark that in the original OPSM problem (without
data replicates), all candidates are by definition frequent and
thus support verification is not needed. This is due to the
transitivity property: if a row supports both patterns〈a, b, c〉
and 〈b, c, d〉, the value at columna must be smaller than

3



Algorithm OPSM-RM
INPUT : raw data matrixD, support thresholdρ
OUTPUT: the set of all frequent patterns
1: TransformD into sequence datasetD′

2: Cand2 := {all possible patterns of length 2}
3: k = 2
4: Freqk := verify (Candk, D′, ρ)
5: while Freqk 6= ∅ do
6: k := k + 1
7: Candk := generate(Freqk−1)
8: Freqk := verify (Candk, D′, ρ)
9: end while
10:return Freq2 ∪ ... ∪ Freqk

Figure 2. An Apriori algorithm for OPSM-RM

that at columnd, and so it must also support〈a, b, c, d〉.
However, when there are replicates, the fractional support
of a pattern can be smaller than those of all its sub-patterns.
For example, the sequence〈b, a, d, b, a, c, a, b, d, c, d, c〉 has
a fractional support of4/9 for 〈a, b〉, 8/9 for 〈b, c〉 and8/9
for 〈a, c〉, but the support for〈a, b, c〉 is only 9/27 = 3/9.
Support verification is thus necessary for OPSM-RM.

The efficiency of the algorithm depends on the two core
functions generate and verify . For example, significant
speed-up can be achieved if effective pruning techniques are
applied so thatgenerateproduces a smaller set of candidate
patterns. In the following we briefly describe the basic algo-
rithms for implementing thegenerateandverify functions.

Generate. A convenient way to generate length-k can-
didates from length-(k-1) frequent patterns is to use the
head-tail trees. We briefly describe the data structure here.
Readers are referred to [4] for details. Each length-(k-1)
frequent patternP derives two length-(k-2) sub-patterns,
called a head patternP1 and a tail patternP2. P1 is ob-
tained fromP by removing the last symbol ofP while P2

is obtained by removing the first symbol. For example, if
P = 〈a, b, c〉 thenP1 = 〈a, b〉 andP2 = 〈b, c〉. All the head
patterns derived from all the length-(k-1) frequent patterns
are collected and are stored as strings in a compressed data
structure. For each head patternP1, a reference to all the
frequent patterns from whichP1 is derived is also stored.
In our implementation, we use a prefix tree [7] to store the
head patterns. We call it the head tree. Similarly, tail pat-
terns are collected and are stored in a tail tree.

To generate length-k candidates, the two trees are tra-
versed in parallel to identify frequent patterns with com-
mon sub-strings. For example, if bothP1 = 〈a, b, c〉 and
P2 = 〈b, c, d〉 are frequent patterns, then the common sub-
string 〈b, c〉 will appear in both the head tree (due toP2)
and the tail tree (due toP1). References toP1 andP2 are

retrieved. The two patterns are then joined to derive the
candidate〈a, b, c, d〉.

Verify . Candidate patterns obtained fromgenerate
are stored as strings in another compressed data structure.
Again, we use a prefix tree implementation. To count the
candidates’ supports, we scan the dataset. For each rowi,
we traverse the candidate tree and locate all candidate pat-
terns that are subsequences of the data sequence of rowi.
For each such candidate patternP , we increment its sup-
ports(P ) by si(P ).

Support counting can be made more efficient by com-
pressing data sequences using run-length encoding. Given
a data sequence of a row, consecutive occurrences of the
same column symbol are replaced by one single symbol
and an occurrence count. For example, the data sequence
〈d, d, d, a, a, b, b, c, c, b, c, a〉 of row 2 in Table 2 is com-
pressed to〈d(3), a(2), b(2), c(2), b(1), c(1), a(1)〉. The ad-
vantage of compressing data sequences is that the com-
pressed sequences are shorter (in our example, 7 symbols)
than the originals (in our example, 12 symbols). The shorter
data sequences allow more efficient subsequence match-
ing in support counting. For example, the pattern〈d, c, a〉
matches the above compressed data sequences two times
(instead of 9 times against the uncompressed sequence):
〈d(3), ., ., c(2), ., ., a(1)〉 and〈d(3), ., ., ., ., c(1), a(1)〉. To
determinesni(P ), we multiply the occurrences for each
match and sum the results. In the above example, we have
sn2(〈d, c, a〉) = 3 · 2 · 1 + 3 · 1 · 1 = 9.

4 MinBound

From Theorem 1 we know that the support of a pattern
contributed by a row cannot exceed the corresponding sup-
ports of its sub-patterns. We can make use of this obser-
vation to help deduce an upper bound to the support of a
candidate pattern. If this upper bound is less than the sup-
port thresholdρ, the candidate pattern can be pruned. Fewer
candidates result in a faster verification and support count-
ing process, and thus a more efficient mining algorithm.

In this section we discuss a simple bounding technique
called MinBound. Recall that in candidate generation,
a candidate patternP is generated by joining two sub-
patterns, say,P1 and P2. For example, the candidate
〈a, b, c, d〉 is obtained by joining〈a, b, c〉 and〈b, c, d〉. Note
that bothP1 andP2 must be frequent and therefore their
fractional supports given by each row of the dataset should
have already been previously computed. If such supports
are cached, we can determine an upper bound ofs(P ) by

s(P ) =
n∑

i=1

si(P ) ≤
n∑

i=1

min{si(P1), si(P2)}.

