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Abstract problem is known as subspace clustering. In this paper we
explore the problem of pattern-based clustering — a spe-
We study the problem of pattern-based subspace clus-<cial type of subspace clustering that upestern similarity
tering. Unlike traditional clustering methods that focus 0 as a measure of object distances.
grouping objects with similar values on a set of dimensions,  In DNA micro-array data analysis, gene expression data
clustering by pattern similarity finds objects that exhibit is organized as matrices. In such matricesvacarries the
a coherent pattern of rises and falls in subspaces. Appli- information of ageneand acolumnrepresents aamplefor
cations of pattern-based subspace clustering include DNAthe experiment. The number in each cell recordsttmes-
micro-array data analysis, automatic recommendation sys- sion valueof a particular gene under a particular sample.
tems and target marketing systems. Our goal is to deviseln this paper we use the termbjectanddimension(or at-
pattern-based clustering methods that are capable of (1) tribute) to mean a row (gene) and a column (sample) of a
discovering useful patterns of various shapes, and (2) dis-dataset, respectively.
covering all significant patterns. We argue that previous  The objective of data clustering is to group together data
solutions in pattern-based subspace clustering do not sat-points that areclose or similar to each other in clusters.
isfy both requirements. Our approach is to extend the idea An important parameter to any clustering model is a dis-
of Order-Preserving Submatrix (or OPSM). We devise a tance (or similarity) measure. Typical distance functions
novel algorithm for mining OPSM, show that OPSM can clude Euclidean distance, Manhattan distance, and cosine
be generalized to cover most existing pattern-based ¢luste distance. For high-dimensional data, however, objectd ten
ing models, and propose a number of extension to the orig-to exhibit strong similarity only over a (often unknown) sub
inal OPSM model. set of the attributes. Clustering data over the global sat-of
tributes often fails to extract any meaningful clustersisTh
problem shows up in micro-array data analysis, which is
typically high-dimensional.

Keywords: Gene Expression, Data mining, Pattern-
based clustering

1. Introduction -

The invention of DNA micro-array technologies has o K obfoo 1
revolutionized the experimental study of gene expression. N 2 object 3
Thousands of genes are probed every day. Gene expression 20
data analysis becomes one of the hottest topics in data min- 1
ing, artificial intelligence, bioinformatics, and in theats- S e e d et s i
tics community. Various data analysis techniques have been
intensively studied. Figure 1. Raw data: 3 rows and 10 columns.

Clustering has been one of the most popular methods of
discovering useful biological insights from gene exprassi
data. Many novel clustering techniques have been proposed. As an example, Figure 1 shows a set of 3 rows (lines)
A problem that has attracted much interest lately is the dis-with 10 columns (labeled ‘a’ to ‘f’). The-axis shows the
covery of clusters that are embedded in certain subspaces ofxpression values. If we consider the values from all 10
high-dimensional data (such as gene expression data). Theolumns, there are no patterns observed. However, if we



order-preserving patterns grows exponentially with re-

(a) Coherent pattern (b) Coherent upward pattern A R
7 7 spect to the number of attributes. A datagewith n at-
§§ o tributes has)_" , n!/(n — i)! potential order-preserving
‘QZ ., [omeaz o o fome patterns. For DNA micro-array datasets, there could be
B o tens or even hundreds of attributes. Examining each OPSM
T T . . T . . . . as a potential cluster is clearly infeasible. Effectiverpru

ing techniques are needed.

Another challenge to the OPSM problem is that the num-
ber of potential OPSM is huge. Recall that an OPSM con-
sists of a set of rows and a set of columns (arranged in a cer-
tain sequence). We note that any subset of those rows plus
any subset of those columns form a valid OPSM. These de-
select the set of columnis ¢, f, h, i and show only the rived OPSMs, or subclusters, however, are redundant. In
expression values for those columns (see Figure 2(a)), wethis paper we focus on mininghaximalOPSMs, that is,
observe something interesting: the expression valuesof th those that are not proper subclusters of others.
rows follow the same rise-and-fall pattern over the setécte  The rest of the paper is structured as follows. In Sec-
columns. Technically, we can consider the rows form a clus- tion 2, we review some related work. Section 3 gives a for-
ter in thesubspace b, c, f, h, The example illustrates that mal definition of the OPSM model. Section 4 discusses our
traditional distance functions are sometimes inadequate i OPSM algorithm in details. In Section 5, we propose some
capturing correlations among rows. advanced pruning methods for solving the OPSM prob-

Another way to observe the pattern that is shared by thelem. Section 6 discusses some interesting variations of the
rows is to rearrange the columns so that the expression valOPSM problem. A generalization of the pattern-based clus-
ues are listed in an ascending order. Figure 2(b) shows theering problem is discussed in section 7. Section 8 con-
values when the columns are rearranged according to the secludes the paper.
qguencd, c, b, i, h We can see that the expression values are
all increasing under the new colun_m sequence. We call thes  palated works
sequencé c, b, i, hanorder-preserving patteriThelength
of an order-preserving pattern is the number of columns in
it; A row is asupporting rowif its values exhibit an increas-
ing order with respect to the column sequence;siygport

Figure 2. The 3 rows exhibits a coherent pat-
tern in subspace.

