
CSC 5170: Theory of Computational Complexity Lecture 8
The Chinese University of Hong Kong 8 March 2010

1 Expanders as approximations of the complete graph

The fact that random walks on expanders converge quickly to the uniform distribution says that, in
some sense, an expander is a good approximation of a complete graph: In a complete graph (with
a loop around every vertex), the uniform distribution is reached after one step of the random walk,
no matter where we start from. In general, an expander cannot do this because it has bounded
degree, but in certain situations we can think of an expander graph as a complete graph ”plus”
some error.

We know that it takes an expander about 1/(1−λ) steps to get within distance 1/2 of the uniform
distribution, starting from any vertex s. One imprecise way to state this is that at each step of the
random walk, the expander behaves like a complete graph with probability 1 − λ, and like some
other, “error graph” with the remaining probability.

Let us try to formalize this intuition now. We want to think of the adjacency matrix A of G as
representing the adjacency martix J of the complete graph with probability 1 − λ (all the entries
of J have value 1/n) plus some ”error matrix” E. We write A = (1− λ)J + E. The reason E can
be thought of as an “error matrix” is that Et vanishes as t becomes large. More precisely we have
the following theorem:

Theorem 1. If G is an expander with adjacency matrix A and A = (1− λ)J + E, then for every
vector v, ‖vE‖ ≤ λ‖v‖.

Proof. Let’s first assume that v ⊥ u. We write v in the basis v1, . . . ,vn as

v = α1v1 + α2v2 + · · ·+ αnvn.

Since v ⊥ u, α1 = 0, and vE = vA− (1− λ)vJ = vA because vJ = 0. It follows that

vA = vA = λ2α2v2 + · · ·+ λnαnvn

and so
‖vE‖2 = λ2

2α
2
2 + · · ·+ λ2

nα
2
n ≤ λ2‖v‖2.

Now assume v 6⊥ u. Then by rescaling we can assume the entries of v add up to one. We write

v = α1v1 + α2v2 + · · ·+ αnvn

Then α1v1 = 〈v,v1〉v1 = u — the uniform distribution, and

uE = uA− (1− λ)uJ = u− (1− λ)u = λu.

1

2

On the other hand, (v − u) ⊥ u, so by the previous analysis we know that

(v − u)E = (v − u)A = λ2α2v2 + · · ·+ λnαnvn.

So, we have that

vE = uE + (v − u)E = λu + (v − u)A = λα1v1 + (λ2α2v2 + · · ·+ λnαnvn)

and therefore
‖vE‖2 = λ2α2

1 + λ2
2α

2
2 + · · ·+ λ2

nα
2
n ≤ λ2‖v‖2.

2 The zig-zag product

We will now show a construction that allows us to turn any connected, d-regular graph into an
expanding family of d-regular graphs. The construction proceeds in stages, where at every stage
the graph is replaced by a larger graph with the same degree and better expansion.

Given a graph G, one way to improve the value λ(G) is to “square” the graph: To obtain the graph
G2, we take every path (u, v, w) of length 2 in G and replace it by an edge (u,w). Then that the
adjacency matrix of G2 is A2, the square of the adjacency matrix of A. The eigenvalues of G2 are
also squares of the eigenvalues of A, so λ(G2) = λ(G)2.

Unfortunately, the process of squaring a graph also squares the degree: If G has degree d, then
G′ = G2 has degree d2. As we want our graphs to be d-regular, we need some way to reduce the
degree. One way to do so is to replace every vertex in G′ with a “cloud” of d2 vertices which are
interconnected by some d-regular graph H. This operation could undo the improvement in λ we
obtained from the squaring.

It turns out that if the graph H is itself a sufficiently good expander, the loss in the value of λ is
very small compared to the gain we obtain form the squaring.

This sounds like circular reasoning: In order to build an expander, we already need to have an
expander H. However, the point is that the graph H has only a constant number of vertices, while
the number of vertices in the big expander we are building continues to grow. So we have reduced
the task of building a family of expander (as n grows) to the task of building a small graph on d2

vertices with small λ(H), which is a considerably easier task.