For example, for row 1 in Table 2,s1(〈a, b, c〉) = 9/27
and s1(〈b, c, d〉) = 7/27. Therefore an upper bound of
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s1(〈a, b, c, d〉) is min{9/27, 7/27} = 7/27. Note that the
exact value ofs1(〈a, b, c, d〉) is 6/81 = 2/27.

5 Computing supports by head-tail arrays

Generally, the upper bounds derived by MinBound are
not very tight. In this section we introduce head-tail arrays,
a data structure that allows the calculation of the exact sup-
port of candidate patterns. Although powerful, head-tail ar-
rays are very memory demanding and are thus impractical.
Fortunately, the arrays can also be used to derive fairly tight
bounds for the support, in which case the memory require-
ments can be substantially reduced by maintaining only cer-
tain statistics. The details will be given in Section 6.

Recall that a length-k candidate patternP is generated
by two length-(k-1) frequent sub-patternsP1 andP2, which
correspond to the head (i.e.,P1 = P [1..k-1]) and tail (i.e.,
P2 = P [2..k]) of P . Given a rowi, our goal is to compute
the fractional supportsi(P ) based on certain support count
information we have previously obtained aboutP1 andP2

with respect to rowi. To illustrate, let us use row 1 in Ta-
ble 2 andP = 〈a, b, c, d〉 as a running example. Let

1 2 3 4 5 6 7 8 9 10 11 12
S1 = 〈 b, a, d, b, a, c, a, b, d, c, d, c 〉

be the data sequence of row 1. (Symbol indices are shown
for ease of reference.) Also, we haveP1 = 〈a, b, c〉 and
P2 = 〈b, c, d〉. The fractional supportsi(P ) can be com-
puted by constructing the following two auxiliary arrays.

Thehead arrayH concerns the head sub-patternP1. It
containsr(P [1]) entries (recall thatr(P [1]) is the number
of replicates of columnP [1]). The l-th entry of the head
array records the number of timesP [2..k-1] appear after the
l-th occurrence ofP [1] in Si. In our example,P [1] = a and
there arer(P [1]) = r(a) = 3 replicates, so the head array
has 3 entries. Also,P [2..k-1] = 〈b, c〉. The 3 entries of the
head array thus record the number of times〈b, c〉 occurs in
S1 after each of the 3a’s. The head array is thus:

H: 5 2 2

The first entry is 5 because after the firsta (position
2), there are 5 occurrences of〈b, c〉 in S1, at positions
(4, 6), (4, 10), (4, 12), (8, 10) and (8, 12). Similarly, the
second entry is 2 because after the seconda (position 5),
there are 2 occurrences of〈b, c〉, at(8, 10) and(8, 12).

Thetail array T concerns the tail sub-patternP2. It con-
sists ofsni(P [2..k-1]) entries. Thel-th entry of the array
records the number of timesP [k] appears after thel-th oc-
currence ofP [2..k-1] in Si, where the occurrences are in
lexicographic order according to the positions of the occur-
rences. In our example,P [2..k-1] = 〈b, c〉 and there are
sn1(〈b, c〉) = 8 occurrences of〈b, c〉 in S1. In lexicographic
order, the positions of these occurrences are:(1, 6), (1, 10),

(1, 12), (4, 6), (4, 10), (4, 12), (8, 10) and(8, 12). The tail
array thus has 8 entries, one for each occurrence of〈b, c〉.
For our example,P [k] = d. Each entry in the tail array thus
records the number ofd’s that appear after the correspond-
ing 〈b, c〉 in S1. Our tail array is:

T: 2 1 0 2 1 0 1 0

Since the first occurrence of〈b, c〉 is (1,6) and there are 2
d’s after that (at positions 9 and 11), the first entry of the tail
array is 2. The other entries can be determined similarly.

By arranging the occurrences of〈b, c〉 in lexicographic
order, we ensure that all occurrences of〈b, c〉 that appear
after a certain position inS1 are all associated with the right-
most entries of the tail array. This helps us in determining
the number of occurrences of a pattern. For example, let us
determine the number of〈a, b, c, d〉 in S1 that start with the
first a (position 2). From the head array, we know that there
are 5〈b, c〉’s after the firsta. Because of the lexicographic
order, these 5〈b, c〉’s must be associated with the 5 right-
most entries of the tail array. According to the tail array,
there are 2, 1, 0, 1, and 0d’s after those 5〈b, c〉’s respec-
tively. Therefore, there are 2 + 1 + 0 + 1 + 0 = 4〈b, c, d〉’s
after the firsta. Similarly, there is 1〈b, c, d〉 after the second
a and 1 after the thirda. So in total there are4 + 1 + 1 = 6
occurrences of〈a, b, c, d〉 in S1.

We can generalize the above computation for any head
arrayH and tail arrayT . We call the resulting sum the “HT-
sum”, which can be expressed by the following formula:

HT-sum(H,T ) =
|H|∑
p=1

H[p]∑
q=1

T [|T | − q + 1]. (1)

Since sdi(P ), the total number of replicate combina-
tions, is given by

∏|P |
j=1 r(P [j]), the fractional support

si(P ) = sni(P )/sdi(P ) can be readily determined.

