
CSCI 5440: Cryptography Lecture 9
The Chinese University of Hong Kong, Fall 2020 3 and 9 November 2020

In Lectures 7 and 8 we saw several ingredients that go into the design of secure two-party compu-
tation protocols:

• Honest-but-curious two-party computation: Alice has input x, Bob has input y, Alice learns
nothing, Bob learns f(x, y) but nothing else.

• Commitments: Sender can commit to any value x of his choice in a hiding (Receiver gets no
information) and binding (Sender cannot decommit to any value other than x) manner.

• Universal zero-knowledge proofs: Prover can convince verifier that any statement x (for which
he knows a proof π) is true without revealing anything beyond its veracity.

In this lecture we apply them to obtain two-party computation that is secure against malicious
parties that might not play by the rules.

1 Defining secure two-party computation

A protocol between Alice and Bob for computing f(x, y) should be called secure if the views of a
cheating Alice interacting with Bob and a cheating Bob interacting with Alice can be simulated.
But what should the simulators be given as their inputs? Let’s see what happens when Alice’s
simulator is given x and Bob’s simulator is given y and f(x, y) like in the honest-but-curious case.

Consider the case of the AND function and assume Bob’s true input y is 0. A cheating Bob can
always pretend that his input is 1 and learn Alice’s input x. His view cannot be simulated from y
and f(x, y) = 0. This “attack” is unavoidable and should not really count as cheating as there is
no way to distinguish Bob’s true input y from the input y∗ that he provides to the protocol.

Why do Alice and Bob want to run a protocol in the first place? The purpose of two-party
computation is to replace a trusted authority that performs the computation privately for them.
But Alice and Bob an submit false inputs even to a trusted authority. On a dating website, Bob
can falsely claim that he is interested in Alice to find her preference. In Yao’s millionaire problem,
Bob can falsely claim that he is a billionaire to win the contest.

In the presence of a trusted authority, the ideal secure two-party functionality is computed like this.

1. Alice and Bob simultaneously submit inputs x and y, respectively, to the trusted party.

2. The trusted party computes f(x, y) and sends the answer to Bob (unless one party failed to
provide an input in which case it declares failure).

In the ideal functionality a party can always submit a false input. This is unavoidable in any
implementation. The security requirement should say that this is the only way to “cheat”. One
elegant way to specify this is to say that whatever a cheating party can learn by running the
protocol can be simulated by the same cheating party in the ideal functionality.

Definition 1. A two-party protocol is (s, ε)-secure for Alice if for every circuit B∗ there is a
simulator B̃∗ (of size at most oh larger) such that B∗’s view when interacting with Alice in the
protocol is (s, ε)-indistinguishable from B̃∗’s output when interacting with the trusted party in the
ideal functionality.

1



For example, if Bob tries to cheat by pretending his input is y∗, his behavior can be simulated by
a B̃∗ that submits y∗ to the trusted party, learns f(x, y∗) and then simulates cheating Bob’s view
from this information.

Now let’s consider security for Bob. Since Alice receives no output in the ideal functionality, by
analogy we may try to say security for Bob simply means that Alice’s view in the protocol can be
simulated without extra information. This sounds like a strong guarantee, but here is an example in
which what Bob gets from the protocol is not the same as what happens in the ideal functionality.

Consider the case when f is a function of x only and does not depend on Bob’s input y. A protocol
for such function should perform image transmission: Bob should learn f(x) but nothing beyond
that. In the honest-but-curious security model there is a particularly simple image transmission
protocol: Alice sends f(x) to Bob. Under the requirement of Definition 1, this protocol would
remain “secure” for Bob because Alice receives no messages so her view is trivially simulatable.

Now think of a cheating Alice who samples some h∗ that is not even a possible image of f and
sends it to Bob (who accepts). In the ideal functionality, this type of interaction cannot occur:
Bob’s output there is always of the form f(x∗) for some x∗. To prevent this type of attack, the full
definition of security requires that Alice’s view can be simulated even when conditioned on Bob’s
output (see Figure 1).

Definition 2. A two-party protocol is (s, ε)-secure for Bob if for every circuit A∗ there is a simulator
Ã∗ (of size at most oh larger) such that the random variable consisting of A∗’s view and Bob’s output
in the protocol is (s, ε)-indistinguishable from Ã∗’s output together with Bob’s output in the ideal
functionality.

