
CSCI 5440: Cryptography Lecture 7
The Chinese University of Hong Kong, Fall 2020 19 and 20 October 2020

In the first half of the course we covered the basic cryptographic primitives that enable secure
communication in insecure environments. These are the foundations on which the security of much
modern computing infrastructure including e-mail, messaging, e-commerce, and banking is based.

Sometimes the purpose of communication is not to exchange information but to perform some joint
computation on private inputs. For example, several hospitals might want to calculate some joint
statistic on their data without revealing information about their individual patients, or a potential
buyer may want to convince a real-estate agent that she has sufficient funds to purchase a property
without revealing her net worth, or a group of voters want to elect a leader by majority without
revealing their individual preferences.

We describe a general framework that in principle solves any question of this type. In this lecture
we talk about the two-party setting.

1 Secure two-party computation

A two-party computation is a protocol by which Alice and Bob, which hold private inputs x and y,
respectively, jointly compute some function f(x, y). Alice and Bob can certainly do this by sharing
their inputs and computing f together, but this would reveal their private inputs to one another,
which might be undesirable.

One illustrative example is Yao’s millionaire problem: Alice and Bob want to know who is the
richer one among them but they do not want to reveal their individual net worths x and y. They
could do this by submitting their respective inputs x and y to a trusted referee Charlie who would
compare the numbers and declare the winner. The objective of a secure two-party computation is
for Alice and Bob to emulate this interaction without a trusted Charlie.

It will be somewhat easier to start off with an asymmetric definition of functionality in which Bob
learns the value f(x, y) but there is no such requirement for Alice.

Definition 1. An (asymmetric) two-party computation for a function f on two inputs is an inter-
active protocol in which, given inputs x for Alice and y for Bob, Bob’s output equals f(x, y) (with
probability one over the randomness of the protocol).

The definition of security will based on the premise that Alice and Bob should not find out any
unintended information from the execution of the protocol. Recall that the information learned by
a party is determined by its view, which consists of its randomness (if any) and the sequence of
messages received from the other party. From Alice’s perspective this means she should be able
to simulate her own view based on her input only. To get a sense of what kind of information is
unintended for Bob let’s look at some examples where x, y, and f(x, y) are single bits.

1. f(x, y) = x xor y. In this case, functionality forces Bob to learn Alice’s input because it is
an XOR of his own input and output. From Bob’s perspective, there are no secrets. The
protocol in which Alice forwards her input x to Bob (and Bob outputs f(x, y)) should be
considered secure.

2. f(x, y) = y. This example is trivial as Bob can compute f without interaction, but the
previous protocol is no longer secure because his view should now reveal no information at
all about x.

1



3. f(x, y) = x and y. Here, f(x, y) completely reveals x as in example 1 when y = 1 and it
completely hides it as in example 2 when y = 0. Suppose Alice and Bob run protocol 1 if
y = 1 and protocol 2 when y = 0. Then Bob doesn’t learn any unintended information, but
Alice learns y, violating security.

The AND function turns out to be “complete” for secure two-party computation so the last example
is far from naive. Say Alice and Bob might want to go on a date but each fears the embarrassment
of being rejected by the other. Some dating websites ask both Alice and Bob to give an opinion of
the other’s suitability (usually expressed by a swipe) and make them aware of their mutual interest
only if there is a match. This is nothing more than secure computation of AND by a trusted third
party. You may imagine scenarios in which Alice and Bob might prefer for a third party not to get
involved.

Before we give a protocol for it we need to define security. What we mean by Bob learning no
unintended information is that he learns nothing except what is implied by the output f(x, y) of
the protocol. The simulation-based security definition requires that he should be able to simulate
his view given his input and his output.

Definition 2. A two-party computation is (s, ε)-simulatable against honest-but-curious parties if
there are simulators SA and SB such that for every x and y, the random variables SA(x) and
SB(y, f(x, y)) are (s, ε)-indistinguishable from Alice’s and Bob’s view, respectively.