Analysis of the zig-zag product Instead of replacing every vertex of G′ with a cloud connected
by H, for the analysis it will be more convenient to deal with a slightly more involved construction
called the “zig-zag product”. Let G be a d-regular graph on n vertices and H be a d′-regular graph
on d vertices. The zig-zag product G©z H is a d′2-regular graph on nd vertices obtained as follows.
First, we replace each vertex of G by a “cloud” of d vertices connected via H. Then we put edges
as follows: Starting from any vertex, first we take a step within each cloud H, then we take a step
in G, then we take a step in the new cloud H.

Let A and B be the adjacency matrices of G and H respectively. Let us describe the adjacency
matrix of G©z H. This is an nd × nd matrix whose rows and columns are indexed by pairs (u, i),

3

where u is a vertex of G and i is a vertex of H. Let’s think of these vertices as divided into n
blocks, where the uth block consists of (u, 1), (u, 2), . . . , (u, d). The adjacency matrix of G©zH will
have the form B̃ÃB̃, where B̃ represents the step on H and Ã is the step on G.

What do the matrices Ã and B̃ look like? Notice that B̃ describes a move on H on each cloud; so
the matrix B̃ is a block-diagonal matrix, where each block contains the matrix B. The matrix Ã
represents a move on G between the clouds, which is a matching (and in particular a permutation)
of the vertices of G©z H. More precisely, if we number the edges incident to each vertex of G by
1, 2, . . . , d, then Ã(u,i),(v,j) = 1 if the ith edge incident to u is the same as the jth edge incident to
v, and 0 otherwise.

Theorem 2. If λ(G) = 1− ε(G) and λ(H) = 1− ε(H), then λ(G©z H) ≤ 1− ε(G)ε(H)2.

In the proof it will be useful to use the following characterization of λ(G) for any graph G with
adjacency matrix A(G), which is proved in the same way as the formula for λ2:

λ(G) = max‖v‖=1,v⊥u|vA(G)vT|.

Proof. Using the above characterization of λ we obtain:

λ(G©z H) = max‖v‖=1,v⊥u|v(B̃ÃB̃)vT| = max‖v‖=1,v⊥u|(vB̃)Ã(vB̃)T|.

Let v be a vector perpendicular to the uniform distribution u on the nd vertices of G©z H with
‖v‖ = 1. We will bound |(vB̃)Ã(vB̃)T| using Theorem 1. We write B = (1 − λ(H))J + E =
ε(H)J +E. Since each block of B̃ consists of a copy of B, we can write B̃ = ε(H)J̃ + Ẽ, where J̃ ,
Ẽ are block-diagonal matrices containing a copy of J and E in each block, respectively. Then:

|(vB̃)Ã(vB̃)T| = |(ε(H)vJ̃ + vẼ)Ã(ε(H)vJ̃ + vẼ)T|
≤ ε(H)2|(vJ̃)Ã(vJ̃)T|+ 2ε(H)|(vẼ)Ã(vJ̃)T|+ |(vẼ)Ã(vẼ)T|.

We now bound each of these terms. First, notice that because J̃ is itself an adjacency matrix,
vJ̃ ⊥ u and therefore we also have vẼ ⊥ u. Also, because J̃ and Ẽ are block-diagonal copies of J
and E, we have ‖vJ̃‖ ≤ 1 and ‖vẼ‖ ≤ λ(H).

To bound |(vJ̃)Ã(vJ̃)T|, notice that vJ̃ is constant on each block. Let v′(u) be the value that vJ̃
takes in block u. If we think of v′ as a vector with n entries, then ‖vJ̃‖2 = d‖v′‖2. Then

|(vJ̃)Ã(vJ̃)T| =
∣∣ ∑
edge (u, w) in G

v′(u)v′(w)
∣∣ = |v′(dA)v′T| ≤ dλ(G)‖v′‖2 = λ(G)‖vJ̃‖2 ≤ λ(G).

For the other two terms, we use the Cauchy-Schwarz inequality, together with the fact that Ã is a
permutation matrix, so it does not affect norms:

|(vẼ)Ã(vJ̃)T| ≤ ‖vẼÃ‖‖vJ̃‖ = ‖vẼ‖‖vJ̃‖ ≤ λ(H) · 1,
|(vẼ)Ã(vẼ)T| ≤ ‖vẼÃ‖‖vJ̃‖ = ‖vẼ‖2 ≤ λ(H)2.