A∗

r

B

y

f

m1

m2

Ã∗ T B̃

y

f(x∗, y)

x∗

r m1m2

y

f(x∗, y)

Figure 1: Security of two-party computation for Bob: (a) the protocol execution; (b) the ideal functionality.
Definition 2 requires that for every A∗ there is a Ã∗ for which the random variables (r,m1,m2, f) are
indistinguishable in the two executions.

Under Definition 2 this image transmission protocol is no longer secure. The security definition
requires that this cheating Alice A∗, which does nothing but sample some h∗, can be simulated by
a cheating Alice Ã∗ in the ideal functionality so that her output is indistinguishable from Bob’s
output h∗ in the protocol. This cheating Alice Ã∗ must therefore use h∗ to sample some input x∗

so that Charlie’s output f(x∗) is indistinguishable from h∗. Such an x∗ might not even exist: For
example, if f : {0, 1} → {0, 1, 2} is the identity function f(x) = x then the cheating Alice that sends
2 to Bob (who then outputs it) cannot be simulated by any cheating Alice in the ideal functionality
under Definition 2.

One way to guarantee the existence of x∗ is to augment the simple protocol with a zero-knowledge
proof that h is in the range of f . This is a step in the right direction, but still poses a challenge in
the simulation. Suppose that f : Zq → G is the exponentiation function f(x) = gx for a generator
g of G. This f is a bijection, so the statement “h∗ is in the range of f” is vacuously true. Alice’s
simulator Ã∗, however, still has to produce an input x∗ such that f(x∗) looks exactly like cheating
Alice’s output h∗.

2



2 Proofs of knowledge

A proof of fact is a protocol by which Prover convinces Verifier that a given statement is a fact,
i.e. it has a proof π. In a proof of knowledge, Prover needs to convince Verifier not only that the
statement is true, but that he knows the proof π. Schnorr’s protocol is an example of a proof of
knowledge for discrete logarithms: The statement is some h in G and the proof if the (unique secret
key) x for which gx = h (the proof relation consists of the pairs (gx, x) as x ranges over Zq). The
existence of x is clear; what is called into question is Prover’s knowledge of x.

In the case of Schnorr’s protocol, the proof of security showed that if a cheating prover passes
validation then we can use this prover to calculate the discrete logarithm of h. In the general
setting, from any prover that passes verification of a statement it should be possible to recover
a proof of that statement. The program that performs the proof recovery is called a knowledge
extractor. It size will in general depend on the size of the cheating prover.

Definition 3. A Prover-Verifier protocol for a given proof relation is a proof of knowledge if for
every prover P ∗ there exists a knowledge extractor circuit K of size oh larger such that if P ∗ passes
verification (with probability greater than a given threshold) on input x, then K(x) outputs a proof
π for x with probability at least 1/2.1

Any (complete) proof of knowledge is a proof of fact because the knowledge extractor cannot
possibly extract a “proof” of a false statement. The converse is not true in general as illustrated
by the example of discrete logarithms. However, the GMW protocol happens to also be a proof
of knowledge. Since the 3-coloring proof relation is complete, this protocol can be used to provide
zero-knowledge proofs of knowledge for any statement.

Theorem 4. The GMW protocol is a proof of knowledge with extraction overhead oh(t) = mt +
O(m), assuming P ∗ passes verification with probability at least 1− 1/2m and the underlying com-
mitments are perfectly binding.

If the protocol is repeated r times, the verification probability threshold drops to (1− 1/2m)r, so
it can in principle be made negligibly small.

Proof. The knowledge extractor runs P ∗ to produce candidate commitments C∗1 , . . . , C
∗
n to the

colors of all the graph’s vertices. Then it challenges the cheating prover to decommit C∗v and C∗w
for every edge (v, w) of the graph. If in all the challenges every C∗v decommits to the same color
πv ∈ {R, G, B}, the extractor outputs π as the coloring.2

If P ∗ passes verification with probability at least 1 − 1/2m then with probability at least half
each of these m decommitments reveals a pair of different colors. Since the binding is perfect, the
decommitments to C∗v for any given v in different challenges must be consistent. Then π is a valid
3-coloring of G.

The proof of Theorem 4 has a similar structure to the security proof for Schnorr’s protocol. In
both cases the knowledge extractor simulates the cheating prover on the same commitment then
reconstructs the proof from its responses to different challenges.

1The extraction probability can in fact be amplified all the way to 1 by a small price in the extraction overhead.
2This knowledge extractor does not find out the colors of isolated vertices but these are irrelevant.

3



3 The Goldreich-Micali-Wigderson compiler

Armed with zero-knowledge proofs of knowledge, consider the following image transmission proto-
col: Alice sends h = f(x) to Bob together with a zero-knowledge proof of knowledge (with respect
to the proof relation (f(x), x)). Bob declares failure if Alice’s proof doesn’t pass verification.

