CSCI 5440: Cryptography Lecture 6
The Chinese University of Hong Kong, Fall 2020 12 and 13 October 2020

A basic task in cryptography is ensuring message integrity: When Bob receives a message that is
claimed to come from Alice, he wants to be sure that the message originated from Alice, and that
it is indeed the message that Alice intended to send. The certificate of integrity usually comes in
the form of a tag that is appended to the message that it pertains to. This tag is called a message
authentication code in the private key setting and a digital signature in the public key setting.

The honest parties in an authentication protocol are Alice, who sends out a message together with
a tag and Bob, who accepts if the tag is a valid certificate for the message and rejects if not. Alice’s
distinguishing feature is her secret key. The objective of the adversary Eve is to produce a forgery,
namely a message-tag pair that Bob accepts as valid.

1 Message authentication codes

A message authentication code (MAC) is a pair of circuits (T'ag, Ver) describing the tagging and
verification procedures: Tag(K, M) produces a tag for a given message M under shared key K,
while Ver(K, M,T) checks whether T is a valid tag for M. The functionality requirement is that
for every message M, Ver(K, M,Tag(K,M)) accepts.

The simplest type of adversary is one that tries to produce a valid message-tag pair without knowing
the secret key. A mechanism that protects against it is one that simply outputs the key as a tag:

Tag(K,M) =K Ver(K,M,T) accepts if T' = K.

An adversary cannot produce a forgery without guessing the key.

This MAC doesn’t look terribly secure; if Eve manages to intercept the message-tag pair she can
change the message part to produce a forgery. In a more realistic attack Eve might observe the
tags of one or more messages before she attempts to forge one.

Guided by past experience we can model a MAC attack as a two-phase game. In the learning
phase, an adversary interacts with the tagging oracle, obtaining authentication tags T'ag(K, M) for
messages M of his choice. In the forgery phase he has to produce a message-tag pair (M*, T™*) that
the verifier accepts. The forged message M* must be different from all the ones that were queried
in the learning phase.

A MAC attack is identical to the learning game from lecture 3, so the attacker is defeated by a
pseudorandom function:

Theorem 1. The MAC

accept, if T = Fg(M),

Tag(K,M) = Fr(M) Ver(K,M,T) = ‘ ‘
reject, if not,

is (s,q,27" + €)-unforgeable if F': {0,1}"™ — {0,1}" is (s, q,&)-hard to learn.

By (s, q,e)-unforgeable we mean that a size-s, g-query forger succeeds with probability e.

In many applications of interest the messages are very long. A message may represent a stream
of data, in which case it would be desirable to implement the PRF as a streaming algorithm. For

such applications the GGM PRF should be quite suitable in theory, but perhaps not so much in
practice as it invokes the underlying pseudorandom generator bit-by-bit. An alternative is to start
with a much faster PRF for fixed-length inputs, such as 128-bit AES, which can be viewed as
a function F': {0,1}'?® — {0,1}'%®, and extend its domain by the CBC (cipher block chaining)
transformation:

F/(X1,X2,...,Xg) =F(F(---F(F(X1)+ X2) -+ Xp_1) + Xo).

The function F’ can be proved to be pseudorandom if F is. Instead of doing this we look into
another message length extension method for MACs based on a new cryptographic primitive.

2 Collision-resistant hash functions

Consider a function H that map long inputs into shorter outputs. By the pigeonhole principle,
some two inputs must map to the same output, i.e. H(x) = H(x') for some pair of inputs x # z’.
Such a pair is called a collision. We say that H is collision-resistant if a collision is computationally
hard to find.

There are several extremely efficient proposals of functions that are believed to be collision-resistant
for example SHA-256| and SHA-3. No collision has been published for either of them and it is
suspected that one will never be found. Nevertheless, it is possible that the designers planted
collisions that are known to them in the design, but obfuscated the code so that these collisions
are undetectable by the rest of us.