In [2], Cheng and Church suggest modeling DNA mi-
croarray dataset as a matrix, where each gene is repre-
sented as a row and each sample is represented as a col-

ofa pa;[terr;] refers tr‘i)qthebn_“m?er oflsuppr?rtllcng ro;vs. IN OUr ymn. They introduced the bicluster concept as a measure
example, the pattefac, b, i, hhas alength of 5and a sup- ¢ 1o coherence of the genes and samples. A cluster is

port of 3. An order-preserving pattern togetherwith th(_a set yefined as a submatrix (a subset of the rows and a sub-
of supporting rows form a@rder Preserving Sub-matrix gt of the columns that are not necessarily contiguous).
or OPSM for short. Note that in our OPSM model, clusters | or - pe the set of row and the set of columns. Let
may overlap. That is, rows could belong to multiple clus- ;- 5 2nq47 ¢ ¢ be a subset of rows and a subset
ters. This model is reasonable for gene expression analy—of column, respectively. The paif (J) specifies a subma-
sis anq function prgdiction, singe the same set of genes Cafix A,,, with a mean squared 7residue score defined by
have d|fferent functions u.ndercﬁﬁerent sampl'es. H(I,J) = 1/(TI17) Srerjes(dij — dig — drj + dry)?.

In this paper our goal is to discuss the major challengesThe termd,; = 1/|J]3 ., dij represents the row mean,
of the OPSM problem and to develop an efficient algorithm dij = 1 Sier dij rejzpresents the column mean, and
for solving it. In addition, we propose some computation- j,, — L/||J| > er ey dij is the mean over the whole
ally challenging variations of the OPSM problem. For those submatrixA;,. A submatrixA;, is called as-bicluster if
variations, we discuss potential solutions. H(I,J) < é for somes > 0. A greedy algorithm is pro-

Subspace clustering is a computationally challenging posed to discover the cluster with the lowest score. Yang et
problem. The complexity lies in the requirement of simul- al. [12] proposed another algorithm that tries to find multi-
taneously determining both cluster members and relevantple clusters at the same time. The Plaid model [7] and the
dimensions/attributes. Also, it is often difficult to deténe Spectral model [6] were proposed as improvement over the
the dimensionality of each cluster. The latter problemis pa bi-cluster model.
ticularly true for gene-expression analysis due to the &fck A different model pCluster was proposed by Wang et
domain knowledge and the large number of attributes. al. [11]. A non-contiguous submatrix is a cluster if for any

The OPSM problem is a very challenging sub- pair of rowsi; andis, and any pair of columng andjs in
space clustering problem. First, the number of potential the cluster|(d;, ;, — di, j,) — (di, 5, — dis.5,)| < 0, Where



d. ., represents the value in rowand columny. In other row in D rather than in the cluster concerned (suctbs
words, the value change across two attributes must not varyThe same holds for the teroolumn index

a lot in different rows. An algorithm for finding pClusters is The columns inS are enclosed in curly brack-
proposed in the paper. Two improved algorithms MaPle [4] ets, e.g.,Cs = {ci,c2,...,Cmgs} A sequenceCs of
and SeqClus [10] have been proposed afterwards. the columns inS is enclosed in angled brackets, e.g.,