6 HTBound

In Section 5 we show that given a length-k candidate
patternP and its generating sub-patternsP1 andP2, if we
have constructed the head arrayH and the tail arrayT ,
then sni(P ) (and thus the fractional supportsi(P )) can
be computed by HT-sum. However, the tail array contains
sni(P [2..k-1]) entries, which, in the worst case, is exponen-
tial to the pattern’s length. It is thus impractical to construct
or store all the tail arrays. In this section we show that it is
possible to compute anupper boundof the HT-sum by stor-
ing only 3 numbers without ever constructing the head and
tail arrays. We call this bound the HTBound. Similar to the
idea of MinBound, the HTBound allows us to prune candi-
date patterns for a more efficient mining algorithm. We will
show at the end of this section that HTBound is tighter than
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MinBound. To better illustrate the concepts, we continue
with our running example considering the data sequenceS1,
the length-k candidate patternP = 〈a, b, c, d〉, its head sub-
patternP1 = 〈a, b, c〉 and tail sub-patternP2 = 〈b, c, d〉.

To determine the HTBound ofP , we need the follow-
ing three values, all obtainable in previous iterations of the
mining algorithm. (We show the corresponding values of
our running example in parentheses.)

• sni(P1) (sn1(〈a, b, c〉) = 9). This value is obtained in
the (k-1)-st iteration. Note that it is also equal to the
sum of the entries in the head array.

• sni(P2) (sn1(〈b, c, d〉) = 7). This value is obtained in
the (k-1)-st iteration. Note that it is equal to the sum
of the entries in the tail array.

• sni(P [2..k-1]) (sn1(〈b, c〉) = 8). This value is ob-
tained in the (k-2)-nd iteration. Note that this value is
equal to the number of entries in the tail array. Also,
no entry in the head array can exceed this value.

We assume that the number of replicates for each column is
stored as metadata, i.e., we knowr(j) for all columnj. In
particular, we knowr(P [1]) andr(P [k]). Note that the for-
mer equals the number of entries in the head array, while no
entry in the tail array can exceed the latter. In our example,
r(P [1]) = r(a) = 3, soH has 3 entries, andr(P [k]) = r(d)
= 3, so no entry inT exceeds 3.

The above values thus constrain the sizes, sums and max-
ima of H andT . For convenience, we call them the “con-
straint counts”. The following property, easily verifiable by
the definition of head array, states another constraint onH:

Property 1 The entries in the head arrayH are non-
increasing (from left to right).

Our idea of upper bounding HT-sum(H,T ) is to show
that there exists a pair of arraysH∗ andT ∗ that can be ob-
tained fromH andT through a series of transformations.
We will prove that (1) each transformation will not reduce
the HT-sum and hence HT-sum(H,T ) ≤ HT-sum(H∗, T ∗);
(2) H∗ and T ∗ can be constructed using solely the con-
straint counts. Because of (2),H andT need not be materi-
alized and stored. We will show a closed-form formula for
HT-sum(H∗,T ∗), which serves as an upper bound of HT-
sum(H,T ), in terms of the constraint counts. The transfor-
mations are based on the following “push” operations:

Definition 3 A push-right operation on an arrayA from
entry l to entry l′ reducesA[l] by a positive valuev and
increasesA[l′] byv, wherel < l′.

Definition 4 A push-left operation of an arrayA from entry
l to entryl′ reducesA[l] by one and increasesA[l′] by one,
wherel′ < l.

Essentially, the push operations push values towards the
right and left of an array respectively. Here are two useful
properties of the push operations:

Lemma 1 With a fixed head array, each push-right opera-
tion on the tail arrayT cannot reduce the HT-sum.

Proof. A formal proof is given in the Appendix. In sum-
mary, in the procedure of computing the HT-sum (Sec-
tion 5), for each entry in the head array, a number of right-
most entries of the tail array are summed. Since each push-
right operation onT transfers a positive value from an entry
to another entry on its right, the sum cannot be reduced.

Lemma 2 If the tail array is non-increasing, each push-left
operation on the head array cannot reduce the HT-sum.

Proof. A formal proof is given in the Appendix. Here, we
illustrate the proof by an example. Consider our example
head arrayH = [5, 2, 2]. If we push-left onH from entry
H[3] to H[2] by a value of 1, we get̂H = [5, 3, 1]. In
calculating the HT-sum, the entriesH[2] = 2 andH[3] = 2
each requests the sum of the two rightmost entries inT ,
i.e., T [t-1] andT [t] wheret = |T |. On the other hand,
the entriesĤ[2] = 3 andĤ[3] = 1 request the sum of the
three rightmost entries inT (i.e., T [t-2..t]) and the value
of the rightmost entry inT (i.e.,T [t]), respectively. So the
net difference HT-sum(Ĥ, T ) − HT-sum(H,T ) = T [t-2] -
T [t-1]. If T is non-increasing, T [t-2] ≥ T [t-1] and thus
HT-sum(H,T ) ≤ HT-sum(Ĥ, T ).

