
CSC 5170: Theory of Computational Complexity Lecture 13
The Chinese University of Hong Kong 19 April 2010

Recall the definition of probabilistically checkable proofs (PCP) from last time. We say L has a
PCP of randomness complexity r(n) and query complexity q if there is a randomized polynomial-
time verifier V which, on input x of length n, and oracle access to a proof π ∈ {0, 1}∗, uses at most
r(n) random coins to select q nonadaptive queries into π such that

x ∈ L −→ ∃π : Pr[V π(x) = 1] = 1
x 6∈ L −→ ∀π : Pr[V π(x) = 1] ≤ 1/2.

Today we will prove that every NP problem has a PCP of randomness complexity O(log n) and
constant query complexity.

It will be useful to pay attention to two more parameters of the PCP which we fixed to constants in
the above definition. One is the soundness, which is 1/2 above. Another one is the proof alphabet
size. In our definition of PCP we assumed that the when the verifier queries an entry in the proof,
the answer is a single bit. It will be helpful to generalize to answers that consist of a symbol from
some larger alphabet Σ. We get the following definition:

Definition 1. We say L has a PCP of randomness complexity r(n), query complexity q, full
completeness, soundness s(n), and proof alphabet Σ if there is a randomized polynomial-time
verifier V which, on input x of length n, and oracle access to a proof π ∈ Σ∗, uses at most r(n)
random coins to select q nonadaptive queries into π such that

x ∈ L −→ ∃π : Pr[V π(x) = 1] = 1
x 6∈ L −→ ∀π : Pr[V π(x) = 1] ≤ s(n).

Let’s write this as L ∈ PCPΣ
1,s(n)(r(n), q).

For the proof of the PCP theorem, it will be helpful to shift between the proof system and constraint
satisfaction views of PCPs. In this more general setting, the statement

L has a PCP with randomness complexity r(n) = O(log n), query complexity q, full
completeness, soundness s(n), and proof alphabet Σ

is equivalent to

L reduces to promise problem whose instances are systems of 2r(n) constraints over
alphabet Σ with q variables with constraint, where in the yes instances all constraints
are simultaneously satisfiable, and in the no instances no assignment satisfies more than
an s(n) fraction of constraints.

1

2

1 Irit Dinur’s proof of the PCP theorem

The starting point of Dinur’s proof of the PCP theorem is the fact that the NP-hardness of 3SAT,
can be viewed as an extremely weak hardness of approximation result. For a 3SAT instance with n
variables, the fact that 3SAT is NP-hard can be restated as saying that it is NP-hard to distinguish
satisfiable 3CNFs from those 3CNFs where at most 1 − 1/m-fraction constraints can be satisfied,
where m ≤ 8

(
n
3

)
is the number of constraints. The idea is to start from this statement and design a

sequence of transformations that gradually improve the soundness parameter at a very small cost
in the randomness complexity, while leaving all the other parameters unchanged.

Let us now view 3SAT as a qCSP, i.e. a CSP with q variables per constraint (in this case q = 3)
and alphabet {0, 1}. Dinur designs a polynomial-time transformation with the following effect:

Ψ (qCSP instance) → Ψ′ (qCSP instance)
number of edges m → Cm (C is some constant)
completeness 1 → 1
soundness 1− δ → 1− 2δ (for δ < 1/C)

Repeating this transformation O(logm) times yields the PCP theorem.

The transformation consists of several stages (smaller transformations), where at each stage one of
the parameters is improved, but at the expense of the others. At the end, we achieve an improvement
in soundness while paying a small price in the size of the instance (randomness complexity of the
PCP).

To explain the various parameters, we need a bit of notation. The constraint graph of a CSP Ψ
with 2 variables per constraint (equivalently a PCP with query complexity 2) is the graph whose
vertices v correspond to variables xv in the CSP and where for each constraint ψ(xu, xv) in Ψ there
is an edge (u, v) in the graph. Multiple edges are allowed, and we will keep the graph undirected
(as the CSP constraints will be symmetric).

The size of a CSP is the number of constraints in it. We will say Ψ has degree d if its constraint
graph is a regular graph of degree d, and the expansion of Ψ is the spectral gap 1 − λ(G) of its
underlying constraint graph G.

Dinur’s proof of the PCP theorem goes through the following sequence of transformations:

transformation size |Σ| queries soundness gap degree spectral gap
m 2 q = C δ

reduce queries ×C 2q 2 ÷C large
reduce degree ×C 2q 2 ÷C C small
expanderize ×C 2q 2 ÷2 d = 2C 1/4
amplify gap ×dt 2qd

t
2 ×t/|Σ|4

reduce alphabet × exp(2qd
t
) 2 q ÷2

The only quantities that are non-constant throughout this sequence of transformations are the size
(initially m) and the soundness gap (initially δ). When the parameters are chosen appropriately (t

3

is a sufficiently large constant in terms of C), the soundness gap is doubled, while the size of the
instance increases only by a constant factor, giving the desired conclusion.