This is certainly secure for Alice, since Bob’s view f(x) can be simulated from the same output in
the ideal functionality.3 Now consider a Alice who sends some h∗ as her message. If h∗ passes verifi-
cation, then the knowledge extractor can extract a preimage x∗ for h∗ under f . If Alice’s simulator
Ã∗ submits this x∗ as her input in the ideal functionality, the output h(x∗) is indistinguishable
from h∗ so the protocol is also secure for Bob.

This idea can be extended to handle any deterministic two-party computation protocol (A,B) that
is secure against honest-but-curious parties. Assuming Alice goes first, in any such protocol Alice’s
first message m1 is a function A1(x) of her input x, Bob’s first message m′1 is a function B1(y,m1)
of his input y and Alice’s message m1, and so on. After r rounds Bob outputs Br(y,m1, . . . ,mr).

The GMW compiler. Given inputs x for Alice and y for Bob:

Input commitment phase: Alice sends a commitment Cx = Com(x) to her input x, followed
by a zero-knowledge proof that she knows x that commits to Cx. Bob does the same for his
input y. Each party verifies the proof of knowledge.

Protocol emulation phase: Alice and Bob emulate the honest-but-curious protocol (A,B).
Alice’s first message m1 = A1(x) is followed by a zero-knowledge proof that there exists an x
such that Cx is a commitment to x and m1 = A1(x). Bob verifies Alice’s proof and sends his
first message m′1 = B1(y,m1) is followed by a zero-knowledge proof that there exists a y such
that Cy is a commitment to y and m′1 = B1(y,m1), and so on. After r rounds Bob outputs
Br(y,m1, . . . ,mr). (If any proof doesn’t verify the party declares failure.)

The proof of security is not difficult, but perhaps a bit tedious, so we just explain the role of the
different ingredients. Let’s look at security for Bob. The commitments ensure that Alice’s input
x∗ is consistent throughout the protocol. The proofs of knowledge in the input commitment phase
ensure that Alice’s simulator Ã∗ can reconstruct the input x∗ for the ideal functionality. The proofs
of fact in the protocol emulation phase ensure that Alice’s messages are consistent with what they
would be an honest-but-curious interaction assuming her input was x∗. The zero-knowledge of all
the proofs and the assumed honest-but-curious security of the original protocol ensure that Alice
learns no information.

To obtain a secure two-party protocol for arbitrary functionalities we would like to apply the GMW
compiler to Yao’s protocol. One complication is that Yao’s protocol is randomized. Randomness
played a crucial role in the underlying AND protocol that we used to implement oblivious transfer.
The security of that protocol relied on the idealistic assumption that Bob properly samples public
and/or private keys. Without a proof that the sampling was performed correctly, which in particular
means that Bob used a reliable source of randomness, all security bets are off.

The last ingredient is a private coin sampling protocol by which Bob can output a bit which is
guaranteed to be random to an honest Alice, but about which Alice doesn’t learn anything. This
can be reduced to a secure implementation of the ideal XOR function x ⊕ y: If the honest party
chooses a random input, the output is random and independent of the one provided by the cheating
party.

3Bob’s view also includes his verifier’s view in the zero-knowledge interaction, but this part is simulatable by the
zero-knowledge property.

4



XOR protocol.

1. Bob sends a commitment C = Com(y) to his input y.

2. Alice sends x.

3. Bob outputs rB = x+ y.

Claim 5. If commitments are (s, ε)-secure then the XOR protocol is (s−t, ε)-secure for Bob against
cheating Alices of size at most t.

Proof. Alice’s view consists of a commitment Com(y) to Bob’s input. Upon seeing it, she generates
a response x∗(Com(y)) to Bob. The simulator Ã∗ outputs a simulated commitment Sim as her
view and provides x∗(Sim) as her input in the ideal functionality. The security requirement for
Alice is that (Com(y), x∗(Com(y)) + y) is indistinguishable from (Sim, x∗(Sim) + y) for all y. If
these can be distinguished for some y by some D, then D(C, x∗(C) + y) would distinguish real and
simulated commitments with the same advantage. (The view of a cheating B∗ consists of a random
bit, so it can be simulated by a B̃∗ that submits an arbitrary input and outputs an indepednent
random bit.)