While many different models have been proposed, mostCs =< ¢y, g, ..., ¢mg >. The columns in a sequence is to-
of them are quite restrictive. In order to identify more gen- tally ordered. For the basic OPSM problem, a cluster is a
eral clusters, the OPSM model has been proposed by Benset of rows and a set of columns such that entries in ev-
Dor et al. [3]. A non-contiguous submatrix is an OPSM ery row are increasing w.r.t. a particular column sequence.
cluster if there exists a permutation of the columns such Hence, the order the columns is important. A clus-
that in the resulting permuted matrix, the values in each rowter S is thus written ass = (Rg, Cs).
are monotonically non-decreasing. This means for any two A permutationof a sequence is a reordering of the
rowsi; andi, and any two columng; andj. in the origi- columns inside the sequence. For examgle;, i, z > is a
nal submatrix, the signs f, ;, —di, j, andd;, j, — di, j, permutation ok z, z,y >. If the columns of a clustef is
are the same. In other words, the model only requires thepermuted to form another clustét, both clusters have ex-
rows to have the same direction of response across differenactly the same columns, but the order of their columns can
columns, but the absolute magnitudes of response are unimbe different. In other words(’s = Cp but C's may not
portant. In [3], a greedy algorithm was proposed to iden- equalCp.
tify some number of good OPSMs from a dataset. The al-
gorithm, however, does not guarantee that all OPSMs are
found, nor the best ones are found.

An extension of OPSM, namely OP-Cluster [8, 9] is pro-
posed by J. Liu et al. Given a user-specified error threshold
0. Columns with their values differ withifiare grouped into
an equivalent class. The order of columns within an equiv-
alent class is ignored. They proposed a tree structure for A clusterS is asubclustenf a clusterS’ if Rs C Rs:
storing all existing patterns and a depth-first search algo-andCs C Cs.. A clustersS is aproper subclusteof a clus-
rithm for mining all error-tolerated clusters. Howevereth ter S’ if S is a subcluster of” and eitherRs # Rs: or
time and space complexities of the algorithm increase ex-Cs # Cs:.
ponentially with the number of dimensions. » Definition 2 An OPSM is anaximal OPSMif it is not a
. qu goal is to de;velop an algorithm that can efficiently proper subcluster of any OPSM.
identify all OPSMs in a dataset. We also propose a humber

of variations to the cluster definition, which are of praatic An OPSM S = (Rsg,Cs) is arow-maximal OPSMf
values. there does not exist a clustéf = (Rs/,Cs) such that

Rs C Rg/. Column-maximal OPSI4 defined similarly.

Given a data matrixD, the basic OPSM problem is to
find all in-sequence OPSMs iR.

Note that for any pair of column indicgs andjs, there
are at most two maximal OPSMs of the fo$n= (Rgs, <
Jji,J2 >). One of them contains all ronswhered; ;, <
d; ;, and the other contains all rowswhered;: ;, > dy j,.
The larger cluster among the two has at Iéé\%] rows. As
a result, for a datasd? with np rows, every length-2 col-
umn sequence must hawg /2 supporting rows on average.
This argument shows that short patterns are too numerous
and uninteresting. Also, some patterns (column sequences)
may have only a few of supporting rows. These patterns are
not very interesting either since they are not statistjcsiti-
nificant. We thus modifiy the basic OPSM problem so that
only those OPSMs with a significant pattern length and a
significant support are reported.

Definition 1 A clusterS is an OPSMif there exists a per-
mutation of the columns such that in the permuted clus-
ter P, Di,j < Pi,j+1 for all © e {1,2,...,71[-7} and all

j € {1,2,....,mp — 1}. If a cluster satisfies the require-
ment without the need to permute its columns, it is called
anin-sequence OPSM

3. Problem Definition

In this section we give a formal description of the OPSM
problem. Consider a gene-expression dataSetrepre-
sented as a matrix. We usgg and C' to denote the set of
rows and columns irD, respectively. We use; ; to de-
note the entry oD in row ¢ and columry.

A cluster S is a submatrix ofD formed by a subset of
ng(> 2) rows and a subset ofis(> 2) columns ofD.
Rows and columns ity need not be contiguous iR. The
rows in S are referenced by their row indices i, each
of which is a distinct integer i{1,2,...,np}. The set of
row indices ofS is denoted agls. Columns inS are simi-
larly referenced. The set of columnsé$his denoted by's.
We uses; ; to denote an entry i¥ with 4, j being the ref-
erences w.r.t. the datasbt For examples, 3 refers to the
entry in S that is taken from the 2nd row and the 3rd col- Problem Statement 1 (Maximal size-constrained OPSM
umn of D. The termrow indexrefers to the location of a  problem): Given a data matri¥), a supporting row thresh-



old n,,in, and a column threshold,,;,, find all maxi-
mal in-sequence OPSMsin D such thatng > n,,;, and
ms Z Mmin-

4. Algorithm for finding OPSMs

In this section, we propose a new algorithm for explor-
ing all maximal size-constrianed in-sequence OPSMs.