By “honest-but-curious parties” we mean that both Alice and Bob are required to follow the
instructions of the protocol, but they can examine their views for any slip of unintended information.
We later look into more powerful adversaries that can deviate from instructions, or even abort the
protocol if the interaction is not to their liking.

2 A protocol for AND and oblivious transfer

A protocol for AND can be obtained from public-key encryption that has some additional properties.
Suppose Alice encrypts her input x under some public key PK. Bob should be able to decrypt if
his input is y = 1, but not if it is y = 0. Thus Bob should know the corresponding secret key SK
when y = 1, but have no information about it when y = 0. In the case y = 1, Bob can generate
the key pair as usual. In the case y = 0, however, he should be able to generate a random variable
indistinguishable from a public key without knowing the secret key. This is possible in both El
Gamal encryption and the LWE-based encryption scheme that you worked out in Homework 2. Let
us describe the El Gamal-based protocol.

AND protocol: Alice’s input is x ∈ {0, 1}. Bob’s input is y ∈ {0, 1}.

1. If y = 0, Bob samples PK uniformly at random from G.1

If y = 1, Bob samples SK ∼ Zq and sets PK = gSK . Bob sends PK to Alice.

2. Alice sends Enc(PK, x) to Bob, where Enc is El Gamal encryption.

3. If y = 0 Bob outputs 0. If y = 1, upon receiving C he outputs Dec(SK,C).

This protocol is clearly functional: If y = 0 Bob outputs 0, and if y = 1 he outputs Dec(SK,Enc(PK, x)) =
x, so his output always equals x and y.

1Recall that elements of G are represented by the numbers between 1 and q, so this amounts to uniformly sampling
a number in this range.

2



Claim 3. If El Gamal encryption is (s, ε)-message simulatable in size t then the AND protocol is
(s, ε)-simulatable against honest-but-curious parties in size t + O(op) .

Here, op stands generically for the size of an efficient operation like sampling a random element,
addition in Zq, multiplication in G, and base-g exponentiation.

Proof. Alice’s view consists of a public key, which is a random element of G. She can sample this
view efficiently in one operation.

When y = 1, Bob’s view consists of SK, PK, and Enc(PK, x). He can simulate this view given
his output x in size O(op) by generating a key pair (SK,PK) and then encrypting x under PK.
When y = 0, Bob’s view consists of PK and Enc(PK, x) only. By the message simulatability of El
Gamal encryption, this view is (s, ε)-simulatable in size t. Altogether, given his input and output,
Bob can simulate his view in size t + O(op).

Somewhat more general than AND is the oblivious transfer function given by

OT (x0x1, b) = xb = (x0 and b) or (x1 and b).

A secure two-party protocol for this function is a mechanism for the chooser Bob to learn exactly
one of the two values x0, x1 held by the provider Alice. Alice does not find out which of the two
Bob learned and Bob does not find out anything about the other value.

AND is a special case of oblivious transfer with x0 fixed to zero, so a secure protocol for OT can
also be used to evaluate AND. In the other direction, consider the following protocol for OT:

OT protocol: Alice’s input is x0x1 ∈ {0, 1}2. Bob’s input is b ∈ {0, 1}.

1. Alice and Bob run the AND protocol on input x0 for Alice and b for Bob.

2. Alice and Bob run the AND protocol on input x1 for Alice and b for Bob.

3. Bob produces the first output if b = 0 and the second one if b = 1.

The functionality of this protocol follows from the functionality of the AND protocol.

Theorem 4. If the AND protocol runs in size t and is (s, ε)-message simulatable in size t then the
OT protocol is (s− t, 2ε)- simulatable in size 2t + O(1) against honest-but-curious parties.

Proof. Let SA and SB be Alice’s and Bob’s simulators for the AND protocol. Alice’s simulator
for the OT protocol runs SA(x0) followed by SA(x1). This is (s− t, 2ε)-indistinguishable from her
actual view by the usual hybrid argument (Lemma 5 in Lecture 3).