To handle randomized protocols, the GMW compiler is augmented with a randomness commitment
phase, following the input commitment phase, in which Alice and Bob run the XOR protocol to
generate private randomness for Bob (and for Alice if needed by reversing their roles). Claim 5
guarantees that a cheating Alice does not obtain information about Bob’s private randomness rB.
Alice also needs to be guaranteed that Bob followed the rules of the XOR protocol in generating
his randomness. To do this, he accompanies any of his messages (which may depend on rB) with
a zero-knowledge proof that rB is the output of the XOR protocol, i.e. that there exists a y such
that C is a commitment of y and rB = x+ y.

4 Fairness

So far our discussion has been restricted to asymmetric two-party computations. What about
symmetric computations in which both Alice and Bob should obtain the output f(x, y)?

For honest-but-curious parties there is no real difference between symmetric and asymmetric com-
putations: A protocol for symmetric computation can be obtained from two runs of the asymmetric
protocol with the roles of Alice and Bob reversed the second time. If the parties are malicious,
however, this strategy is problematic because if say Bob finds f(x, y) first (before Alice has learned
anything) he may halt and refuse to send any more messages. This wouldn’t be fair to Alice.

A fair two-party computation is a secure implementation of the following ideal functionality:

1. Alice and Bob simultaneously submit inputs x and y, respectively, to the trusted party.

2. The trusted party computes f(x, y) and sends the answer simultaneously to Bob and Alice
(unless one party failed to provide an input in which case it declares failure).

In particular, a fair two-party computation of the XOR function in which both Alice and Bob
submit random inputs is a mechanism for Alice and Bob to obtain the same random bit r that
is sampled by trusted Charlie. This is the fair coin toss specification. It turns out that a secure
fair coin toss is impossible to implement efficiently! To get a sense of the difficulty, consider the
following variant of the XOR-based coin tossing protocol.

5



1. Bob chooses a random bit y an sends a commitment C = Com(y) to Alice.

2. Alice sends a random bit x to Bob.

3. Bob computes r = x+ y, forwards it to Alice, and outputs it.

4. Alice outputs the bit forwarded to her by Bob.

If both parties follow the protocol, their common output is clearly a random bit. Bob, however,
finds out the value of this random bit first. If it is not to his liking — say he wants a zero but r
is equal to one — he can refuse to forward r to Alice. In this case, Alice still needs to produce
an output which is indistinguishable from her output in the fair coin toss specification, namely a
random coin toss. What should she do?

One option is that if Bob aborts in Step 3 then Alice samples outputs a random bit a on her own.
But this protocol is still unfair to Alice: Alice’s output is a random bit a conditioned on r = 1,
and r itself conditioned on r = 0, which makes her bit heavily biased towards 0. Can Alice perhaps
sample a in a biased manner to mitigate Bob’s possible abortion?

Cleve showed that in any candidate k-message coin tossing protocol, one of the parties can introduce
a bias of at least 1/(8k + 1) in the output, even if its only available strategies are to follow the
protocol or abort at some point. Let me try to give some intuition about why fair coin tossing is
impossible in two rounds. Suppose that Alice sends a message, Bob replies, and then they agree on
a fair coin toss r. If Alice aborts Bob chooses the output b on his own. If Bob fails to reply Alice
chooses the output a on her own.

For the protocol to be fair, the marginal distributions of a, b, and r should all be very close to
uniform. Before his decision to abort, Bob knows the protocol outcome r. Unless a and r are
strongly correlated (i.e. a is almost determined by r), Bob can induce some bias by strategically
choosing to abort or release r just like in the example we saw. But if a and r are strongly correlated,
then Alice knows the outcome r even before she sends any messages. So Alice can also induce bias
by a strategic decision, unless b and r also happen to be strongly correlated.

The only remaining possibility is that both a and b are strongly correlated with r. This means a
and b are individually random and almost always equal or almost always different. But then Alice
and Bob know a common random bit before any interaction between them has taken place, which
is clearly impossible!4

In conclusion, fair secure two-party computation is impossible to achieve for all but a handful of
functions f .5 The next best thing is the following type of ideal functionality.

1. Alice and Bob simultaneously submit inputs x and y, respectively, to the trusted party.

2. The trusted party reveals f(x, y) to Bob. Bob can then choose to continue or abort.

3. If Bob aborts the trusted party announces this. Otherwise it reveals f(x, y) to Alice.

The natural extension of the GMW protocol to the symmetric setting satisfies this specification.
Although this is unfair to Alice, it has the advantage that Bob’s unfairness can be detected. In
some infrastructures like blockchains with “smart contracts” Bob’s fairness can be incentivized by
introducing penalties.