Even if you can live with such suspicions, a modelling issue arises when you try to formalize
collision-resistant hashing. Here is a candidate definition: H: {0,1}"™ — {0,1}" (where m > n) is
a (s,¢e)-collision resistant hash function if for every circuit A of size at most s, the probability that
A outputs a collision z,x’ for H is at most €. The trouble with this definition is that such an H
cannot exist: The (size zero) circuit that outputs any existing collision breaks H with probability
one.

We would like to say that a collision in H is hard to find given a description of its code. The
designers of H may have made some random choices, which can be summarized in some string K
that we can think of as a key. H is then not as a single function but as a collection Hg indexed
by the key K. The security requirement is that once K is fixed and made public, collisions in Hg
become hard to find.

Definition 2. Hg: {0,1}™ — {0,1}" is an (s, €)-collision-resistant hash function if for every circuit
C of size at most s, the probability that C(K) outputs a collision for Hg over the random choice
of K is at most €.

Since the adversary C' is bounded in size, it cannot store collision information about Hg for all
possible keys K, so it could be plausibly hard for it to locate a collision in a random Hg.

Here is an example based on hardness of discrete logs in base ¢ in the usual setup. The function
L2 . .
Hy: Zy — G is given by i
Hh(-’E,?/) =g hya
where the key is a random element h ~ G. This function shrinks its input length by half, so it must

contain (many) collisions. However, if Eve can find a collision (x,y) # (2,4) so that g*hY = g% bV’
then h = ¢g'~¥)/(==2") 56 she can also find the discrete log of h

1

z and z’ cannot be equal, because if they are so must be y and ' and the pair is not a collision.

https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-3

Here is another LWE-based example. The key is an m x n random matrix A over Z,. The function
Hy:{0,1}™ — Zy is the modular subset sum function

Hj(x) =zA mod q. (1)

If m > nloggq collisions in H4 must exist. Now suppose that C' finds collisions in H4. Then C
can be turned into this LWE distinguisher: Given (A, y), run C(A) to produce z # 2’ and accept
if (z — 2’)y has magnitude at most bn. If y is of the form As + e then

(x —2"y=(zA—-2"A)s+ (x —2')e = (z — 2')e

because zA = 2’ A. The entries of x — 2’ are —1, 0, or 1, so (z — z’)e has magnitude at most bn.
On the other hand, if y is random and independent of A then (z — 2/)y is a uniformly random
in Z, (because = # '), so its magnitude will exceed bn except with probability (2bn + 1)/q. In
summary, the distinguisher tells apart LWE samples from random ones with advantage more than

e(1—(2n+1)/9)f

A collision in any candidate hash function with n bits of output can be found almost certainly
in time on the order of 2/2 via the so-called birthday attack. This works by sampling random
and independent inputs X1, ..., X, and looking for a collision among them. The expected number
of pairs (X;, X;) that are distinct but colliding is the total number of such pairs (g) times the
probability that a single pair collides, which is at least 27" —2~™. This is on the order of £227" /2.
When ¢ is on the order of 2/2 we expect to see at least one collision, so a hash function can never be
more than about (2%/2,1/2)-secure (more generally (¢, ¢>2~"/2)-secure assuming ¢ < 2"/ 2) This
is the ideal level of security that designs like SHA-3 aim to achieve.

Just like the stretch of a pseudorandom generator can be increased by composition, so can the
shrinkage m — n of a hash function.

Lemma 3. If H: {0,1}™ — {0,1}" and H': {0,1}™ — {0,1}" are (s,) and (s+t,€')-secure then
Hf(2) = Hy (Hg (some m bits of z), remaining m' — n bits of z)

is (s,e + €’)-secure where t is the size of H.