Bob can also simulate his view given his input b and his output z. If b = 0, he runs SB(1, z) followed
by SB(0, 0). If b = 1, he runs SB(0, 0) followed by SB(1, z). This is also (s− t, 2ε)-indistinguishable
from his actual view.

This protocol is slightly more general than advertised because x0 and x1 can take arbitrary values
in Zq, not only 0 and 1. Still, oblivious transfer is a relatively simple function. What about other,
more complex functions?

3



3 Garbled gates

Let’s take another look at securely computing the AND function. Although we already have a
protocol for this, let’s now describe a different one that will more easily generalize to arbitrary
functions. The idea is to encrypt both the inputs x and y and the output z = x and y by “garbled
values” Xx, Yy and Zz that represent x, y, and z uniquely, but do not reveal information about
what these values are.

Specifically, each of the three wires, namely Alice’s input wire x, Bob’s input wire y, and the
output wire z, is associated with a pair of random garbled values (X0, X1), (Y0, Y1), and (Z0, Z1),
respectively. The protocol for evaluating x and y has the following form.

0. Bob chooses X0, X1, Y0, Y1, Z0, Z1 uniformly at random.

1. Alice and Bob run a protocol in which Alice learns nothing but Xx, Yy, and Zx and y.

2. Alice sends Bob the last value Zz and Bob outputs z.

A protocol of this form should be secure because Alice learns nothing beyond three random values,
while Bob learns nothing beyond the output z = x and y. All that remains is to implement step 1.

Among the three values that Alice should learn, Yy is easiest: Bob can reveal it to Alice. In contrast,
Bob cannot reveal Xx because he doesn’t (and isn’t supposed to) know x. But this is precisely the
purpose of oblivious transfer: Alice learns Xx while Bob doesn’t find out anything about x.

It remains for Alice to learn the value Zx and y. The idea is for Bob to encrypt the values Z0, Z0,
Z0, and Z1 under the “keys” X0Y0, X0Y1, X1Y0, and X1Y1, respectively. Since Alice knows only
the key XxYy, she will be able to decrypt Zz for z = x and y, but not Zz.

Two challenges arise in implementing this idea. For the protocol to be functional Alice must not
only decrypt Zz successfully, but she must also know that her decryption of Zz failed. One way
to address this challenge is to include some information in the plaintext, like a leading string of
zeroes, that is unlikely to arise if decryption is performed with the wrong random key.

For the protocol to be secure, Alice must not find out any information about x and y. For example,
if Bob gives Alice the four encryptions in the order above and Alice manages to decrypt the second
ciphertext but not the other three, she learns x = 0 and y = 1. This challenge can be addressed
by randomly permuting the order of the ciphertexts.

Here is a possible implementation. We will assume that Z0 and Z1 are k-bits long, while X0, X1, Y0, Y1
are 8k-bits long each. We split X0 into four 2k-bit long blocks denoted by X1

0 , X
2
0 , X

3
0 , X

4
0 and sim-

ilarly for the others. The notation 0kz stands for a string z prefixed by k zeros.

Garbled AND transfer (perfect variant):
Bob’s input is X0, X1, Y0, Y1 ∼ {0, 1}8k and Z0, Z1 ∼ {0, 1}k.
Alice’s input is Xx and Yy.

1. Bob chooses a random permutation (a, b, c, d) of (1, 2, 3, 4), creates the four messages

Xa
0 ⊕ Y a

0 ⊕ 0kZ0, Xb
0 ⊕ Y b

1 ⊕ 0kZ0, Xc
1 ⊕ Y c

0 ⊕ 0kZ0, Xd
1 ⊕ Y d

1 ⊕ 0kZ1,

unpermutes them so that the top indices are in order 1, 2, 3, 4, and sends them to Alice.

2. Upon receiving (C1, C2, C3, C4), Alice calculates Ẑi = Ci ⊕Xi
x ⊕ Y i

y for i ∈ {1, 2, 3, 4}.
If exactly one Ẑi starts with k zeros, Alice outputs the last k bits of Ẑi.