4For protocols with more messages, this argument essentially eliminates the last round of interaction and can be
applied inductively to rule out fairness.

5A notable exception is the AND function.

6



5 Secure multiparty computation

In a secure multiparty computation, several parties want to perform a joint computation on their
private inputs without revealing any information. Let’s consider the case of three parties Alice, Bob,
and Charlie. Even in the honest-but-curious model there are two possible definitions of security:

1. No party finds out any information beyond its output.

2. In addition, no two parties find out any information beyond their outputs.

It is possible to obtain the stronger security requirement by extending the two-party techniques that
we just discussed. Instead we describe the perfectly secure protocol of Ben-Or, Goldwasser, and
Wigderson (independently discovered by Chaum, Crepeau, and Damg̊ard) that satisfies the weaker
one. This protocol assumes that private communication channels between all pairs of parties are
available.

The functions to be computed are represented by arithmetic circuits. Inputs and outputs belong to
some finite field F and the gates of the circuit compute additions (more generally, linear combina-
tions) and multiplications. Boolean circuits with AND and XOR gates can be viewed as arithmetic
circuits over the binary field F2.

Let’s first discuss the special but important case in which Charlie wants to privately calculate some
linear function of Alice’s input a and Bob’s input b , e.g. f(a, b) = 2a + 3b. To do this, Alice and
Bob first jointly sample a random element r ∼ F. Then Alice sends Charlie the value 2a+ r, Bob
sends Charlie 3b − r, and Charlie outputs the sum of the two messages. Alice’s and Bob’s views
consist of a single random bit so the protocol is secure against them, while Charlie observes two
random numbers that add up to his output. This is a view that he can simulate from his output.

The BGW protocol consists of three phases. In the setup phase, each party’s input(s) is distributed
to the other parties via a suitable secret sharing scheme. In the computation phase, parties compute
shares representing the values at all the wires in the order of circuit evaluation. In the reconstruction
phase, the shares representing the output wire(s) are combined to obtain the desired output(s).

The underlying secret sharing scheme will be Shamir’s scheme from Lecture 1 (but other choices
are also possible). Alice’s, Bob’s, and Charlie’s shares are the values `(1), `(2), and `(3), where `
is a random linear function conditioned on the secret being `(0), i.e. the function `(t) = secret + rt
for a random r. In this scheme no party has any information about the secret but any two can
reconstruct it.

In the setup phase each party shares their input via this scheme. For example Alice sends the values
a + r, a + 2r, and a + 3r to herself, Bob, and Charlie, respectively. In the reconstruction phase,
the output(s) are interpolated from their share(s). For example, Alice can uniquely determine her
output from hers and Bob’s shares of it.

It remains to describe the computation phase. Suppose Alice, Bob, and Charlie want to evaluate
the shares representing the output of a plus gate p(0) + q(0). Each knows their share p(t) of p(0)
and q(t) of q(0). Each declares p(t) + q(t) to be their share of the output p(0) + q(0). Since p and
q are linear functions, so is x + y and each party ends up with a valid share for the output. This
step doesn’t involve communication so it preserves security.

In the case of a times gate p(0) · q(0), each party multiplies its shares p(t) and q(t). If p and q are
linear functions describing the parties shares, then s = pq is a quadratic function whose value at
zero equals the gate output p(0) · q(0). The values s(1), s(2), and s(3) still uniquely specify the

7



desired output r(0). The relation is given by the Lagrange interpolation formula

s(0) = 3s(1)− 3s(2) + s(3).

To carry on the execution the parties need to securely re-share the value s(0) via a new linear
function `. The value `(0) should equal the output gate value s(0). Alice’s value `(1) should
be a random number r ∼ F. Bob’s and Charlie’s shares `(2) and `(3) are then determined by
interpolation:

`(t) = (1− t)s(0) + tr = (3(1− t)s(1) + tr)− 3(1− t)s(2) + (1− t)s(3).

To calculate `(2) and `(3), Bob and Charlie need to learn the value of some linear function of the
other two parties’ secret information and nothing else, which we showed how to do.

The protocol easily extends to more than three parties. It is secure against any coalitions of fewer
than n/2 honest-but-curious parties. A variant of it is secure and fair against fewer than n/3
malicious parties. This is optimal for statistically secure protocols. In contrast, protocols based
on oblivious transfer provide security against any number of honest-but-curious parties or at most
n/2 malicious parties.

8


	Defining secure two-party computation
	Proofs of knowledge
	The Goldreich-Micali-Wigderson compiler
	Fairness
	Secure multiparty computation