Proof. Assume we are talking about the first m and last m’ — n bits respectively. If (z,y) collide
under H” there are two possibilities. One possibility is that the pair

(Hg (first m bits of z),last m’ —n bits of z), (Hg(first m bits of y),last m’ — n bits of y)

is a collision under Hj.. If not, then these strings must be identical, so the first m bits of z and
the first m bits of y must collide under Hg. So if a circuit C finds a collision for H”, either the
first m bits of its output are already a collision under H, or applying H to the first m bits of its
output yields a collision for H’. By assumption, the probabilities of these two events are at most e
and &'. By a union bound, the probability that C finds a collision under H” is at most ¢ +¢’. [

Lemma [3| can be applied iteratively starting with a single hash function H. There are two natural
ways to iterate. One is to repeatedly shrink the first m bits, resulting in the Merkle-Damgard
construction (Figure [I| (a)). The other one is to start with a length-halving hash function and
shrink the input in a tree-like manner. This is called a Merkle tree (Figure|l| (b)). These are mirror
images of the pseudorandom generator transformations from lectures 2 and 3. A direct application
of the lemma gives the following security guarantees.

2It is crucial that the entries of = are binary and not from Z,. In either case, finding a collision amounts to solving
zA = 0 modulo g with z # 0. Solving such systems is easy, but finding short solutions is hard assuming LWE.

3This analysis is incomplete: It lower bounds the expected number of collisions, not the probability of one
occurring.

Figure 1: Composition of collision-resistant hash functions. (a) Merkle-Damgard; (b) the Merkle tree.

Theorem 4. If H is (s,¢&)-collision resistant then the Merkle-Damgard construction with ¢ copies
of H is (s — (t — 1), le)-collision resistant. If in addition H is length-halving and ¢+ 1 is a power
of two then the Merkle tree with ¢ copies of H is (s — tlog¥, le)-collision resistant.

A hash of any given string is a short but “computationally unique” identifier of it. This makes
hashing particularly suitable for ensuring data integrity. You can take any MAC for short messages,
like the one from Theorem [I| and extend it to handle essentially unbounded ones by applying it
not to the message itself but to its hash.

Theorem 5. If (Tag,Ver) is an (s +t,q,e)-unforgeable for inputs of length n and H: {0,1}" —
{0,1}™ is an (s,e’)-collision resistant hash of size t, then

Tag (K,M) = Tag(K, H(M)), Ver' (K, M,T) = Ver(K,H(M),T)

is an (s,e + qe’)-unforgeable MAC for message length mE|

Proof. Suppose a forger has managed to produce a forgery M for (T'ag’, Ver’). Then M must be
different from all the messages Mj, ..., M, it has queried. One possibility is that H(M) = H(M;)
for some 4. then for some 4, one of the pairs (M, M;) is a collision under H. The other possibility
is that H (M) is different from all H(M;), in which case H(M) is a forgery for (T'ag, Ver). O

Instantiating H by the Merkle-Damgard construction has implementation advantages for authenti-
cating streaming data, even if the length of the stream is not known in advance. One subtlety that
arises when hashing messages (i.e. streams) of varying length is that a collision among two messages
of different length can arise. For example, messages MM’ and H(M)M' will always collide and
an adversary can use this to produce forgeries. An elegant remedy is to append the length of the
message as the last block of the message to be tagged. The following claim says that this is secure.

Claim 6. Let {H;: {0,1}* — {0,1}"} be a collection of (s,e)-collision resistant hash functions and
H: {0,1}"Ho8f 5 10 1}" be another (s+2t,€')-collision resistant hash for fized input length. Then
the function H'(z) = H(H\y(x),|z]) is (s,& + €')-collision resistant for messages of any length up
to £, where t is the common size of H; for i < 4.

Proof. Suppose z and y collide under H'. If they have the same length ¢ and they do not collide
under H;, then (H;(z),4) and (H;(y),?) is a collision for H. Otherwise they have different lengths,
so (Hiy((z), |x]), (H}y(y), ly|) is a collision for H. O

4The key of H is public information available to all the parties.

3 Digital signatures

Digital signatures are the public-key variant of message authentication tags. In the public-key
setting not only Bob but anyone can verify the authenticity of a signature. Without the knowledge
of the secret key Eve should not be able to forge one even after having observed her fair share
of messages signed by Alice. This is fairly similar to the guarantees we expect from a physical
signature that one puts on a piece of paper.