4.1. Algorithm

Our algorithm is similar to the Apriori algorithm for min-
ing Association rules [1]. In Apriori, it mines a transac-
tion databasé)’ and discovers alfrequentitemsets. First,

it generates all itemsets with 2 items, we called them size-CA

2 itemsets. Then it scans the’ and counts transactions
contain the itemset, it is referred aspport An itemset is

frequent if it's support greater or equal to a user specified dexi is notin Rg

threshold. For all integer k 2, it generates size-k itemsets
by concatenating two size-(k-1) itemsets with (k-2) items
in common. It scand’ for counting the support for each
itemset. It terminates when there are no frequent size)(k+1
itemsets can be generated.

Property 1 (A priori property): A clusterS is an OPSM if
and only if all proper subclusters ¢f are also OPSM.

Proof (=) Suppose a clustét = (Rg, ds) isan OPSM
and a clusteP = (Rg, Op) is a corresponding in-sequence
OPSM formed by permuting the columns 8f By def-
inition, p; ; < p; 41, foralli € {1,2,...,ng} and all
j €{1,2,...,mg—1}. The inequalities remain valid if some
rows and columns are deleted frofh Therefore for any
clusterS’ = (Rg,Cs/) whereRg: C Rg andCgs C Cog,
an in-sequence OPSI’ can be formed by removing from
Rs all row indices that are not iR/, and fromC's. all col-
umn indices that are not ifi's.. SinceS’ can be formed by
permuting the rows and columns Bf, S’ is an OPSM.

(«=:) Suppose a cluste§ and all its proper subclusters
are OPSMs. Consider a clustét is formed by removing
the first row of S. SinceS’ is an OPSM, there exist some
integerj € X such that; ; is the smallest element in roiv
of S,Vi € {2,3,...,ng}. For the sake of contradiction, sup-

of S. By adding the removed column backTy the result-
ing clusterS” must also be an OPSM since all rows of it
have the smallest element at the added column. Sirean
be formed by permuting the columns$f, S” isan OPSM.
Our algorithm shares similar heuristic with Apriori al-
gorithm, but with an additional constraint, the columns(th
same role of items in Apriori) selected have an order.

Property 2 (Transitivity): If Sy (Rsy, < 1,
L2yeeey Ly Y1,Y25--3Y5 >) and 82 (R525< Y1,
Y25--,Uj,21,22,-.,2k >) are two row-maximal in-sequence
OPSMs andRg, () Rs, containsn,,;, or more indices,
thenS - (R51 ﬂR521 < X1y X2y ey Ty ylay27"'7yj7
21, 29, ..., 2k >) IS @ row-maximal in-sequence OPSM.

Proof: letS’ be the row-maximal in-sequence OPSM with
S =< X1, T2y 000y Tiy Y1,Y2y o5 Yjs 215225 -0y 2k > If a
row index is inRg, i.e., in bothRg, and Rg,, it must also
be inRgs.. ThereforeS is an in-sequence OPSM. If a row in-
then it is either notiks, or Rg,. Inthe
former case; must not be ilkRg: because ifitis iR g, then
(Rs, Ni,Cg,) would be an OPSM as it is a proper subclus-
ter of S/, which is a contradiction since it implies thét
is not row-maximal. The same argument holds for row in-
dices that are not ifRs,. ThereforeS is row-maximal.
According to the transitivity property, we can fort
from S; andS; without the need rescan the whole data ma-
trix to check for the row indices that are Rs.
Our algorithm takes a data sét with size |O| x |C,
a column thresholeh,,;,, and a supporting rows threshold
Nmin @S iNput. It finds all row-maximal in-sequence OPSMs
with two columns. For any pair of clustefs andS:, where
the last columnindex iri':gl equals the first columnindexin
ng. We create a new clustérwith Rs = Rg, | Rs, and
Cs equalC’s, with the last column index ids, appended
to the end. We only keef if |Rg| > 2. After creating all
row-maximal in-sequence OPSMs with three columns, re-
peat the same procedures to form row-maximal in-sequence
OPSMs with four columns, and so on, until no more clusters
can be formed. Whenever all clusters with 1 columns are
created, the algorithm performs a maximality test on each
cluster.S with k£ columns against all clusters with + 1
columns.S is maximal if there exists no clustet’ with
k+1 columns such thaks = R, andCs C Cg-. All such

pose the smallest element in the removed row exists at col-S’ are added to the result set. Others are discarded.

umnj’ ¢ X. This means; ;; < s1,;,Vj € X. Since the
cluster formed by keeping only the first and tht rows of
Sisan OPSM for alk € {2,3,...,ns}, si ;7 < s;;,Vj €