Note that Lemma 2 is applicable only if the tail array is
non-increasing. In our running example, however,T does
not satisfy the non-increasing requirement. Fortunately, we
can show that by applying a number of push-right opera-
tions, we can transformT to a T ′ that is non-increasing.
With T ′, Lemma 2 applies, and we can perform a number
of push-left operations to transformH to anH∗. Finally,
we apply push-right operations to transformT ′ to aT ∗. In
this transformation process, by Lemmas 1 and 2, we have
HT-sum(H,T ) ≤ HT-sum(H,T ′) ≤ HT-sum(H∗, T ′) ≤
HT-sum(H∗, T ∗). To complete the discussion, we need to
define the contents ofT ′, H∗ andT ∗, and to show that (1)
T ′ so defined is non-increasing and that it can be obtained
by transformingT via a number of push-right operations;
(2) H∗ can be obtained fromH via a number of push-
left operations, each of which preserves the non-increasing
property of the entries, and the content ofH∗ so defined
can be derived from the constraint counts; and (3)T ∗ can
be obtained fromT ′ via a number of push-right operations
and its content so defined can be derived from the constraint
counts. To accomplish the above, we need to prove a few
properties ofT first.

Recall thatT containssni(P [2..k-1]) entries and that the
l-th entry ofT records the number ofP [k] that appears after
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the l-th occurrence ofP [2..k-1] in the data sequenceSi. In
our example,P [2..k-1] = 〈b, c〉 and there are 8 occurrences
of it in S1 at positions(1, 6), (1, 10), (1, 12), (4, 6), (4, 10),
(4, 12), (8, 10) and(8, 12). Let us group the entries together
if they correspond to the same occurrence ofP [2]. In our
example,P [2] = b. The three occurrences ofb are posi-
tions (1), (4) and (8). So we group the first 3 entries (which
correspond to〈b, c〉 at(1, 6), (1, 10), (1, 12)) together. Sim-
ilarly, the remaining entries inT are divided into two more
groups. We note that each group forms a segment in theT
array, called aninterval. In our example, the intervals are:

T : 2 1 0 2 1 0 1 0

Given an intervalI in T , we define theinterval average
of I as the average of the entries inI. For example, the
interval averages of the 3 intervals in our exampleT are 1,
1, and 0.5, respectively. Here is an important property of
the interval averages:

Lemma 3 The interval averages are non-increasing.

Proof. A formal proof is given in the appendix. In sum-
mary, consider any intervalI and its immediate right neigh-
bor intervalI ′. We can show thatI must containI ′ as its
rightmost entries (e.g., the second interval ([2,1,0]) contains
the third interval ([1,0]) at its right end). We can also show
that if I contains additional entries (other than those ofI ′),
the average of these additional entries must be at least as
large as the interval average ofI ′ (e.g., the additional entry
[2] in the second interval is larger than the third interval’s
average, which is 0.5). Therefore, the interval average ofI
must not be smaller than the interval average ofI ′. Hence,
the interval averages are non-increasing.

With the concept of intervals, we are ready to defineT ′:

Definition 5 Array T ′ is the same asT in terms of its size,
the number of intervals, and the length of each interval. For
each intervalI in T ′, the value of each entry inI is equal
to the average value of the corresponding interval inT .

With our running example, we have,

T : 2 1 0 2 1 0 1 0
T ′: 1 1 1 1 1 1 0.5 0.5

The following lemma states the desired properties ofT ′.

Lemma 4 T ′ is (a) non-increasing, and (b) obtainable
fromT via a number of push-right operations.

Proof. (a): Within each interval, entries inT ′ share the
same value, so they are non-increasing. Also, the entries in
T ′ contain the interval averages ofT . By Lemma 3, these
averages are non-increasing. So, the entries inT ′ are non-
increasing across intervals.

(b): A formal proof is given in the appendix. In sum-
mary, for each interval ofT , we use push-right operations
to obtain the corresponding interval ofT ′. Here we use our
example to illustrate. The entries of the first interval ofT
are non-increasing, therefore we can repeatedly move the
excessive values from the leftmost entry to the next one by
push-right operations, forming(1, 2, 0) and then(1, 1, 1).

Next, we defineH∗. Recall that thel-th entry of H
records the number of times the patternP [2..k-1] occurs
after thel-th P [1] in Si. So, no entry inH can exceed
sni(P [2..k-1]). H∗ is obtained fromH by pushing as much
value to the left as possible, subject to the constraint that no
entry inH∗ exceedssni(P [2..k-1]). H andH∗ thus have
the same size and sum. Letx be the number of entries in
H, y = sni(P [2..k-1]), andz be the sum of all entries inH.
H∗ is given by

H∗[m] =


y 1 ≤ m ≤ b z

y c
z mod y m = b z

y c + 1
0 b z

y c + 2 ≤ m ≤ x

(2)

In our example,x = 3,y = 8, andz = 9. H∗ is thus:

H: 5 2 2
H∗: 8 1 0

Note thatx, y, andz can be obtained from the constraint
counts, soH∗ can be constructed directly from the con-
straint counts based on Equation 2 without materializingH.

Lemma 5 H∗ is obtainable fromH by a number of push-
left operations that preserve the non-increasing property.