Definition 7. A digital signature consists of three circuits (Gen, Sign,Ver) such that for every
message M, Ver(PK, M, Sign(SK,M)) accepts with probability one, where (SK, PK) is a key
pair sampled by Gen.

The forging game is the same as before, except now the forger also knows the public key PK.
Unlike in the case of public-key encryption, the forger still needs access to a signing oracle Signgx
as she doesn’t know the secret key and cannot produce any signatures on her own.

Here is a solution that works against a restricted adversary that makes only one query to the signing
oracle. To illustrate it we’ll show how it works for a one-bit message M € {0,1}. The building
block is a pseudorandom generator (G. The secret key consists of two random inputs Xy and X,
for G and the public key consists of Yy = G(Xp) and Y7 = G(X1).

To sign a message M, Alice reveals the value Sign(SK, M) = X,;. Bob verifies that G applied to
this value yields Yj;; that is Ver(PK, M, X) accepts only if G(X) = Yj;. If Eve queries the signing
oracle on, say M = 0, she does not obtain any information that is relevant for signing M = 1; in
order to do that she must invert G on Y; which is computationally hard.

This scheme extends to longer messages by applying it to each bit of the message separately. To do
this, the key generation procedure ought to produce independent keys for every bit of the message
to be signed. There are improvements that shorten the keys and provide security against forgers of
unbounded query complexity, but signature schemes constructed along these lines are considered
quite inefficient and impractical. Nevertheless, one advantage is that their security follows merely
from the existence of pseudorandom generators and not from specific assumptions like the hardness
of discrete logs or LWE.

Instead we describe a different methodology that exploits the similarity between identification and
signatures. It is natural to think of signatures as an extended form of identification: Identification
is about Alice proving her identity (i.e., knowledge of her secret key) to Bob, while signatures are
about Alice proving to Bob that she wrote some particular message.

In one aspect the security requirement for signatures is weaker than that for identification: Eve
must sign a message that is different from all the ones she has seen, so she cannot simply replay an
interaction with her signing oracle and submit that as her forgery. The functionality requirement
is, however, stronger in that the signature must be produced non-interactively. As we discussed
last time, non-interactive identification is clearly insecure against eavesdropping.

Schnorr’s identification scheme is almost non-interactive: Prover sends the commitment h = g%,
verifier challenges with a random C, prover responds with Y = R + CX (where (X, g%) is the key
pair) and verifier accepts if h - PK® = g¥'. All the verifier does in this interaction is sample and
send a completely random C. Can’t this part be outsourced to the prover? No, because a cheating
prover can pretend, say, that C equals zero and pass validation. How about making C' part of the
public key? The prover can cheat again by picking, say, h = PK~¢ and Y = 0.

4 Random oracles and the Fiat-Shamir heuristic

Fiat and Shamir proposed replacing the verifier’s challenge by a random function of the commitment
h. To make sense of this suggestion we need to talk about the random oracle model.

Let’s recall how things worked out for us in the private-key setting. To get CPA-secure encryption,
we started with a scheme based on a random function and then replaced it with a pseudorandom
one. Secure identification and unforgeable MACs worked out in pretty much the same way. In all
three cases, we start with an ideal object—a truly random function—and prove security. We then
separately analyze the effect of replacing this ideal random function with a real pseudorandom one.

The random oracle model is a setup in which ideal cryptographic schemes can be studied without
thinking about implementation. Each party, including the adversary, is given oracle access to the
same random function R. Initially, none of the parties have any information about what R is.
When Alice makes a query, say R(001), she is provided with a random value. When Bob queries
say R(101), he is given another random value which is independent from the one observed by Alice.
But if Alice now queries R(101) she observes the same value that Bob just did.

Let’s try to define a random oracle variant of the MAC from Theorem [I} A first attempt is to use
a truly random function instead of the pseudorandom one:

Tag" (M) = R(M), Verf(M,T)=accept if T = R(M), R~ {0,1}™ — {0,1}".