X. But by the definition ofX, s; ; < s; ;.. This implies
sij» = si,j, Which is a contradiction sincg ¢ X. There-
fore, there must exist an integgf € X s.t.s; ;~ is the
smallest element in the first row, and thus all rowsSof
Consider a clustef” formed by removing thg”-th col-
umn of S. T' is an OPSM since it is a proper subcluster

Completeness of the algorithm: For each row-maximal
in-sequence OPSMS (Rs,< €1,C2,y.sCng  >),
there must exist a row-maximal in-sequence OPSM
S! (Rs;, < ¢iyciy1 >), where Rs C Rgy, for
all ¢ € {1,2,..,nsg — 1}, due to the apriori prop-
erty. Therefore according to the algorithm, the clus-
ters S/ (Rsr, < ¢i,¢it1,Civ2 >) must be created
forall i € {1,2L,...,n5 — 2}, whereRg C Rgv. ltera-
tively, a clusterS* (Rg+, < €1,C2y...sCnyg 1>) must



be created wher&ks C Rg-. SinceS is row-maximal,
Rgs« must equalRg, so S must be identified by the algo-
rithm.

Correctness of the algorithm: By the transitivity prop-
erty, all clusters being formed are row-maximal in-seqaenc
OPSMs. The ones being added to the result set are further
proved to be column-maximal due to the maximality test
and the fact that all row-maximal in-sequence OPSMs with
one more column are discovered.

Figure 3. The head tree for clusters with 3
columns.

4.2. Data Structure
) ) We can optimize the set intersection operations by stor-
In this sub-section, we propose a novel data structure thaqng the row indices in bit bit vectors of lengti®|. The
are capable efficient processing of (1) identifying all pair - merge joins are replaced by fast bitwise AND operations.
of length# column sequences where the last 1 indices We identify that the head tree built in the 1st iteration is
of the first sequence equal the fifst- 1 indices of the sec-  gyfficient for forming new clusters. We can only check if
ond sequence, and (2) intersecting two sets of row indices the head tree leaf node path sequence equals to the tail tree
Itis referred astead-Tail Trees _ o 1st index of path sequence. We save insertion time by omit-
We build a head tree and a tail tree in each !teratlon. Both ting the insertions of new path sequences in the head tree.
of them are balanced tree. Head tree and tail tree store alkjnce the head tree is fixed, we can even store it in a sim-
clusters aCCOI’ding tO- the first— 1.CO|Umn indices and the p|e list. However a |arger number of unnecessary join op-
lastk — 1 column indices respectively. Each tree node con- erations may be performed. Suppose a cluster with column
tains a column index as key. Child nodes are ordered ac-sequence< abe >. If both trees are updated, a new clus-

cording to the column indices lexicographically. Each set ter with column sequence abed > will be generated only

4.3. Example

wow~ls
MR N o<
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an oo o N

G A WN R

of k — 1 column indices is represented by a path from the if there exists a cluster with column sequencécd >. If
rootto a leaf. Itis referred byath sequenc@wo sets share  we only update the tail tree, the join operations consider a
the firstz nodes if their first indices are the same. Each pigger set of clusters with path sequerced >.
leaf node in the head tree contains pointers to clustersevhos
firstk—1 column indices equals to the path sequence. Point-
ers to clusters are stored in tail tree leaf node similayhe
cluster stores its row indices by a list of row indices.
Suppose we get a set of maximal in-sequence OPSMs
of sequence lengtns. For each clustelS = (Rs, < S S
c1,C2,...,Cns  >), We insert the cluster along the path A B I I N
< cl,cg,...,scns,l > into the head tree and the path y:v 1oaes y:vw o
2, C3, ..., Cng > INto the tail tree. Add a pointer t§ from o IS || e | 35s
both leaf nodes. | 845 yzw | 345
By traversing Head-Tail trees in pre-order, new clusters  Table 1. Data Set D with Row-maximal in-
are generated at leaf nodes. If the current leaf node at head sequence OPSMs.
tree has path sequence lexicographically smaller(larger)
than that of the current node of the tail tree, we continue the
tree traversal of the head(tail) tree. If two path sequences
are equal, we try to join each pair of clusters in the two lists  The resulting trees are illustrated in Figure 3 to Figure 4.
linked by the two nodes to form new clusters. There are some special cases to note. First, there is no clus-
Supposes; is a cluster in the list linked by a head tree t€rs withC's = wz since only row 1 supports it. Second,
node, andSs is a cluster in the list linked by a tail tree there is no clusters witli’s = wy since no rows support
node, whereS; = (Rg,,< c,...,chi1 >) and Sy = it. Third,the valgef:)appears twice in row 5, so it appears in
(Rs,,< c1,¢2,...,cx >) respectively. We skip this pair if ~POth clusters witill's = wz andCs = zw.
c1 = ck41. Otherwise, we intersect the 2 lists of row in-
dices. If the resulting list has,,.;, or more row indices, in- 5. Pruning and Optimizations
sert< ¢y, ca, ..., cpr1 > into the head and tail trees for the
k + 1 iteration, and add the pointer to the new cluster from  Inthis section, we propose several efficient rules to prune
both leaf nodes. unpromising pattern using special properties of OPSM.