Proof. There are three types of entries inH∗: (1) 0-valued
entries, all rightmost; (2) max-valued entries, all leftmost;
(3) zero or one remainder entry. For any entryj of H, we
call it a donor, a receiver or a remainder entry if thej-th
entry ofH∗ is of type-1, type-2 or type-3, respectively. We
repeatedly perform the following: take the rightmost donor
that is non-zero, and use a push-left operation to move one
from it to the leftmost receiver that is not equal to the max-
imum valuey yet, or to the remainder entry if all receivers
are already equal toy. After all the donors are made 0 by
the above procedure, if there is a receiver that is still smaller
thany by an amountw, we pushw from the remainder entry
to the receiver to obtainH∗. It is easy to see that each op-
eration preserves the non-increasing property of the array.

For our example, there is a donorH[3], a receiverH[1],
and a remainder entryH[2]. We first use two push-left oper-
ations to move 2 fromH[3] to H[1] to form (7, 2, 0). Then
since the receiver still has not reached the maximum value
y = 8, we use a push-left to move 1 fromH[2] to H[1] to
form (8, 1, 0), which is equal toH∗.
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Finally, we defineT ∗ and show how it can be obtained
from T ′. Recall thatT hassni(P [2..k-1]) entries with a
sum ofsni(P2). Let x = sni(P [2..k-1]) andz = sni(P2).
T ∗ is constructed by distributing an integral amount ofz
evening among thex entries, with the reminder distributed
to the rightmost entries ofT ∗. That is,

T ∗[m] =
{

b z
xc 1 ≤ m ≤ x− (z mod x)

d z
xe x− (z mod x) + 1 ≤ m ≤ x

In our example,x = 8 andz = 7. T ∗ is thus:

T ′: 1 1 1 1 1 1 0.5 0.5
T ∗: 0 1 1 1 1 1 1 1

It is obvious thatT ∗ can be constructed from the constraint
counts alone.

Lemma 6 T ∗ can be obtained fromT ′ by a number of
push-right operations.

Proof. Since the entries inT ′ are non-increasing and those
in T ∗ are non-decreasing, ifT ′[1] = T ∗[1], then all corre-
sponding entries in the two arrays are equal and no push-
right operations are needed. Otherwise,T ′[1] > T ∗[1], and
we can move the differenceT ′[1]−T ∗[1] toT ′[2] by a push-
right operation. If we now ignore the first entry of each ar-
ray, the same argument then applies to the second entry. We
can repeat the process to equalize every pair of correspond-
ing entries of the two arrays.

One can verify the following closed-form formula of HT-
sum(H∗,T ∗). For clarity, let us define a few values:

h1 =
⌊

sni(P [1..k − 1])
sni(P [2..k − 1])

⌋
,

h2 = sni(P [1..k − 1]) mod sni(P [2..k − 1]),

t1 =
⌊

sni(P [2..k])
sni(P [2..k − 1])

⌋
,

t2 = (sni(P [2..k]) mod sni(P [2..k − 1])),

Finally,

HT-sum(H∗, T ∗)
= h1 · sni(P [2..k]) +{

h2(t1 + 1) if h2 ≤ t2
t2(t1 + 1) + (h2 − t2)t1 otherwise

(3)

Note that the above computation only requires the constraint
counts. Therefore HT-sum(H∗,T ∗) can be calculated with-
out materializing any ofH, H∗, T , T ′ or T ∗. For our
running example,h1 = 1, h2 = 1, t1 = 0, t2 = 7, and
HT-sum(H∗, T ∗) = 1×7+1×(0+1) = 8. Our HTBound
thus equals HT-sum(H∗, T ∗)/sd1(P ) = 8/81. Note that
the exact support is 6/81 and the MinBound is 7/27 = 21/81

(see Section 4). HTBound is thus much tighter than Min-
Bound in this example. This is not mere coincidence. We
can show that the HTBound is indeed theoretically guaran-
teed to be better than the MinBound.

Lemma 7 HTBound is always at least as tight as Min-
Bound.

Due to space limitation, readers are referred to the Ap-
pendix for a proof of Lemma 7.

7 Experiments

In this section we evaluate our methods using a real mi-
croarray dataset that was also used in some previous stud-
ies on mining data with repeated measurements [10, 12].
It is a subset of a dataset obtained from a study of gene re-
sponse to the knockout of various genes in the galactose uti-
lization (GAL) pathway of the yeast Saccharomyces cere-
visiae [6]3. In our dataset, the columns correspond to the
knockout experiments of 9 GAL genes and the wild type,
growing in media with or without galactose, yielding a total
of 2(9 + 1) = 20 experiments (columns). Each experiment
has 4 replicates. There are 205 rows corresponding to genes
that exhibit responses to the knockouts. The genes belong
to four different classes according to their functional cate-
gories. Figure 1 in Section 1 shows some example values of
our dataset (only 1 replicate per column is shown).

