
On Mining Micro-array data by Order-Preserving Submatrix

Lin Cheung Kevin Y. Yip David W. Cheung Ben Kao Michael K. Ng

Department of Computer Science,
The University of Hong Kong, Hong Kong.

{lcheung, ylyip, dcheung, kao, mng}@cs.hku.hk

Abstract

We study the problem of pattern-based subspace clus-
tering. Unlike traditional clustering methods that focus on
grouping objects with similar values on a set of dimensions,
clustering by pattern similarity finds objects that exhibit
a coherent pattern of rises and falls in subspaces. Appli-
cations of pattern-based subspace clustering include DNA
micro-array data analysis, automatic recommendation sys-
tems and target marketing systems. Our goal is to devise
pattern-based clustering methods that are capable of (1)
discovering useful patterns of various shapes, and (2) dis-
covering all significant patterns. We argue that previous
solutions in pattern-based subspace clustering do not sat-
isfy both requirements. Our approach is to extend the idea
of Order-Preserving Submatrix (or OPSM). We devise a
novel algorithm for mining OPSM, show that OPSM can
be generalized to cover most existing pattern-based cluster-
ing models, and propose a number of extension to the orig-
inal OPSM model.

Keywords: Gene Expression, Data mining, Pattern-
based clustering

1. Introduction

The invention of DNA micro-array technologies has
revolutionized the experimental study of gene expression.
Thousands of genes are probed every day. Gene expression
data analysis becomes one of the hottest topics in data min-
ing, artificial intelligence, bioinformatics, and in the statis-
tics community. Various data analysis techniques have been
intensively studied.

Clustering has been one of the most popular methods of
discovering useful biological insights from gene expression
data. Many novel clustering techniques have been proposed.
A problem that has attracted much interest lately is the dis-
covery of clusters that are embedded in certain subspaces of
high-dimensional data (such as gene expression data). The

problem is known as subspace clustering. In this paper we
explore the problem of pattern-based clustering — a spe-
cial type of subspace clustering that usespattern similarity
as a measure of object distances.

In DNA micro-array data analysis, gene expression data
is organized as matrices. In such matrices, arow carries the
information of ageneand acolumnrepresents asamplefor
the experiment. The number in each cell records theexpres-
sion valueof a particular gene under a particular sample.
In this paper we use the termsobjectanddimension(or at-
tribute) to mean a row (gene) and a column (sample) of a
dataset, respectively.

The objective of data clustering is to group together data
points that arecloseor similar to each other in clusters.
An important parameter to any clustering model is a dis-
tance (or similarity) measure. Typical distance functionsin-
clude Euclidean distance, Manhattan distance, and cosine
distance. For high-dimensional data, however, objects tend
to exhibit strong similarity only over a (often unknown) sub-
set of the attributes. Clustering data over the global set ofat-
tributes often fails to extract any meaningful clusters. This
problem shows up in micro-array data analysis, which is
typically high-dimensional.

0

10

20

30

40

50

60

70

80

90

a b c d e f g h i j

object 1

object 2

object 3

Figure 1. Raw data: 3 rows and 10 columns.

As an example, Figure 1 shows a set of 3 rows (lines)
with 10 columns (labeled ‘a’ to ‘f’). They-axis shows the
expression values. If we consider the values from all 10
columns, there are no patterns observed. However, if we

(a) Coherent pattern

0

10

20

30

40

50

60

70

b c f h i

object 1

object 2

object 3

(b) Coherent upward pattern

0

10

20

30

40

50

60

70

f c b i h

object 1

object 2

object 3

Figure 2. The 3 rows exhibits a coherent pat-
tern in subspace.

select the set of columnsb, c, f , h, i and show only the
expression values for those columns (see Figure 2(a)), we
observe something interesting: the expression values of the
rows follow the same rise-and-fall pattern over the selected
columns. Technically, we can consider the rows form a clus-
ter in thesubspace b, c, f, h, i. The example illustrates that
traditional distance functions are sometimes inadequate in
capturing correlations among rows.

Another way to observe the pattern that is shared by the
rows is to rearrange the columns so that the expression val-
ues are listed in an ascending order. Figure 2(b) shows the
values when the columns are rearranged according to the se-
quencef, c, b, i, h. We can see that the expression values are
all increasing under the new column sequence. We call the
sequencef, c, b, i, hanorder-preserving pattern. Thelength
of an order-preserving pattern is the number of columns in
it; A row is asupporting rowif its values exhibit an increas-
ing order with respect to the column sequence; thesupport
of a pattern refers to the number of supporting rows. In our
example, the patternf, c, b, i, hhas a length of 5 and a sup-
port of 3. An order-preserving pattern together with the set
of supporting rows form anOrder Preserving Sub-matrix,
or OPSM for short. Note that in our OPSM model, clusters
may overlap. That is, rows could belong to multiple clus-
ters. This model is reasonable for gene expression analy-
sis and function prediction, since the same set of genes can
have different functions under different samples.

In this paper our goal is to discuss the major challenges
of the OPSM problem and to develop an efficient algorithm
for solving it. In addition, we propose some computation-
ally challenging variations of the OPSM problem. For those
variations, we discuss potential solutions.