4



0k Z0

⊕

⊕

=

0k Z0

⊕

⊕

=

0k Z1

⊕

⊕

=

0k Z0

⊕

⊕

=

C1 C2 C3 C4

X0

X1

Y0

Y1

Figure 1: The garbled transfer protocol with x = 0, y = 1, and (a, b, c, d) = (2, 1, 4, 3). The hatched (random)
values are used by Bob for masking. Alice knows the values in the dark blocks Xx and Yy. She does not
know the ordering of the hatched boxes or the lightly shaded values. This allows her to recover Z0 = Zx and y

with high probability (from C1 in this example), but obtain no information about Z1.

Bob’s message will certainly include Xi
x⊕Y i

y ⊕0kZx and y for some i, so Ẑi = 0kZx and y and Zx and y

figures as a possible output for Alice. However, this is not sufficient to conclude functionality as
some other Ẑj might also start with k zeros.

For example, suppose Alice’s input is X0, Y1 and (a, b, c, d) = (2, 1, 4, 3) as in Figure 1. Then
C1⊕X1

0⊕Y 1
1 starts with k zeros as desired. But it could also happen that Ẑ3 = C3⊕X3

0⊕Y 3
1 starts

with k zeros. However, this is quite unlikely to happen: In our example C3 equals X3
1 ⊕Y 3

1 ⊕ 0kZ1,
so Ẑ3 can start with k zeros only if X3

0 ⊕X3
1 does. These two values are random and independent,

so the probability is only 2−k. We can summarize this reasoning in the following claim.2

Claim 5. Alice outputs Zx and y in the garbled AND transfer with probability at least 1− 3 · 2−k.

Regarding security, Bob does not receive any information from Alice so his view is trivially simu-
latable. We now prove that Alice’s view is also simulatable.

Claim 6. Alice’s view in the garbled AND protocol is perfectly simulatable from her input and
output by size O(k).

Proof. Alice’s views consists of her (random) inputs Xx and Yy and the message C1, C2, C3, C4 she
receives from Bob. These are equal to

Xa
0 ⊕ Y a

0 ⊕ 0kZ0, Xb
0 ⊕ Y b

1 ⊕ 0kZ0, Xc
1 ⊕ Y c

0 ⊕ 0kZ0, Xd
1 ⊕ Y d

1 ⊕ 0kZ1,

in some order. Apart from the one that contains parts of both Xx and Yy, the rest all have some
component that depends on Xx or Yy. This makes them random, mutually independent, and also
independent of Xx and Yy.

For example, if x = 0, y = 1, (a, b, c, d) = (2, 1, 4, 3) (see Figure 1), then Alice’s view will be

(X0, Y1, X
1
0 ⊕ Y 1

1 ⊕ 0kZ0, X
2
0 ⊕ Y 2

0 ⊕ 0kZ0, X
3
1 ⊕ Y 3

1 ⊕ 0kZ1, X
4
1 ⊕ Y 4

0 ⊕ 0kZ0).

This is identically distributed to

(X0, Y1, X
1
0 ⊕ Y 1

1 ⊕ 0kZ0, R2, R3, R4)

2The protocol can be made fully functional at the cost of a small drop in security. In the unlikely case that Alice
detects a functionality error, she and Bob can run an insecure protocol.

5



because each of the last three blocks contains randomness Y 2
0 , X3

1 , and X4
1 , respectively, that does

not appear in any of the other blocks.

Since (a, b, c, d) is a random permutation, the “non-random block” is equally likely to arise in any
of the four possible positions. Therefore, given inputs X, Y , and output Z, Alice’s view can be
simulated by (X,Y,C ′1, C

′
2, C

′
3, C

′
4), where C ′I equals X ⊕ Y ⊕ 0kZ for a random index I and the

remaining C ′ are random and independent of X, Y , and C ′I .

One annoyance in the garbled AND protocol is that the garbled inputs are eight times as long
as the garbled outputs. It will be convenient to have a length-preserving variant. This can be
accomplished using a pseudorandom generator G : {0, 1}k → {0, 1}8k.