This scheme is perfectly unforgeable assuming that the forger Eve cannot query R. After observing
however many MACs she likes, Eve has no information about R(M) for a previously unseen M.
The random oracle model requires security even if Eve has access to R. The MAC is then clearly
insecure as Alice and Bob share no secret key relative to Eve. Here is a secure variant:

Tag" (K, M) = R(K,M), Verf(K,M,T) = accept if T = R(K, M). (2)

Now even if Eve has access to R, the ¢ MACs she observes are all of the form M;, R(K, M;) for the
same secret key K ~ {0,1}*. To produce a forgery on a new message M* she must guess the value
R(K, M*). Unless she happens to query her oracle on an input that starts with K, her forged tag
is independent of R(K, M*) so it can only be correct with probability 27". On the other hand, the
MACs she observes are independent of K, so the probability that she makes a query that starts
with K is at most g - 27%. We just proved that

Claim 8. MAC is (00, q,q - 27F 4+ 27™)-unforgeable in the random oracle model.

The security guarantee is statistical: The size of the adversary is only restricted by the number of
times it queries the random oracle.

The other private-key constructions that we saw so far are likewise statistically secure in the random
oracle model. On the other hand, a famous theorem of Impagliazzo and Rudich says that no
statistically secure key exchange protocol exists in the random oracle model. This is why our
examples of key exchange and public-key encryption look so different from the protocols in the
private-key setting.

The Fiat-Shamir heuristic is a transformation that takes an interactive protocol like Schnorr’s and
turns it into a non-interactive protocol in the random oracle model. To apply the transformation,
the random messages sent by the verifier are replaced by outputs of the random oracle evaluated
on the previous messages. Figure [2| (a)-(b) shows the protocol (P, V) obtained by applying the
Fiat-Shamir heuristic to Schnorr’s protocol (P, V).

Suppose (P, V') is Schnorr’s protocol with long challenges which is secure against eavesdropping.
The protocol (PR, V) is no longer secure because it is deterministic. A cheating prover (with

SK PK SK PK

h h SK, M PK
- L
P C v PR)R(h) R(h)C VR R h,R(h,M),Y R
Y Y]
! T

Figure 2: Digital signatures from identification: (a) Schnorr’s protocol format; (b) the Fiat-Shamir heuristic;
(c) The digital signature scheme.

oracle access to R) can pass validation by replaying an eavesdropped interaction. But this is
essentially the only attack that is available to him! If he tries to produce an interaction that starts
with a different commitment A* than the ones he eavesdropped on he is out of luck because the
challenge R(h*) will be independent from all previous messages, looking exactly like the challenge
C in Schnorr’s protocol. If he can handle the challenge R(h*) in (P®, V%), he could have handled
a random challenge C' in Schnorr’s protocol (P, V') and passed validation there.

This is very close to the security requirement of a signature scheme, which discounts forgeries of
messages that were queried by the signing oracle. Indeed, a small upgrade to (P®, V1) yields a
signature scheme (S%, V%) in the random oracle model (see Figure 2] (c)).

Schnorr’s signature scheme. The public-private key pair is SK = x, PK = ¢g* for a random
x ~ Zg. The random oracle R is a function from G x {0, 1} to Z,.

e To sign M, Alice outputs (h = ¢®',C = R(h, M),Y = R' + CX) for a random R’ ~ Zqg.
e To verify the message-signature pair M, (h,C,Y’), Bob checks C = R(h, M) and g¢¥ = h-PKC.

Theorem 9. If Schnorr’s protocol is (s, ¢, €)-secure against eavesdropping then Schnorr’s signature
scheme is (s — O(q?logq),q, ¢'c + (¢'*> + 1) /q)-unforgeable in the random oracle model.

To prove this theorem, we need to turn a forger F' for Schnorr’s signature scheme into a cheating
prover P* for Schnorr’s indentification protocol.

In the learning phase, P* simulates the learning phase of F. The forger F' can make two types of
queries: Random oracle queries and signing queries. P* answers random oracle queries by fresh
random values and signing queries by eavesdropped identification transcripts.