Subspace clustering is a computationally challenging
problem. The complexity lies in the requirement of simul-
taneously determining both cluster members and relevant
dimensions/attributes. Also, it is often difficult to determine
the dimensionality of each cluster. The latter problem is par-
ticularly true for gene-expression analysis due to the lackof
domain knowledge and the large number of attributes.

The OPSM problem is a very challenging sub-
space clustering problem. First, the number of potential

order-preserving patterns grows exponentially with re-
spect to the number of attributes. A datasetD with n at-
tributes has

∑n

i=2
n!/(n − i)! potential order-preserving

patterns. For DNA micro-array datasets, there could be
tens or even hundreds of attributes. Examining each OPSM
as a potential cluster is clearly infeasible. Effective prun-
ing techniques are needed.

Another challenge to the OPSM problem is that the num-
ber of potential OPSM is huge. Recall that an OPSM con-
sists of a set of rows and a set of columns (arranged in a cer-
tain sequence). We note that any subset of those rows plus
any subset of those columns form a valid OPSM. These de-
rived OPSMs, or subclusters, however, are redundant. In
this paper we focus on miningmaximalOPSMs, that is,
those that are not proper subclusters of others.

The rest of the paper is structured as follows. In Sec-
tion 2, we review some related work. Section 3 gives a for-
mal definition of the OPSM model. Section 4 discusses our
OPSM algorithm in details. In Section 5, we propose some
advanced pruning methods for solving the OPSM prob-
lem. Section 6 discusses some interesting variations of the
OPSM problem. A generalization of the pattern-based clus-
tering problem is discussed in section 7. Section 8 con-
cludes the paper.

2. Related works

In [2], Cheng and Church suggest modeling DNA mi-
croarray dataset as a matrix, where each gene is repre-
sented as a row and each sample is represented as a col-
umn. They introduced the bicluster concept as a measure
of the coherence of the genes and samples. A cluster is
defined as a submatrix (a subset of the rows and a sub-
set of the columns that are not necessarily contiguous).
Let O be the set of row andC the set of columns. Let
I ⊂ O and J ⊂ C be a subset of rows and a subset
of column, respectively. The pair (I, J) specifies a subma-
trix AI×J with a mean squared residue score defined by
H(I, J) = 1/(|I||J |)

∑

i∈I,j∈J (dij − diJ − dIj + dIJ)2.
The termdiJ = 1/|J |

∑

j∈J dij represents the row mean,
dIj = 1/|I|

∑

i∈I dij represents the column mean, and
dIJ = 1/|I||J |

∑

i∈I,j∈J dij is the mean over the whole
submatrixAIJ . A submatrixAIJ is called aδ-bicluster if
H(I, J) ≤ δ for someδ > 0. A greedy algorithm is pro-
posed to discover the cluster with the lowest score. Yang et
al. [12] proposed another algorithm that tries to find multi-
ple clusters at the same time. The Plaid model [7] and the
Spectral model [6] were proposed as improvement over the
bi-cluster model.

A different model pCluster was proposed by Wang et
al. [11]. A non-contiguous submatrix is a cluster if for any
pair of rowsi1 andi2, and any pair of columnsj1 andj2 in
the cluster,|(di1,j1 − di1,j2)− (di2,j1 − di2,j2)| ≤ δ, where

dx,y represents the value in rowx and columny. In other
words, the value change across two attributes must not vary
a lot in different rows. An algorithm for finding pClusters is
proposed in the paper. Two improved algorithms MaPle [4]
and SeqClus [10] have been proposed afterwards.

While many different models have been proposed, most
of them are quite restrictive. In order to identify more gen-
eral clusters, the OPSM model has been proposed by Ben-
Dor et al. [3]. A non-contiguous submatrix is an OPSM
cluster if there exists a permutation of the columns such
that in the resulting permuted matrix, the values in each row
are monotonically non-decreasing. This means for any two
rowsi1 andi2 and any two columnsj1 andj2 in the origi-
nal submatrix, the signs ofdi1,j1 − di1,j2 anddi2,j1 − di2,j2

are the same. In other words, the model only requires the
rows to have the same direction of response across different
columns, but the absolute magnitudes of response are unim-
portant. In [3], a greedy algorithm was proposed to iden-
tify some number of good OPSMs from a dataset. The al-
gorithm, however, does not guarantee that all OPSMs are
found, nor the best ones are found.

An extension of OPSM, namely OP-Cluster [8, 9] is pro-
posed by J. Liu et al. Given a user-specified error threshold
δ. Columns with their values differ withinδ are grouped into
an equivalent class. The order of columns within an equiv-
alent class is ignored. They proposed a tree structure for
storing all existing patterns and a depth-first search algo-
rithm for mining all error-tolerated clusters. However, the
time and space complexities of the algorithm increase ex-
ponentially with the number of dimensions.

Our goal is to develop an algorithm that can efficiently
identify all OPSMs in a dataset. We also propose a number
of variations to the cluster definition, which are of practical
values.