Garbled AND tranfer: Same as before, except that X0, X1, Y0, Y1 ∼ {0, 1}k (instead of {0, 1}8k,
X1

0X
2
0X

3
0X

4
0 is now G(X0), and Y 1

0 Y
2
0 Y

3
0 Y

4
0 is now G(Y0).

By the usual type of security argument that relates the computational and perfect settings we can
conclude that the garbled AND protocol is both functional (with high probability) and secure.

Theorem 7. If G is (s, ε)-pseudorandom, the garbled AND transfer produces an output with prob-
ability at least 1− 3(ε + 2−k) and is (s, 4ε)-simulatable by size O(t), where t is the size of G.

4 Yao’s protocol

We now have all the elements in place to describe Yao’s protocol for securely computing an arbitrary
function f(x, y) represented by a circuit C. We may and will assume that C is implemented using
only binary gates g : {0, 1}2 → {0, 1} like AND, OR, XOR, NAND. The protocol we described
in the previous section generalizes easily to these other types of gates. The only change is that in
Bob’s message Z should in general be indexed by g(x, y).

The idea of Yao’s protocol is to iteratively perform garbled transfers on the gates of the circuit
until Alice learns the garbled value of the output. At this point Alice forwards this value to Bob,
who ungarbles it to uncover the actual output f(x, y). For simplicity we will assume that f takes
two n-bit inputs x and y and produces a single bit as output, but it is straightforward to generalize
to asymmetric inputs and longer outputs.

Yao’s protocol: Alice’s and Bob’s inputs are x ∈ {0, 1}n and y ∈ {0, 1}n, respectively.

1. For every wire w of C, Bob chooses a random pair of garbled values Ww
0 ,Ww

1 ∼ {0, 1}k.

2. For each of Alice’s n input wires w ∈ {1, . . . , n}, Alice and Bob execute the oblivious transfer
protocol OT (Ww

0 Ww
1 , xi) with Alice playing the part of the chooser. For each of Bob’s n

input wires w ∈ {n + 1, . . . , 2n}, Bob sends the garbled value Wn+i
yi to Alice.

At this point, Alice knows the garbled values W 1 = W 1
x1
,W 2 = W 2

x2
, . . . ,W 2n = W 2n

yn
associated to the 2n input wires of the circuit.

3. Starting from the input wires of the circuit, Alice computes a garbled value Ww associated to
every wire w in the circuit by engaging in garbled g-transfer with Bob for every gate g in the
order of circuit evaluation. At the time gate g is processed, Alice knows the garbled values
W g1 and W g2 associated with the input wires of g and learns the value W gout associated with
the output wire of g.

4. When Alice learns the garbled value W out associated to the output gate she sends it to Bob.
Bob outputs the value z for which W out = W out

z (if it is unique).

6



This protocol is functional as long as the oblivious and garbled transfer protocols are and the
random values W out

0 and W out
1 are distinct (which fails with probability 2−k). We outline the proof

of security. Alice’s view in Yao’s protocol consists of a collection of independent random values Ww

associated to all the wires in the circuit as well as the views of her executions of the oblivious and
garbled transfer protocols. By the security of these protocols she can simulate these views based
on the inputs and outputs Ww and her own inputs x1, . . . , xn.

On the other hand, Bob’s views in the oblivious and garbled transfer executions can be simulated
only from his randomness Ww

0 ,Ww
1 for all wires w as these play the role of inputs and the protocols

generate no outputs on Bob’s side. This accounts for all messages that Bob receives in steps 2 and
3. In step 4, assuming the protocol is functional, Bob receives the message W out = W out

f(x,y) which

he can simulate from his randomness W out
0 ,W out

1 and his output f(x, y).

The oblivious transfers in step 2 of Yao’s protocol can be implemented in parallel, and so can the
garbled transfers in step 3. This results in a three message protocol,3 even if the circuit C describes
a highly sequential computation.

3It can be optimized down to two messages.

7


	Secure two-party computation
	A protocol for AND and oblivious transfer
	Garbled gates
	Yao's protocol