Substituting these inequalities we obtain:

|(vB̃)Ã(vB̃)T| ≤ ε(H)2λ(G) + 2ε(H)λ(H) + λ(H)2 = 1− ε(H)2ε(G)

which proves the theorem, since v was an arbitrary vector perpendicular to u of norm 1.

4

3 Expanders via the zig-zag product

We now show how to turn an arbitrary d-regular graph G with λ < 1 (where d is sufficiently large,
but constant) into a new, slightly larger graph, with λ < 1/2 and same degree.

The idea is to iterate the operations of squaring and zig-zag product. Squaring G increases the
degree and decreases λ, while the zig-zag product decreases the degree but increases λ. With a
careful choice of parameters we can arrange that at each step, the degree stays the same while λ
keeps decreasing.

To apply the zig-zag product, we need a suitably chosen “cloud” graph H. You will prove the
existence of this H in the homework.

Claim 3. For every sufficiently large d, there exists a
√
d-regular graph H on d2 vertices such that

λ(H) < 0.1.

Suppose now that G is a d-regular graph on n vertices with λ(G) = 1 − ε, where ε < 0.5. After
squaring, we obtain the graph G2, which has n vertices, is d2-regular, and

λ(G2) = (1− ε)2 = 1− (2− ε)ε) < 1− 1.5ε.

The graph G2©z H has nd2 vertices, is d-regular, and by Theorem 2, we have

λ(G2©z H) < (1.5ε)(ε(H)2) = 1.5 · (0.9)2ε < 1.2ε.

Let us summarize this analysis in the following table:

graph vertices degree 1− λ
G n d ε
G2 n d2 1.5ε
G2©z H nd2 d 1.2ε

Let’s now iterate this construction. As long as 1− λ stays above 1/2 throughout the process, after
t steps we obtain a d-regular graph on nd2t vertices with 1− λ < (1.2)tε. Initially G is connected,
so ε ≥ 1/2(nd)2, and 1− λ must drop under 1/2 after at most O(log nd) iterations. The resulting
graph has nO((log d)2) vertices, is d-regular, and has λ < 1/2.

4 Undirected paths in logarithmic space

The zig-zag product construction of expanders we just saw gives an elegant deterministic algorithm
for undirected paths in logarithmic space. We sketch how this algorithm works.

The idea behind the algorithm is the following. Suppose that we could ensure that the component
of G containing s is a d-regular expander, where d is constant and (say) λ < 1/2. As we saw in ??,
if we were to do a random walk starting at s of length O(log n), we have a nonzero probability of
visiting every vertex connected to s. But such a random walk can be simulated deterministically in

5

logarithmic space: At each step of the walk, we only need to remember which one of the d possible
edges we took out of the vertex. Since d is constant and there will be only O(log n) vertices to
remember, we only need logarithmic space.

In general, we cannot assume that G has any expansion properties. But now suppose we apply
the zig-zag construction of expanders to the graph G (using a suitable H for the zig-zag product
steps) to obtain a graph G′. If s and s′ are in the same connected component of G, then after
zig-zagging, this component will become an expanding component. G′ has poly(n) vertices and
each vertex of G′ represents some vertex of G, so a path from s to s′ can be detected by running
the deterministic logarithmic space path algorithm for expanding graphs. On the other hand, if s
and s′ are not connected in G, then their representatives in G′ will fall into different components,
so no path between s and s′ can be detected in G′.

To realize this idea, we need to make sure that we can compute the graph G′ from G in logarithmic
space. Recall that initially G is a 4-regular graph, which can be made d-regular for some larger d by
adding parallel edges. Since the graph H has constant size, it can be stored without any essential
effect on the space complexity. (You can even think of H as hard-coded in the states of the Turing
Machine.) It is convenient to represent graphs by their rotation map: This is a data structure that
on input (u, i) outputs (v, j), where the ith edge incident to u is the same as the jth edge incident
to v.

The rotation map of G′ can be computed recursively (given the rotation maps of G and H). To do
so it suffices to show that in both the squaring and the zig-zag product steps, the rotation map of
the new graph can be computed in place using only a constant amount of extra scratch space. Since
these steps are applied O(log n) times, the whole computation will use logarithmic space. We omit
the exact details of the space-efficient computations of rotation maps, but they are not difficult.