We compare the performance of three methods: (1)Ba-
sic, which applies the basic Apriori algorithm (see Figure 2)
with data compression, (2)MinBound , which is the Basic
method plus candidate pruning using MinBound, and (3)
HTBound, which is the Basic method plus candidate prun-
ing using HTBound. To test the scalability of the methods,
we insert synthetic replicates, columns and rows to form
larger datasets. To synthesize additional replicates, for each
gene and each experiment, we follow standard practice to
model the values by a Gaussian distribution with the mean
and variance equal to the sample mean and variance of the
4 replicates. The expression values of new replicates are
then sampled from the Gaussian. New columns are synthe-
sized by randomly drawing an existing column, discarding
the existing expression values, but keeping the fitted Gaus-
sians and sampling new values from them. This way of
construction mimics the addition of knockout experiments
of genes in the same sub-paths of the original ones. Fi-
nally, new rows are synthesized as in the synthesis of new
columns, but with an existing row as template instead of
a column. This way of construction mimics the addition of
genes that have similar responses as some existing ones, due

3The dataset can be downloaded athttp://genomebiology.
com/content/supplementary/gb-2003-4-5-r34-s8.txt .
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to co-occurrence in the same downstream pathways. In the
experiments, the default support threshold is 20%.

We first compare the patterns mined under three differ-
ent settings: (1) Apply the original OPSM method on only
one set of replicates at a time. Since there are 4 replicates
per column, the basic OPSM method is applied 4 times. We
call these OPSM-i (i = 1..4). (2) Replace replicates by
their averages and apply the basic OPSM method (OPSM-
avg). (3) Consider all replicates and apply our approach
(OPSM-RM). We use Fisher’s exact test [5] to compute the
p-value of each pattern. Intuitively, a small p-value indi-
cates that the genes that support the pattern are highly likely
to belong to the same biological class. A pattern is said to
be significant if its p-value is less than 0.01. In microar-
ray data analysis, the classes are usually unknown and the
mined patterns help identify genes that are biologically re-
lated. Biologists need to perform costly small-scale exper-
iments to verify the results. A successful mining algorithm
should therefore return as few insignificant patterns as pos-
sible, in order to minimize the cost.

From the mined patterns, we observe that OPSM-RM
always returns fewer insignificant long patterns at various
support thresholds. As an illustration, Table 3 shows the
number of insignificant patterns of length 4 or more at 20%
support threshold.

OPSM-1 OPSM-2 OPSM-3 OPSM-4 OPSM-avg OPSM-RM
11 6 33 53 14 0

Table 3. Number of insignificant long patterns

Our result shows that if we consider only one set of
replicates (OPSM-i), or only the averages of the replicates
(OPSM-avg), many insignificant long patterns are returned.
Some genes that may not be functionally related could sup-
port the same long patterns due to noise in data. Since these
insignificant patterns are not returned by OPSM-RM, our
result shows that OPSM-RM is robust against data noise.

We now focus on the OPSM-RM model. First, we com-
pare the efficiency of the three methods (Basic, MinBound,
HTBound) by applying them to a dataset with 5,000 rows.
We report the running time (Figure 3 left) and the number of
unpruned candidates that need verification (Figure 3 right)
in different iterations of the algorithms, i.e., for different
pattern lengthsk. For the graph on the right, we also show
the actual number of frequent patterns mined for reference.

The figure shows that the two bounding techniques are
very effective in speeding up the mining time by pruning
infrequent candidates. The pruning effectiveness is most
pronounced in iteration 4, in which the number of candi-
dates is the highest. In addition, the pruning power of the
HTBound is always stronger than MinBound, which is con-
sistent with Lemma 7. From the figure, we also see that
the number of unpruned candidates under HTBound is very

 0

 50

 100

 150

 200

 250

 300

 1  2  3  4  5  6  7  8

R
un

ni
ng

 ti
m

e 
(s

)

Iteration

Basic
MiBound

HTBound

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 1  2  3  4  5  6  7

N
um

be
r 

of
 c

an
di

da
te

s

Iteration

Frequent
patterns

Basic
MinBound
HTBound




Figure 3. Speed performance in different iterations

close to the actual number of frequent patterns. In partic-
ular, there are in total 17,900 candidates generated by the
Basic method, among which 4,751 are frequent. There are
therefore 13,149 infrequent candidates. Under HTBound,
there are only 5,538 unpruned candidates, among which
5,538-4,751 = 787 are infrequent. So, HTBound has pruned
(13149-787)/13149 = 94% of all infrequent candidates.

To study the effect of the support threshold, we repeat
the comparisons at different thresholds. A dataset with 205
rows is used in this experiment. The results are shown in
Figure 4. The left panel shows the running times, and the
right panel shows the running times as percentages of the
Basic method.
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Figure 4. Running time at various support thresh-
olds

In general, the bounding methods significantly improve
the efficiency of the mining algorithm, and HTBound is
more effective than MinBound in all cases. We observe that
at higher support thresholds, the two bounds are capable of
pruning more candidates. Yet even at low thresholds, the
bounds could still provide substantial performance gains.

Next, we study the scalability of the methods by varying
the number of rows, columns, and replicates per column.
The results are shown in Figures 5, 6 and 7, respectively.

