Problem 1

Design a TM M to accept the language $L = \{0^n 1^n \mid n \ge 1\}.$

Solution

Initially, the type of M contains $0^n 1^n$ followed by an infinity of blanks. Repeatedly, M replaces the leftmost 0 by X, moves right to the leftmost 1, replacing it by Y, moves left to find the rightmost X, then moves one cell right to the leftmost 0 and repeats the cycle. If, however, when searching for a 1, M finds a blank instead, then M halts without accepting. If, after changing a 1 to a Y, M finds no more 0's, then M checks that no more 1's remain, accepting if there are none.

Let $Q = \{q_0, q_1, q_2, q_3, q_4\}$, $\Sigma = \{0, 1\}$, $\Gamma = \{0, 1, X, Y, B\}$, and $F = \{q_4\}$. Informally, each state represents a statement or a group of statements in a program. State q_0 is entered initially and also immediately prior to each replacement of a leftmost 0 by an X. State q_1 is used to search right, skipping over 0's and Y's untial it finds the leftmost 1. If M finds a 1 it changes it to Y, entering state q_2 . State q_2 searches left for an X and enters state q_0 upon finding it, moving right, to the leftmost 0, as it changes state. As M searches right in state q_1 , if a B or X is encountered before a 1, then the input is rejected; either there are too many 0's or the input is not in 0*1*.

State q_0 has another role. If, after state q_2 finds the rightmost X, there is a Y immediately to its right, then the 0's are exhausted. From q_0 , scanning Y, state q_3 is entered to scan over Y's and check that no 1's remain. If the Y's are followed by a B, state q_4 is entered and acceptance occurs; otherwise the string is rejected. The function is shown below.

	0	1	X	Y	В
$\rightarrow q_0$	(q_1, X, R)	_	_	(q_3, Y, R)	_
q_1	$(q_1, 0, R)$	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	$(q_2, 0, L)$	—	(q_0, X, R)	(q_2, Y, L)	_
q_3	—	_	_	(q_3, Y, R)	(q_4, B, R)
$* q_4$	∥ –	_	_	_	—

Problem 2

Design Turing machines to recognize $\{ww^R | w \text{ is in } (0+1)^*\}$

Solution

	0	1	X	В
$\rightarrow q_0$	(q_1, X, R)	(q_2, X, R)	(q_6, X, R)	(q_6, B, R)
q_1	$(q_1, 0, R)$	$(q_1, 1, R)$	(q_4, X, L)	(q_4, B, L)
q_2	$(q_2, 0, R)$	$(q_2, 1, R)$	(q_5, X, L)	(q_5, B, L)
q_3	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_0, X, R)	_
q_4	(q_3, X, L)	_	_	_
q_5	_	(q_3, X, L)	_	_
$* q_6$	—	_	_	—

The state q_0 goes right on the tape and find the first one that is not X, say a, replace it by X. Then goes right to find the first X or B, if its left symbol is a, replace it by X, otherwise, reject.