3. Problem Definition

In this section we give a formal description of the OPSM
problem. Consider a gene-expression datasetD, repre-
sented as a matrix. We useO andC to denote the set of
rows and columns inD, respectively. We usedi,j to de-
note the entry ofD in row i and columnj.

A clusterS is a submatrix ofD formed by a subset of
nS(≥ 2) rows and a subset ofmS(≥ 2) columns ofD.
Rows and columns inS need not be contiguous inD. The
rows in S are referenced by their row indices inD, each
of which is a distinct integer in{1, 2, ..., nD}. The set of
row indices ofS is denoted asRS . Columns inS are simi-
larly referenced. The set of columns inS is denoted byCS .
We usesi,j to denote an entry inS with i, j being the ref-
erences w.r.t. the datasetD. For example,s2,3 refers to the
entry inS that is taken from the 2nd row and the 3rd col-
umn of D. The termrow indexrefers to the location of a

row in D rather than in the cluster concerned (such asS).
The same holds for the termcolumn index.

The columns in S are enclosed in curly brack-
ets, e.g.,CS = {c1, c2, ..., cmS

}. A sequenceĈS of
the columns inS is enclosed in angled brackets, e.g.,
ĈS =< c1, c2, ..., cmS

>. The columns in a sequence is to-
tally ordered. For the basic OPSM problem, a cluster is a
set of rows and a set of columns such that entries in ev-
ery row are increasing w.r.t. a particular column sequence.
Hence, the order the columns is important. A clus-
terS is thus written asS = (RS , ĈS).

A permutationof a sequence is a reordering of the
columns inside the sequence. For example,< x, y, z > is a
permutation of< z, x, y >. If the columns of a clusterS is
permuted to form another clusterP , both clusters have ex-
actly the same columns, but the order of their columns can
be different. In other words,CS = CP but ĈS may not
equalĈP .

Definition 1 A clusterS is anOPSM if there exists a per-
mutation of the columns such that in the permuted clus-
ter P , pi,j ≤ pi,j+1 for all i ∈ {1, 2, ..., nP} and all
j ∈ {1, 2, ..., mP − 1}. If a cluster satisfies the require-
ment without the need to permute its columns, it is called
an in-sequence OPSM.

A clusterS is asubclusterof a clusterS′ if RS ⊆ RS′

andCS ⊆ CS′ . A clusterS is aproper subclusterof a clus-
ter S′ if S is a subcluster ofS′ and eitherRS 6= RS′ or
CS 6= CS′ .

Definition 2 An OPSM is amaximal OPSMif it is not a
proper subcluster of any OPSM.

An OPSMS = (RS , CS) is a row-maximal OPSMif
there does not exist a clusterS′ = (RS′ , CS) such that
RS ⊂ RS′ . Column-maximal OPSMis defined similarly.

Given a data matrixD, the basic OPSM problem is to
find all in-sequence OPSMs inD.

Note that for any pair of column indicesj1 andj2, there
are at most two maximal OPSMs of the formS = (RS , <
j1, j2 >). One of them contains all rowsi wheredi,j1 ≤
di,j2 and the other contains all rowsi′ wheredi′,j1 ≥ di′,j2 .

The larger cluster among the two has at least⌈ |O|
2
⌉ rows. As

a result, for a datasetD with nD rows, every length-2 col-
umn sequence must havenD/2 supporting rows on average.
This argument shows that short patterns are too numerous
and uninteresting. Also, some patterns (column sequences)
may have only a few of supporting rows. These patterns are
not very interesting either since they are not statistically sig-
nificant. We thus modifiy the basic OPSM problem so that
only those OPSMs with a significant pattern length and a
significant support are reported.

Problem Statement 1 (Maximal size-constrained OPSM
problem): Given a data matrixD, a supporting row thresh-

old nmin, and a column thresholdmmin, find all maxi-
mal in-sequence OPSMsS in D such thatnS ≥ nmin and
mS ≥ mmin.

4. Algorithm for finding OPSMs

In this section, we propose a new algorithm for explor-
ing all maximal size-constrianed in-sequence OPSMs.

4.1. Algorithm

Our algorithm is similar to the Apriori algorithm for min-
ing Association rules [1]. In Apriori, it mines a transac-
tion databaseD′ and discovers allfrequentitemsets. First,
it generates all itemsets with 2 items, we called them size-
2 itemsets. Then it scans theD′ and counts transactions
contain the itemset, it is referred assupport. An itemset is
frequent if it’s support greater or equal to a user specified
threshold. For all integer k> 2, it generates size-k itemsets
by concatenating two size-(k-1) itemsets with (k-2) items
in common. It scansD′ for counting the support for each
itemset. It terminates when there are no frequent size-(k+1)
itemsets can be generated.

Property 1 (A priori property): A clusterS is an OPSM if
and only if all proper subclusters ofS are also OPSM.