Figure 4. The tail tree for clusters with 3
columns.

Optimization 1: For each pattern, we count the rows with
column sequence starting with the first column index of the
pattern, it is referred afirst count Similarly, last countis
kept for last column index of the pattern.

Suppose a dataset has 4 columns, namely a, b, c, d,
there is a row follows a pattern< badc >. It contributes
1 to first count of each pattern start withand last count
of each pattern end with Suppose a pattera ac > has
support of 10 and a last count of 4, then the supporting rows
of pattern< acx > (wherex = b or d) is at most 6. In other
words, ifn,,;, iS 7 or more, we can not have a cluster with
pattern< acx >. Similarly, suppose a pattera cd > has
first count of 5, we cannot have a pattetrneed > (where
x = qa orb) if threshold is 6 or more.

This optimization technique assumes there has no dupli-

an

supports may not be available. For examplegifabe >

is infrequent, we do not have its support. Then, we cannot
use the combination of ab >, < abc > and< acb >

for the inference. However, a longer pattern requires sup-
ports of more patterns to perform a single pruning.

6. Variations of OPSM

In this section, we propose several possible bio-
logically significant variations of OPSM. They are
Sign-constrained problem, Sign-constrained Bidirec-
tional problem, and Error-tolerated problem. To ease
understanding, we provide examples to illustrate clus-
tering results using the following data matrik’ for
different variation problems. We also propose simple meth-
8ds for solving the problems.

a b c d

o1 | 10.3| 21.8| 29.8| 2.3
02 3.8 | 42.1| 59.2| 35
o3 | 10.4| 13.8| 159 | -25
o4 | 51.1| 58.2 | 59.9 | 68.1
o5 | 53.9| 41.8| 39.8| 18.3
06 03| 218| 209 | 2.3

Table 2. Data matrix D’.

cate values in each row. A pre-processing step is needed to

eliminate all duplicate values in each row. It can be done by
appending the column index to the end of each value.
Given patterrp, has suppors,, , first countf,, and last
countl,, ; patternps has suppors,_, first countf,, and
last count,_. A patternp,.., is generated by extending
with p,, with unknown suppott,,. ., first countf,, .., and
last count,,, ., . According to the heuristic above, we know
Spnew 1S At MOSt MINE,. - Iy, Sp. - fp.)s frne., IS at most
fp, and at leass,, . - (sp, - fp,.), andl, . is at most,,
and at leass,,, ., - (sp, - Ip.). With the help of these for-
mulas, we can skip support counting of patterns with max-
imum support less than user inputted threshold. Moreover,
we may use the upper bounds gf,.,, and!l to per-
form pruning in the next iteration.
Optimization 2:For example, the supporting rows<of
ab > and the supporting rows af ba > must sum up to
|O|. Similarly, if we have created node ab > and know
it's support, we know it must equal the sum of supports of
< abc >, < acb > and< cab >. If we have the sup-
ports of< ab >, < abc > and< acb >, we can calculate
the support of< cab > eventually. In another view, sup-
port of < cab > can also be inferred from support counts
of < ca >, < cba > and< bca >. In all these cases, we
can infer the support of some patterns by those of others.

Pnew

6.1. Sign-constrained problem

In DNA micro-array, each entry; ;, representing the ex-
pression level of gene i in sample j, is derived by comparing
the expression level of gene i, the gene of interest, and ex-
pression level of a reference gene. A positive value means
the gene i is over-expressed at sample j. A negative value
implies the gene i is under-expressed at sample j. Their bi-
ological meanings are totally different.

Suppose a geng, and a geney, exhibit the same rise
and fall patterns on a set of sampl&’s g,, is over-expressed
on C’ andg, is under-expressed on a subset®f We can
not groupy, andg; into the same cluster. Motivated by this,
We come up with the Sign-constrained problem.