The relative pruning power of the two methods as com-
pared to the basic algorithm remains largely stable in all
three sets of experiments. Also, the running time remains
reasonable when there are many replicates, columns or
rows, which demonstrates the practicality of our new def-
inition of OPSM in analyzing large datasets.
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Figure 5. Scalability w.r.t. number of rows
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Figure 6. Scalability w.r.t. number of columns

8 Concluding remarks

In this paper we have described the problem of high
noise level to the mining of OPSM’s, and discussed how
it can be alleviated by exploiting repeated measurements.
We have listed some practical requirements for OPSM-RM,
and proposed a concrete definition that fulfills the require-
ments. We have described a basic Apriori mining algo-
rithm that utilizes a monotonic property of the definition.
Its performance depends on the component functionsgen-
erate andverify . We have suggested a sequence compres-
sion method for reducing the running time ofverify . For
generate, we have proposed two pruning methods based on
the MinBound and the HTBound. The latter makes use of
the head and tail arrays, which are useful both in construct-
ing and proving the bound. We have performed experiments
on real microarray data to demonstrate the effectiveness of
the pruning methods, and the scalability of the algorithm.

We will continue our study on the head and tail arrays
to see if it is possible to further improve the HTBound. We
will also apply our technique to the analysis of other mi-
croarray datasets, to look for new findings due to our new
definition of OPSM.
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Appendix A Proofs

Lemma 1

Proof. Let H be a head array, andT1 andT2 be two arrays
with |T1| = |T2|, whereT2 is produced by a push-right
operation that moves a positive valuev from thex-th entry
of T1 to they-th entry, withx < y. Then,

HT-sum(H,T2)− HT-sum(H,T1)

=
|H|∑
p=1

H[p]∑
q=1

T2[|T2| − q + 1]−
|H|∑
p=1

H[p]∑
q=1

T1[|T1| − q + 1]

=
|H|∑
p=1

H[p]∑
q=1

T2[|T1| − q + 1]−
H[p]∑
q=1

T1[|T1| − q + 1]


=

|H|∑
p=1

 0 if |T1| −H[p] + 1 < x
0 if |T1| −H[p] + 1 > y
v otherwise

≥ 0

Therefore the HT-sum is not reduced.

Lemma 2

Proof. Let T ′ be an array with non-increasing entries,H1

be a head array, andH2 be an array with|H1| = |H2|,
whereH2 is produced by a push-left operation that moves
one from thex-th entry ofH1 to they-th entry, withx >
y. Due to the push-left operation and the non-increasing
property of head arrays,

H2[x] = H1[x]−1 < H1[x] ≤ H1[y] < H1[y]+1 = H2[y]

We have

H1[x] < H2[y]
⇒ |T ′| −H1[x] + 1 > |T ′| −H2[y] + 1
⇒ T ′[|T ′| −H1[x] + 1] ≤ T ′[|T ′| −H2[y] + 1]
⇒ −T ′[|T ′| −H1[x] + 1] + T ′[|T ′| −H2[y] + 1] ≥ 0

where the third line is due to the non-increasing property of
T ′. Now,

HT-sum(H2, T
′)− HT-sum(H1, T

′)

=
|H2|∑
p=1

H2[p]∑
q=1

T ′[|T ′| − q + 1]−
|H1|∑
p=1

H1[p]∑
q=1

T ′[|T ′| − q + 1]

=
|H1|∑
p=1

H2[p]∑
q=1

T ′[|T ′| − q + 1]−
H1[p]∑
q=1

T ′[|T ′| − q + 1]



=

H2[x]∑
q=1

T ′[|T ′| − q + 1]−
H1[x]∑
q=1

T ′[|T ′| − q + 1]

 +

H2[y]∑
q=1

T ′[|T ′| − q + 1]−
H1[y]∑
q=1

T ′[|T ′| − q + 1]


= −T ′[|T ′| −H1[x] + 1] + T ′[|T ′| −H2[y] + 1]
≥ 0

Therefore the HT-sum is not reduced.

Lemma 3

Proof. Without loss of generality, let us compare the aver-
ages of the first and second intervals. Each entry in the sec-
ond interval corresponds to an occurrence ofP [3..k-1] after
the second occurrence ofP [2], which is in turn after the first
occurrence ofP [2]. Therefore each entry in the second in-
terval has a corresponding entry in the first interval with the
same value. The first interval may contain additional en-
tries, corresponding to occurrences ofP [3..k-1] where the
P [3] is before the second occurrence ofP [2]. Since the en-
tries are in lexicographic order, these additional entries must
be the leftmost entries of the first interval. Let us call the
additional entries the leading group and the remaining ones
the trailing group. We will prove that the average of the
leading group is no smaller than that of the trailing group,
which is sufficient to show that the average of the first inter-
val is not smaller than that of the second interval. We prove
this proposition by mathematical induction.

Base case: k-1=3. As discussed, the entries in the lead-
ing group all have theirP [k-1]=P [3] before the second oc-
currence ofP [2] while the entries in the trailing group all
have theirP [k-1] after it. Since the value of an entry equals
the number ofP [k]’s after itsP [k-1], each entry in the lead-
ing group must be not smaller than every entry in the trailing
group. The average of the leading group must therefore be
not smaller than the average of the trailing group.