Proof (⇒:) Suppose a clusterS = (RS , ĈS) is an OPSM
and a clusterP = (RS , ĈP) is a corresponding in-sequence
OPSM formed by permuting the columns ofS. By def-
inition, pi,j ≤ pi,j+1, for all i ∈ {1, 2, ..., nS} and all
j ∈ {1, 2, ..., mS−1}. The inequalities remain valid if some
rows and columns are deleted fromP . Therefore for any
clusterS′ = (RS′ , CS′) whereRS′ ⊆ RS andCS′ ⊆ CS ,
an in-sequence OPSMP ′ can be formed by removing from
RS all row indices that are not inRS′ , and fromCS′ all col-
umn indices that are not inCS′ . SinceS′ can be formed by
permuting the rows and columns ofP ′, S′ is an OPSM.

(⇐:) Suppose a clusterS and all its proper subclusters
are OPSMs. Consider a clusterS′ is formed by removing
the first row ofS. SinceS′ is an OPSM, there exist some
integerj ∈ X such thatsi,j is the smallest element in rowi
of S, ∀i ∈ {2, 3, ..., nS}. For the sake of contradiction, sup-
pose the smallest element in the removed row exists at col-
umn j′ /∈ X . This meanss1,j′ < s1,j , ∀j ∈ X . Since the
cluster formed by keeping only the first and thei-th rows of
S is an OPSM for alli ∈ {2, 3, ..., nS}, si,j′ ≤ si,j , ∀j ∈
X . But by the definition ofX , si,j ≤ si,j′ . This implies
si,j′ = si,j , which is a contradiction sincej′ /∈ X . There-
fore, there must exist an integerj′′ ∈ X s.t. s1,j′′ is the
smallest element in the first row, and thus all rows ofS.
Consider a clusterT formed by removing thej′′-th col-
umn of S. T is an OPSM since it is a proper subcluster

of S. By adding the removed column back toT , the result-
ing clusterS′′ must also be an OPSM since all rows of it
have the smallest element at the added column. SinceS can
be formed by permuting the columns ofS′′, S′′ is an OPSM.

Our algorithm shares similar heuristic with Apriori al-
gorithm, but with an additional constraint, the columns(the
same role of items in Apriori) selected have an order.

Property 2 (Transitivity): If S1 = (RS1 ,< x1,
x2,...,xi,y1,y2,...,yj >) and S2 = (RS2 ,< y1,
y2,...,yj ,z1,z2,...,zk >) are two row-maximal in-sequence
OPSMs andRS1

⋂

RS2 containsnmin or more indices,
then S = (RS1

⋂

RS2 , < x1, x2, ..., xi, y1, y2, ..., yj,
z1, z2, ..., zk >) is a row-maximal in-sequence OPSM.

Proof: letS′ be the row-maximal in-sequence OPSM with
ĈS′ =< x1, x2, ..., xi, y1, y2, ..., yj, z1, z2, ..., zk >. If a
row index is inRS , i.e., in bothRS1 andRS2 , it must also
be inRS′ . ThereforeS is an in-sequence OPSM. If a row in-
dexi is not inRS , then it is either not inRS1 or RS2 . In the
former case,i must not be inRS′ because if it is inRS′ , then
(RS1 ∧ i, CS1) would be an OPSM as it is a proper subclus-
ter of S′, which is a contradiction since it implies thatS1

is not row-maximal. The same argument holds for row in-
dices that are not inRS2 . Therefore,S is row-maximal.

According to the transitivity property, we can formS
from S1 andS2 without the need rescan the whole data ma-
trix to check for the row indices that are inRS .

Our algorithm takes a data setD with size |O| × |C|,
a column thresholdmmin, and a supporting rows threshold
nmin as input. It finds all row-maximal in-sequence OPSMs
with two columns. For any pair of clustersS1 andS2, where
the last column index inĈS1 equals the first column index in
ĈS2 . We create a new clusterS with RS = RS1

⋂

RS2 and
ĈS equalsĈS1 with the last column index inĈS2 appended
to the end. We only keepS if |RS | ≥ 2. After creating all
row-maximal in-sequence OPSMs with three columns, re-
peat the same procedures to form row-maximal in-sequence
OPSMs with four columns, and so on, until no more clusters
can be formed. Whenever all clusters withk+1 columns are
created, the algorithm performs a maximality test on each
clusterS with k columns against all clusters withk + 1
columns.S is maximal if there exists no clusterS′ with
k+1 columns such thatRS = Rs′ andCS ⊂ CS′ . All such
S′ are added to the result set. Others are discarded.

Completeness of the algorithm: For each row-maximal
in-sequence OPSMS = (RS , < c1, c2, ..., cnS

>),
there must exist a row-maximal in-sequence OPSM
S′

i = (RS′
i
, < ci, ci+1 >), where RS ⊆ RS′

i
, for

all i ∈ {1, 2, ..., nS − 1}, due to the apriori prop-
erty. Therefore according to the algorithm, the clus-
ters S′′

i = (RS′′
i
, < ci, ci+1, ci+2 >) must be created

for all i ∈ {1, 2, ..., nS − 2}, whereRS ⊆ RS′′
i

. Itera-
tively, a clusterS∗ = (RS∗ , < c1, c2, ..., cnS

>) must

be created whereRS ⊆ RS∗ . SinceS is row-maximal,
RS∗ must equalRS , soS must be identified by the algo-
rithm.