Variation Problem 1 (Sign-constrained problem): Given
a data matrixD, find all in-sequence OPSMsin D such
thatfor all j € {1,2,...,mg}, sign(si,;) = sign(sa,;)

. = sign(snp,;), Wheresign() is the sign function de-
fined as follows:

. 1 ifz>0
sign(z) = { 0 <o @
Example: Considering only rows {o1,02,03,04}

We only need one of these combinations to get the supportdata matrix D’, there exists a sign-constrained clus-

of < cab >. Itis good to have multiple ways because some

ter S; = ({o1,02,03,04},< abc >). Note that,



S1 ({o1,092,03},< dabc >) is a maximal size-
constrained cluster, but not a sign-constrained cluster.

The sign consistent constraint verification can be opti-
mized by using a bitmap. Create a bitmap B of siz& n
m, whereB; ; stores the sign of expression level of gene
i in sample j. The verification can be replaced by fast bit-
wise NOT XOR operations.

6.2. Sign-constrained Bidirectional problem

Given a sign-constrained maximal OPSM, we know all
genes within this cluster with rows(gené&s) exhibit a se-
guence’s. Itis biological interesting to know if there exists
any gene®), have the reverse sequencef as the activ-
ities of genesD,; suppresses the activity of gen@s, and
vice versa. According to this argument, two genes have re-
verse expression sequences are highly related.

Variation Problem 2 (Sign-constrained Bidirectional
problem): Given a data matrixD, find all in-sequence
sign-constrained bi-directional OPSMs in.

A clusterS is a sign-constrained bi-directional OPSM
if (1) it is a sign-constrained maximal OPSM, and (2)
it can be divided into of 2 subclusteB,, and Pioyn
where P, contains all rowsi € {1,2,...,np,,}, pij <
pije1 forall j € {1,2,...,mp,, — 1}. Pyow, CONtains
allrowsi € {1,2,....,np,, ..} pi; > pij+1 forall j e
{L,2,...,mp,,,, — 1}.np,, andnp,,  sumup tovp.

Example: Considerin@’, n,,;, = 1, andm,,;, = 3,
one of the sign-constrained bi-directional OPSM&$'js=
({01,02,03,04,05}, < abc >). (Note: ({01, 02, 03,04}, <
abe >) is a sign-constrained maximal OPSM.)

Given we discovered all sign-constrained maxi-
mal OPSMs in dataseb by the Head-tail tree approach,
we can reuse the tail tree to see if we can find any genes ex
hibit a reverse sequence.

Example: Suppose a pattern P is a sign-constrained max
imal OPSM with patterr< abed >. We can traverse the tall
tree by the path< cba > to check if there exist any row fol-
lows expression pattera dcba >.

6.3. Error-tolerated problem

In [5], authors claimed that the measurements of expres-

sion values in DNA microarrays may have errors. It initiates
our proposal of a robust error-tolerated OPSM model.

Variation Problem 3 (Error-tolerated problem): Given a
data matrixD and an error threshold, find all in-sequence
e-tolerated OPSMs irD.

A clusterS is ae-tolerated OPSM if there exists a per-
mutation of the columns such that in the permuted cluster
P, pij+1 —pij > —e foralli € {1,2,...,np} and all
je{1,2,..,mp—1}.

Example: Considering)’ and e be 2, there exists an
error-tolerated cluster§; = (o1, 02, 03, 04, 05, 05, <
abc >). S cannot be discovered in orginial OPSM.

We propose a post-processing solution for the Error-
tolerated problem. We first generate all size-constrained
maximal OPSMs. The input space is smaller here, as it only
includes maximal OPSMs fullfilled the threshold require-
ments. An error-tolerated cluster.,, with pattern of length
k+1 is generated only if there exists 2 clusters with pat-
tern of length k, and these two patterns(sequence) differ at
one position only. Moreovet,,.,, should have at least,,,;,,
rows support (see Table 4).

Let S be the set of all maximal OPSMs in dafa.
Letrnax L en gth be the length of the longest pattern existsSn
Fork =m,,, ;,, to maxLength do
Foreachc; € S with pattern of length k
Letpe, bethepatternoéi.pci =< PiysPigs o Piy, >
Find the set of maximal OPSMSk ., where each clustet ; belongs to
i

O OhwWN R

J
>, pe; andpcj are the

Sk ejSpateMpe; = < pjy Py Py :
same in k-1 positions, and position g is the only positiontgpas differ
Piy =PVt €1,2,...,9—1,g+1,...k
foreachc; € Ski
R=Rec; N Reyi
p1 =< Piq:Pig» ""pigvpjg’l”ik >
P2 =< Piy s Pigs o Phgo Pigo Pig >
R7 and Ry be 2 empty set of rows.
foreach row,, € R
'f(d'u,pjg - dv,pig > —e)
Ry =Rj Ury;
if (dq . —dy,p;
Hdv,p; v,Pjg
Rg =Rgp U ry;
TR = nymin)
Cnewy =R1,p10r
insertcnew1 into S;
it R2| = mopin)
Cnewg = R2,p2
insertcnewz into S;

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

>

—e)

21.
22.
23.