Inductive case: Now assume the proposition is true up to
k-1=l, for somel ≥ 3. For k-1=l+1, we transform the se-
quence by keeping only elements after the first occurrence
of P [2], and then remove all occurrences ofP [2] in the re-
sulting subsequence. Then each entry in the first interval
of the original sequence corresponds to the number of oc-
currences ofP [k] after aP [3..k-1] in this transformed se-
quence. We again partition the transformed sequence into
intervals by grouping entries that share the same occurrence
of P [3] together. If we can show the averages of these in-
tervals are non-increasing, then certainly the average of the
leading group, which is composed of the leftmost intervals,
must be not smaller than the average of the trailing group,
which is composed of the rightmost intervals. But this is ex-
actly the inductive assumption. Therefore by mathematical
induction, the proposition is true for allk ≥ 4.
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Lemma 4(b)

Proof. We will prove that for each interval ofT , we can use
push-right operations to obtain the corresponding interval of
T ′. Again, we will use mathematical induction.

Base case: k-1=3. As proved in the base case of
Lemma 3, the entries in the interval are non-increasing in
T . We repeat the following: take the leftmost entry in the
interval that is larger than the average, and use a push-right
operation to move the difference to the next entry. The re-
sulting interval will have all entries equal to the average,
which is the same as the corresponding interval inT ′.

Inductive case: Now assume the proposition is true up to
k-1=l, for somel ≥ 3. For k-1=l+1, we first partition the
entries in the interval ofT into sub-intervals according to
which P [3] they refer to. As proved in the inductive case
of Lemma 3, the averages of these sub-intervals are non-
increasing. We use push-right operations to make them all
have the same average as follows: repeatedly we pick the
leftmost sub-interval with an average larger than the average
of the whole interval. Then we move the difference from the
last entry of the sub-interval to the first entry of the next sub-
interval. After that, the sub-intervals all have an average
equal to the average of the corresponding sub-intervals of
T ′. Therefore by the inductive assumption, each of these
sub-intervals ofT ′ can be obtained by push-right operations
of the corresponding sub-interval ofT .

Lemma 7

Proof. For any patternP [1..k] and each rowi, MinBound
is composed of two parts due to the headP [1..k-1] and the
tail P [2..k], with valuessi(P [1..k-1]) andsi(P [2..k]) re-
spectively. The part due to the head assumes the extreme
case that each occurrence of the head is followed byr(P [k])
occurrences ofP [k] later in the sequence. It is interesting
that this part of the bound,si(P [1..k-1]), can be obtained
from HT-sum(H,T †), whereH is the actual head array of
P andT † is an array with the same number of entries as the
actual tail array ofP , but every entry takes the maximum
allowed valuer(P [k]) of the array:

HT-sum(H,T †) =
|H|∑
p=1

H[p]∑
q=1

T †[|T †| − q + 1]

=
|H|∑
p=1

H[p]∑
q=1

r(P [k])

= r(P [k])
|H|∑
p=1

H[p]

= r(P [k])sni(P [1..k − 1])

where the last line is due to the sum constraint of the head
array. Normalizing the HT-sum by the number of replicate
combinations, we get the part of MinBound due to the head:

HT-sum(H,T †)∏k
j=1 r(P [j])

=
r(P [k])sni(P [1..k − 1])∏k

j=1 r(P [j])

=
sni(P [1..k − 1])∏k−1

j=1 r(P [j])

= si(P [1..k − 1])

Since the bounding tail arrayT ∗ cannot contain any en-
try larger than the maximum, HT-sum(H∗, T ∗) must not be
larger than HT-sum(H,T †):

HT-sum(H∗, T ∗) =
|H∗|∑
p=1

H∗[p]∑
q=1

T ∗[|T ∗| − q + 1]

≤
|H∗|∑
p=1

H∗[p]∑
q=1

r(P [k])

= r(P [k])
|H∗|∑
p=1

H∗[p]

= r(P [k])sni(P [1..k − 1])
= HT-sum(H,T †)

Therefore the corresponding bound forsi(P ) is also not
larger than that from the part of MinBound due to the head.

Similarly, the part of MinBound due to the tail assumes
the extreme case that each occurrence of the tail is preceded
by r(P [1]) occurrences ofP [1] earlier in the sequence. This
part of the bound,si(P [2..k]), can be obtained from HT-
sum(H†, T ), whereT is the actual tail array ofP andH†

is an array with the same number of entries as the actual
head array ofP , but every entry takes the maximum allowed
valuesni(P [2..k-1]) of the array, which is also equal to the
number of entries ofT :

HT-sum(H†, T ) =
|H†|∑
p=1

H†[p]∑
q=1

T [|T | − q + 1]

=
|H†|∑
p=1

sni(P [2..k−1])∑
q=1

T [|T | − q + 1]

=
|H†|∑
p=1

sni(P [2..k])

= r(P [1])sni(P [2..k])
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where the third line is due to the sum constraint of the tail
array and the fourth line is due to the size constraint of the
head array.

Again, we can show that it is no better (smaller) than
HT-sum(H∗, T ∗) :

HT-sum(H∗, T ∗) =
|H∗|∑
p=1

H∗[p]∑
q=1

T ∗[|T ∗| − q + 1]

≤
|H∗|∑
p=1

sni(P [2..k−1])∑
q=1

T ∗[|T ∗| − q + 1]

=
|H∗|∑
p=1

sni(P [2..k])

= r(P [1])sni(P [2..k])
= HT-sum(H†, T )

Combining the two parts of results, HTBound is always
at least as tight as MinBound.
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