Correctness of the algorithm: By the transitivity prop-
erty, all clusters being formed are row-maximal in-sequence
OPSMs. The ones being added to the result set are further
proved to be column-maximal due to the maximality test
and the fact that all row-maximal in-sequence OPSMs with
one more column are discovered.

4.2. Data Structure

In this sub-section, we propose a novel data structure that
are capable efficient processing of (1) identifying all pairs
of length-k column sequences where the lastk − 1 indices
of the first sequence equal the firstk − 1 indices of the sec-
ond sequence, and (2) intersecting two sets of row indices.
It is referred asHead-Tail Trees.

We build a head tree and a tail tree in each iteration. Both
of them are balanced tree. Head tree and tail tree store all
clusters according to the firstk − 1 column indices and the
lastk − 1 column indices respectively. Each tree node con-
tains a column index as key. Child nodes are ordered ac-
cording to the column indices lexicographically. Each set
of k − 1 column indices is represented by a path from the
root to a leaf. It is referred bypath sequence. Two sets share
the firstx nodes if their firstx indices are the same. Each
leaf node in the head tree contains pointers to clusters whose
firstk−1 column indices equals to the path sequence. Point-
ers to clusters are stored in tail tree leaf node similarly. Each
cluster stores its row indices by a list of row indices.

Suppose we get a set of maximal in-sequence OPSMs
of sequence lengthnS . For each clusterS = (RS , <
c1, c2, ..., cnS

>), we insert the cluster along the path
< c1, c2, ..., cnS−1 > into the head tree and the path<
c2, c3, ..., cnS

> into the tail tree. Add a pointer toS from
both leaf nodes.

By traversing Head-Tail trees in pre-order, new clusters
are generated at leaf nodes. If the current leaf node at head
tree has path sequence lexicographically smaller(larger)
than that of the current node of the tail tree, we continue the
tree traversal of the head(tail) tree. If two path sequences
are equal, we try to join each pair of clusters in the two lists
linked by the two nodes to form new clusters.

SupposeS1 is a cluster in the list linked by a head tree
node, andS2 is a cluster in the list linked by a tail tree
node, whereS1 = (RS1 , < c2, ..., ck+1 >) and S2 =
(RS2 , < c1, c2, ..., ck >) respectively. We skip this pair if
c1 = ck+1. Otherwise, we intersect the 2 lists of row in-
dices. If the resulting list hasnmin or more row indices, in-
sert< c1, c2, ..., ck+1 > into the head and tail trees for the
k + 1 iteration, and add the pointer to the new cluster from
both leaf nodes.

x y

xwz:2,5 xyw:2,4 xzw:3,4,5 ywz:1,2,5

xyz:2,4 yxz:1,3,5

yxw:3,5 yzw:3,4,5

w y z w x z

Figure 3. The head tree for clusters with 3
columns.

We can optimize the set intersection operations by stor-
ing the row indices in bit bit vectors of length|C|. The
merge joins are replaced by fast bitwise AND operations.

We identify that the head tree built in the 1st iteration is
sufficient for forming new clusters. We can only check if
the head tree leaf node path sequence equals to the tail tree
1st index of path sequence. We save insertion time by omit-
ting the insertions of new path sequences in the head tree.
Since the head tree is fixed, we can even store it in a sim-
ple list. However a larger number of unnecessary join op-
erations may be performed. Suppose a cluster with column
sequence< abc >. If both trees are updated, a new clus-
ter with column sequence< abcd > will be generated only
if there exists a cluster with column sequence< bcd >. If
we only update the tail tree, the join operations consider a
bigger set of clusters with path sequence< cd >.

4.3. Example

w x y z
1 7 8 6 9
2 3 0 2 6
3 9 3 2 8
4 3 0 1 2
5 5 4 2 5

ĈS RS
wz 1,2,5
xw 2,3,4,5
xy 2,4
xz 1,2,3,4,5
yw 1,2,3,4,5
yx 1,3,5
yz 1,2,3,4,5
zw 3,4,5

ĈS RS
xwz 2,5
xyw 2,4
xyz 2,4
xzw 3,4,5
ywz 1,2,5
yxw 3,5
yxz 1,3,5
yzw 3,4,5

ĈS RS
yxzw 3,5

Table 1. Data Set D with Row-maximal in-
sequence OPSMs.

The resulting trees are illustrated in Figure 3 to Figure 4.
There are some special cases to note. First, there is no clus-
ters with ĈS = wx since only row 1 supports it. Second,
there is no clusters witĥCS = wy since no rows support
it. Third,the value 5 appears twice in row 5, so it appears in
both clusters withĈS = wz andĈS = zw.

5. Pruning and Optimizations

In this section, we propose several efficient rules to prune
unpromising pattern using special properties of OPSM.

w y

xwz:2,5 xyw:2,4 xzw:3,4,5

ywz:1,2,5

xyz:2,4yxz:1,3,5yxw:3,5

yzw:3,4,5

x

z z w wz

z

w

Figure 4. The tail tree for clusters with 3
columns.