Table 3. Algorithm for finding Error-tolerated
clusters.

7. Generalization

As we mentioned earlier, there are many diverse mod-
els for pattern-based clustering. In different applica-
tions and for different users, different types of patterns
may be needed. The measurement of quality of pat-
terns and clusters also differs in different models. For ex-
ample, both the pClustering model and the OPSM model
are quite different in technical details, but they shareisim
lar philosophy. However, such a one method per variation
approach may not be effective. In this section, we gener-
alize OPSM model and propose a new generic clustering
model which includes most previously proposed pattern-
based clustering models(e.g. Biclustering model, pCtuste
model, OPSM model). Moreover, we prove some proper-
ties in the generic model.



Definition 3 A matrix S = (RS,CS) is a Pattern-based
Clusterif and only if it satisfies the following inequalities:

Viy,ig € {1,2,...,ng},Vi1,42 € {1,2,..., mg},s.t.j1 < j2,
@ < (F(Siy jp) = F(Siy 1) — 9(Sig jo) — 9(Siy 1)) < B

By setting specific constraints, the generic model can fit
previously proposed specific definitions (refer Table 4).

f) | gx) || B
Perfecty-cluster X X 0 0
pCluster, shifting| x X -0 )
pCluster, scaling| logx | logx | -6 0
OPSM X 0 0 | o0
Table 4. Constriants for Specific Clustering

Model.

7.1. Anti-monotonicity

This means the simpler form holds if bothand 5 are
either 0 or unboundedHo). Perfecto-cluster, and our
OPSM cluster definitions all fall into this category. The
complex form can then be proved by arbitrarily picking
y1 asja, and try eachr;, (1 < ¢ < i) asj; and each
zir (1 < k< k) asjs.

8. Conclusions

In many applications including DNA array analy-
sis, rows manifest consistent patterns on a subset of
columns even they are not close in terms of distance. In this
paper, we analyzed the OPSM model, which aimed at cap-
turing the consistent tendency by a subset of rows in a
subset of dimensions in high dimensional space. We pro-
posed a Head-Tail Trees structure and an Apriori-like
algorithm that can discover all OPSMs. We also dis-
cussed some advanced pruning methods on the OPSM
model, some variations of the OPSM problem, and a gen-
eralization model of pattern-based clustering.

Suppose a matrix has some rows and columns do not

satisfy the inequality, then they remain to violate the in-
equality when new rows or columns are added to the ma-
trix. This means all the clusters defined above intrinsjcall
have the anti-monotonic property: a matrix cannot be a clus-
ter if any of its proper submatrixes is not a cluster. Notice
that here we involve both rows and columns in the defini-
tion of the anti-monotonic property. We can even observe
a stronger property: a matrix is a cluster (according to any
of the above definitions) if and only if all its proper subma-
trices are clusters. The reason is quite trivial: an indtyual
that holds in the matri¥¥ must also hold in some of its sub-
matrices, while an inequality that holds in a submatrix must
also hold in matrixS.

An imperfectd-cluster is not anti-monotonic because it
does not enforce the constraints locally for any pairs ofsrow

and columns, but only requires the whole cluster globally 71
produces an aggregate score lower than a certain threshold.

7.2. Transitivity

As defined above, the transitivity property holds if for

any two clustersS; = (Rg,< X1, T2y «wy Tiy Y1y Y2, -
y; >) and Sy = (Rs,< Y1, Y21 v Yjis 21, 224 ooy 2k >),
S3 = (Rsl< xl’ x?’ "'!xil yl! y2! --'1ij Zl! 22! "'!Zk >)

must also be a cluster.

We can start with the following simpler form: for any two
clustersS; = (Rg, < z,y >) andS; = (Rs, < y,z >),
Ss = (Rs, < z,y,z >) must also be a cluster. Now,

F(Siy,5g) = F(Siq,51)) = (9(Sig,jg) = 9(Sig,5,)) <8
F(Siy,53) = F(Siq,55)) = (9(Sig,j3) = 9(Sig,jp)) < B

(2) + (3) :
200 < (f(Siy,j3) = F(Siy,59)) = (9(Sig jg) — 9(Siy,5,)) < 28

()

a < (
a < ( (©)

)

[10]
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