P* must be careful to avoid inconsistencies: For example, if F' queried his signing oracle at M to
obtain (h,C,Y’) and then its random oracle at (h, M), it expects to observe the value C. To ensure
consistency in such cases, P* can be implemented like this:

e When F queries R, P* returns a fresh random value unless F' has made this query before.

e When F makes a signing query on M, P* returns a fresh eavesdropped transcript (h,C,Y)
and treats (h, M) as a query that F' has made to R with answer C.

Despite P*’s best efforts two types of inconsistencies can still arise: Some pair of signing queries
could collide in M and h (but not C), or F' could query R on a pair (M,h) that later arises as
part of an eavesdropped transcript. If these inconsistencies are avoided, F’s view is identically

distributed to what it would be had it interacted with the real oracles R and S%. Since the h’s in
the eavesdropped transcripts are random, the probability of an inconsistency is at most ¢'?/ qE|

After the learning phase, F' outputs a forgery M*, (h*,C*,Y™). P* would like to turn this forgery
into successful validation. There is one problem: In the identification protocol the challenge is not
fixed, but it is chosen at random by the verifier V.

The last ingredient is the cut-and-choose trick from Lecture 5: The cheating prover makes an
educated guess that at some point the forger should have asked the random oracle about (h*, M*)
and received C* as an answer. Instead of furnishing C* as fresh randomness it obtains it as a
challenge from the verifier.

To implement this idea it will be useful to play the eavesdropping game in a slightly more general
format. Instead of dividing the game into a learning and validation phase as before, we can allow for
validation to start before the learning phase is over. After observing some transcripts, the cheating
prover begins his validation attempt with a commitment of his choice, receives a challenge, then
does some more learning before coming up with a response. This does not affect the cheating
prover’s advantage.

Proof of Theorem[9. The cheating prover P* operates as described with one difference. Initially
P* chooses a random index I between 1 and ¢/. When F makes its I-th query (h;, M;) to R, P*
initiates validation, submitting h; as commitment and receiving C' as a challenge from the verifier
V. Tt replies C to F (and records this query-answer pair). After that, it carries on with learning.
When F produces a forgery M*, (h*,C*,Y™*), P* outputs Y* as his response if (h*, M*) = (hy, M)
and fails otherwise.

We consider two cases. If F' never queried his random oracle on (h*, M*), the chances that his
output is a valid forgery is 1/q because R(h*, M*) is independent of C*. Otherwise, conditioned on
(h*, M*) being F’s I-th query to R, the transcript between P* and V' in the eavesdropping game is
identically distributedﬂ to the transcript between Ff and ST in the forgery game with the forgery
in the latter representing the validation attempt in the former. So the two succeed with the same
probability. Since the conditioning happens with probability at least 1/¢’, P* is validated with
probability at least (' — (¢2 +1)/q)/q assuming F produces a forgery with probability &. O

All that remains to do is to eliminate the random oracle. Your instinct (and mine) should tell
you to try and replace it with a pseudorandom function Fx. But pseudorandom functions are not
designed to operate in a public-key environment, so what to do with the key? If Eve knows the
key K she can easily distinguish Fy from a truly random function and Theorem [0 would have no
consequence for the security of the resulting signature scheme.

Constructions in the random oracle model would remain secure in a public-key setting if the oracle
was replaced with an obfuscated pseudorandom function. VBB-obfuscation of pseudorandom func-
tions is however impossible. Moreover, there exist protocols that are secure in the random oracle
model, but any instantiation of the random oracle by a specific function breaks security.

Nevertheless, Schnorr’s signature scheme is believed to be secure in practice when the random
oracle is replaced by a sufficiently “random-looking” function like SHA-3.

®More precisely, if F makes qr queries to R and qg queries to the signing oracle then the probability of a collision
is at most (qras + (%)) /a.
SAs M* is part of the forgery, the signing oracle was not queried on it so it couldn’t be part of an inconsistency.

	Message authentication codes
	Collision-resistant hash functions
	Digital signatures
	Random oracles and the Fiat-Shamir heuristic