Optimization 1: For each pattern, we count the rows with
column sequence starting with the first column index of the
pattern, it is referred asfirst count. Similarly, last countis
kept for last column index of the pattern.

Suppose a dataset has 4 columns, namely a, b, c, d, and
there is a rowo follows a pattern< badc >. It contributes
1 to first count of each pattern start withb, and last count
of each pattern end withc. Suppose a pattern< ac > has
support of 10 and a last count of 4, then the supporting rows
of pattern< acx > (wherex = b or d) is at most 6. In other
words, ifnmin is 7 or more, we can not have a cluster with
pattern< acx >. Similarly, suppose a pattern< cd > has
first count of 5, we cannot have a pattern< xcd > (where
x = a or b) if threshold is 6 or more.

This optimization technique assumes there has no dupli-
cate values in each row. A pre-processing step is needed to
eliminate all duplicate values in each row. It can be done by
appending the column index to the end of each value.

Given patternpr has supportspr
, first countfpr

and last
count lpr

; patternps has supportsps
, first countfps

and
last countlps

. A patternpnew is generated by extendingpr

with ps, with unknown supportspnew
, first countfpnew

, and
last countlpnew

. According to the heuristic above, we know
spnew

is at most min(spr
- lpr

, sps
- fps

), fpnew
is at most

fpr
and at leastspnew

- (spr
- fpr

), andlpnew
is at mostlps

and at leastspnew
- (sps

- lps
). With the help of these for-

mulas, we can skip support counting of patterns with max-
imum support less than user inputted threshold. Moreover,
we may use the upper bounds offpnew

and lpnew
to per-

form pruning in the next iteration.
Optimization 2:For example, the supporting rows of<

ab > and the supporting rows of< ba > must sum up to
|O|. Similarly, if we have created node< ab > and know
it’s support, we know it must equal the sum of supports of
< abc >, < acb > and < cab >. If we have the sup-
ports of< ab >, < abc > and< acb >, we can calculate
the support of< cab > eventually. In another view, sup-
port of < cab > can also be inferred from support counts
of < ca >, < cba > and< bca >. In all these cases, we
can infer the support of some patterns by those of others.
We only need one of these combinations to get the support
of < cab >. It is good to have multiple ways because some

supports may not be available. For example, if< abc >
is infrequent, we do not have its support. Then, we cannot
use the combination of< ab >, < abc > and< acb >
for the inference. However, a longer pattern requires sup-
ports of more patterns to perform a single pruning.

6. Variations of OPSM

In this section, we propose several possible bio-
logically significant variations of OPSM. They are
Sign-constrained problem, Sign-constrained Bidirec-
tional problem, and Error-tolerated problem. To ease
understanding, we provide examples to illustrate clus-
tering results using the following data matrixD′ for
different variation problems. We also propose simple meth-
ods for solving the problems.

a b c d
o1 10.3 21.8 29.8 2.3
o2 3.8 42.1 59.2 3.5
o3 10.4 13.8 15.9 -2.5
o4 51.1 58.2 59.9 68.1
o5 53.9 41.8 39.8 18.3
o6 0.3 21.8 20.9 2.3

Table 2. Data matrix D′.

6.1. Sign-constrained problem

In DNA micro-array, each entrydi,j , representing the ex-
pression level of gene i in sample j, is derived by comparing
the expression level of gene i, the gene of interest, and ex-
pression level of a reference gene. A positive value means
the gene i is over-expressed at sample j. A negative value
implies the gene i is under-expressed at sample j. Their bi-
ological meanings are totally different.

Suppose a genega and a genegb exhibit the same rise
and fall patterns on a set of samplesC′. ga is over-expressed
on C′ andgb is under-expressed on a subset ofC′. We can
not groupga andgb into the same cluster. Motivated by this,
We come up with the Sign-constrained problem.

Variation Problem 1 (Sign-constrained problem): Given
a data matrixD, find all in-sequence OPSMsS in D such
that for all j ∈ {1, 2, ..., mS}, sign(s1,j) = sign(s2,j) =
... = sign(snD,j), wheresign() is the sign function de-
fined as follows:

sign(x) =

{

1 if x ≥ 0
0 if x < 0

(1)

Example: Considering only rows {o1, o2, o3, o4}
data matrix D′, there exists a sign-constrained clus-
ter S1 = ({o1, o2, o3, o4}, < abc >). Note that,

S1 = ({o1, o2, o3}, < dabc >) is a maximal size-
constrained cluster, but not a sign-constrained cluster.

The sign consistent constraint verification can be opti-
mized by using a bitmap. Create a bitmap B of size n×
m, whereBi,j stores the sign of expression level of gene
i in sample j. The verification can be replaced by fast bit-
wise NOT XOR operations.

6.2. Sign-constrained Bidirectional problem

Given a sign-constrained maximal OPSM, we know all
genes within this cluster with rows(genes)Oc exhibit a se-
quenceCs. It is biological interesting to know if there exists
any genesOd have the reverse sequence ofCs, as the activ-
ities of genesOd suppresses the activity of genesOc, and
vice versa. According to this argument, two genes have re-
verse expression sequences are highly related.

Variation Problem 2 (Sign-constrained Bidirectional
problem): Given a data matrixD, find all in-sequence
sign-constrained bi-directional OPSMs inD.

A clusterS is a sign-constrained bi-directional OPSM
if (1) it is a sign-constrained maximal OPSM, and (2)
it can be divided into of 2 subclustersPup and Pdown

wherePup contains all rowsi ∈ {1, 2, ..., nPup
}, pi,j ≤

pi,j+1 for all j ∈ {1, 2, ..., mPup
− 1}. Pdown contains

all rows i ∈ {1, 2, ..., nPdown
}, pi,j ≥ pi,j+1 for all j ∈

{1, 2, ..., mPdown
− 1}. nPup

andnPdown
sum up tonP .

Example: ConsideringD′, nmin = 1, andmmin = 3,
one of the sign-constrained bi-directional OPSMs isS1 =
({o1, o2, o3, o4, o5}, < abc >). (Note: ({o1, o2, o3, o4}, <
abc >) is a sign-constrained maximal OPSM.)

Given we discovered all sign-constrained maxi-
mal OPSMs in datasetD by the Head-tail tree approach,
we can reuse the tail tree to see if we can find any genes ex-
hibit a reverse sequence.

Example: Suppose a pattern P is a sign-constrained max-
imal OPSM with pattern< abcd >. We can traverse the tail
tree by the path< cba > to check if there exist any row fol-
lows expression pattern< dcba >.

6.3. Error-tolerated problem

In [5], authors claimed that the measurements of expres-
sion values in DNA microarrays may have errors. It initiates
our proposal of a robust error-tolerated OPSM model.

Variation Problem 3 (Error-tolerated problem): Given a
data matrixD and an error thresholdǫ, find all in-sequence
ǫ-tolerated OPSMs inD.

A clusterS is a ǫ-tolerated OPSM if there exists a per-
mutation of the columns such that in the permuted cluster
P , pi,j+1 − pi,j ≥ −ǫ, for all i ∈ {1, 2, ..., nP} and all
j ∈ {1, 2, ..., mP − 1}.

Example: ConsideringD′ and ǫ be 2, there exists an
error-tolerated clustersS1 = (o1, o2, o3, o4, o5, o6, <
abc >). S1 cannot be discovered in orginial OPSM.

We propose a post-processing solution for the Error-
tolerated problem. We first generate all size-constrained
maximal OPSMs. The input space is smaller here, as it only
includes maximal OPSMs fullfilled the threshold require-
ments. An error-tolerated clustercnew with pattern of length
k+1 is generated only if there exists 2 clusters with pat-
tern of length k, and these two patterns(sequence) differ at
one position only. Moreover,cnew should have at leastnmin

rows support (see Table 4).

1. LetS be the set of all maximal OPSMs in dataD.
2. LetmaxLength be the length of the longest pattern exists inS.
3. For k =mmin to maxLength do
4. For eachci ∈ S with pattern of length k
5. Letpci

be the pattern ofci , pci
= < pi1

, pi2
, ..., pik

>

6. Find the set of maximal OPSMsSki
, where each clustercj belongs to

Ski
, cj ’s patternpcj

= < pj1
, pj2

, ..., pjk
>, pci

andpcj
are the

same in k-1 positions, and position g is the only position 2 patterns differ
7. pit

= pjt
∀t ∈ 1, 2, ..., g − 1, g + 1, ...k

8. for eachcj ∈ Ski
9. R = Rci

∩ Rcj
;

10. p1 = < pi1
, pi2

, ..., pig
, pjg

, pik
>

11. p2 = < pi1
, pi2

, ..., pjg
, pig

, pik
>

12. R1 andR2 be 2 empty set of rows.
13. for each rowrv ∈ R

14. if (dv,pjg
− dv,pig

≥ −ǫ)

15. R1 = R1 ∪ rv ;
16. if (dv,pig

− dv,pjg
≥ −ǫ)

17. R2 = R2 ∪ rv ;
18. if (|R1| ≥ nmin)
19. cnew1

= R1 , p1 or
20. insertcnew1

into S;
21. if (|R2| ≥ nmin)
22. cnew2

= R2 , p2
23. insertcnew2 into S;

Table 3. Algorithm for finding Error-tolerated
clusters.

7. Generalization

As we mentioned earlier, there are many diverse mod-
els for pattern-based clustering. In different applica-
tions and for different users, different types of patterns
may be needed. The measurement of quality of pat-
terns and clusters also differs in different models. For ex-
ample, both the pClustering model and the OPSM model
are quite different in technical details, but they share simi-
lar philosophy. However, such a one method per variation
approach may not be effective. In this section, we gener-
alize OPSM model and propose a new generic clustering
model which includes most previously proposed pattern-
based clustering models(e.g. Biclustering model, pCluster
model, OPSM model). Moreover, we prove some proper-
ties in the generic model.

Definition 3 A matrix S = (RS , ĈS) is a Pattern-based
Clusterif and only if it satisfies the following inequalities:

∀i1, i2 ∈ {1, 2, ..., nS}, ∀j1, j2 ∈ {1, 2, ..., mS}, s.t.j1 < j2,

α ≤ (f(Si1 ,j2
) − f(Si1,j1

)) − (g(Si2 ,j2
) − g(Si2 ,j1

)) ≤ β

By setting specific constraints, the generic model can fit
previously proposed specific definitions (refer Table 4).

f(x) g(x) α β

Perfectδ-cluster x x 0 0
pCluster, shifting x x -δ δ

pCluster, scaling log x log x -δ δ

OPSM x 0 0 +∞

Table 4. Constriants for Specific Clustering
Model.

7.1. Anti-monotonicity

Suppose a matrix has some rows and columns do not
satisfy the inequality, then they remain to violate the in-
equality when new rows or columns are added to the ma-
trix. This means all the clusters defined above intrinsically
have the anti-monotonic property: a matrix cannot be a clus-
ter if any of its proper submatrixes is not a cluster. Notice
that here we involve both rows and columns in the defini-
tion of the anti-monotonic property. We can even observe
a stronger property: a matrix is a cluster (according to any
of the above definitions) if and only if all its proper subma-
trices are clusters. The reason is quite trivial: an inequality
that holds in the matrixS must also hold in some of its sub-
matrices, while an inequality that holds in a submatrix must
also hold in matrixS.

An imperfectδ-cluster is not anti-monotonic because it
does not enforce the constraints locally for any pairs of rows
and columns, but only requires the whole cluster globally
produces an aggregate score lower than a certain threshold.

7.2. Transitivity

As defined above, the transitivity property holds if for
any two clustersS1 = (RS ,< x1, x2, ..., xi, y1, y2, ...,
yj >) andS2 = (RS ,< y1, y2, ..., yj , z1, z2, ..., zk >),
S3 = (RS ,< x1, x2, ..., xi, y1, y2, ..., yj, z1, z2, ..., zk >)
must also be a cluster.

We can start with the following simpler form: for any two
clustersS1 = (RS , < x, y >) andS2 = (RS , < y, z >),
S3 = (RS , < x, y, z >) must also be a cluster. Now,

α ≤ (f(Si1 ,j2
) − f(Si1,j1

)) − (g(Si2 ,j2
) − g(Si2,j1

)) ≤ β (2)

α ≤ (f(Si1 ,j3
) − f(Si1,j2

)) − (g(Si2 ,j3
) − g(Si2,j2

)) ≤ β (3)

(2) + (3) :

2α ≤ (f(Si1 ,j3
) − f(Si1,j1

)) − (g(Si2 ,j3
) − g(Si2 ,j1

)) ≤ 2β (4)

This means the simpler form holds if bothα andβ are
either 0 or unbounded (±∞). Perfectδ-cluster, and our
OPSM cluster definitions all fall into this category. The
complex form can then be proved by arbitrarily picking
y1 as j2, and try eachxi′ (1 ≤ i′ ≤ i) as j1 and each
zk′(1 ≤ k′ ≤ k) asj3.

8. Conclusions

In many applications including DNA array analy-
sis, rows manifest consistent patterns on a subset of
columns even they are not close in terms of distance. In this
paper, we analyzed the OPSM model, which aimed at cap-
turing the consistent tendency by a subset of rows in a
subset of dimensions in high dimensional space. We pro-
posed a Head-Tail Trees structure and an Apriori-like
algorithm that can discover all OPSMs. We also dis-
cussed some advanced pruning methods on the OPSM
model, some variations of the OPSM problem, and a gen-
eralization model of pattern-based clustering.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules in large databases.VLDB, 1994.

[2] Y. Cheng and G. M. Church. Biclustering of expression data.
ISMB, 2000.

[3] A. B.-D. et. al. Discovering local structure in gene expression
data: the order-preserving submatrix problem.RECOMB,
2002.

[4] J. P. et. al. MaPle: A fast algorithm for maximal pattern-
based clustering.ICDM, 2003.

[5] J. P. B. et. al. Significance and statistical errors in theanaly-
sis of dna microarray data.PNAS, 2002.

[6] Y. K. et. al. Spectral biclustering of microarray cancer
data: Co-clustering genes and conditions.Genome Research,
13(4):703–716, 2003.

[7] L. Lazzeroni and A. Owen. Plaid models for gene expression
data.Statistica Sinica, 12:61–86, 2002.

[8] J. Liu and W. Wang. Op-cluster: Clustering by tendency in
high dimensional space.ICDM, 2003.

[9] J. Liu, J. Yang, and W. Wang. Biclustering in gene expres-
sion data by tendency.CSB, 2004.

[10] H. Wang, F. Chu, W. Fan, P. Yu, and J. Pei. A fast algorithm
for subspace clustering by pattern similarity.SSDBM, 2004.

[11] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pat-
tern similarity in large data sets.SIGMOD, 2002.

[12] J. Yang, H. Wang, W. Wang, and P. Yu. Enhanced bicluster-
ing on expression data.BIBE, 2003.