2 PCP transformations

We now describe the five PCP transformations in the proof of the PCP theorem. We will de-
scribe query reduction, degree reduction, and expanderizing in this section. Gap amplification and
alphabet size reductions are described later on.

2.1 Query reduction

The goal of this transformation is to take a q-query PCP (for some constant q) and turn it into
a 2-query PCP. Think of the q-query PCP as a constraint satifaction problem Ψ with n variables
x1, . . . , xn and m constraints over alphabet {0, 1}. We define a 2-query CSP Ψ′ as follows:

• Variables of Ψ′: The instance Ψ′ has variables x1, . . . , xn, y1, . . . , ym, where xi takes values
in {0, 1} and yi takes values in Σ = {0, 1}q. Intuitively, the value of yi should be xi1 . . . xiq ,
where xi1 , . . . , xiq are the variables participating in the constraint ψi of Ψ.

• Constraint graph of Ψ′: For each constraint ψi of Ψ and each variable xij that participates
in ψi, there is a constraint-edge (xij , yi). The corresponding constraint is satisfied if the jth
entry in yi equals xij .

Clearly, if Ψ is satisfiable, so is Ψ′ (we just assign yi = xi1 . . . xiq for every i). On the other hand,
if every assignment violates a δ-fraction of constraint in Ψ, then every assignment will violate a
δ/q-fraction of constraints in Ψ′. To prove this, assume that some assignment (x, y) violates less
than a δ/q-fraction of constraints in Ψ′. Since every yi is involved in q constraints, it means that
all constraints involving yi are satisfied for at least a 1 − δ fraction of yis. But if all constraints
involving yi are satisfied, it must be that x satisfies ψi in Ψ, so x satisfies a 1 − δ fraction of
constraints in Ψ.

2.2 Degree reduction

In general, after applying query reduction, the constraint graph may have very large degree. The
goal of the degree reduction step is to make the degree constant (independent of the instance size),
while losing only a constant factor in the soundness gap.

This transformation makes use of expanders. Recall that a d-regular graph has edge expansion
0 ≤ h ≤ 1 if for every set S that contains no more than half the vertices, the number of edges
between S and S is at least α|S|. Using the zig-zag product we showed how to construct expanders
with h = 1/4 and constant degree d.

Let G be the constraint graph of Ψ. We create a new CSP Ψ′ by replacing every vertex i in G of
degree ni by a cloud of ni vertices. So each variable xi of Ψ will give rise to di variables x′i1, . . . , x

′
ini

4

in Ψ′. Each constraint in Ψ gives rise to d/2 parallel constraints in Ψ′ between unique vertices in
the corresponding clouds. Within each cloud, we interconnect the vertices by a 1/4-edge expander
and make each expander constraint an equality constraint (i.e. requiring that variables get the
same value). Notice that if Ψ has m constraints, then Ψ′ will have m variables and dm constraints.

Clearly, if Ψ has a satisfying assignment x, we can obtain a satisfying assignment for Ψ′ by setting
x′i1 = · · · = x′ini = xi for every i.

Now we prove soundness. The fact that the soundness gap goes down by at most a constant factor
in this transformation is a consequence of the following claim:

Claim 2. If some assignment x′ the violates at most an ε-fraction of contraints in Ψ′, then there
exists an assignment x that violates at most a 18ε fraction of constraints in Ψ.

The assignment x is obtained from x′ as follows: Within each cloud, let xi be the plurality value (i.e.,
the most representative value) among x′i1, . . . , x

′
ini

. Let εi be the fraction of constraints violated in
cloud i. Then

∑n
i=1 εi · (dni/4) ≤ ε · (dm/2), the total number of violated constraints.

Let’s fix a cloud i. Let Si be the set of vertices j within this cloud where x′ij agrees with the
plurality assignment. We will argue that, because of the expansion in the cloud, the assignment
within the cloud must largely agree with the plurality assignment. We split the analysis into three
cases:

• If |Si| > ni/2, then by edge expansion |E(Si, Si)| ≥ d|Si|/4. Since all the constraints in the
cut (Si, Si) are violated by the assignment, |E(Si, Si)| ≤ εi(dni/4), so |Si| ≤ 4εini.

• If ni/4 ≤ |Si| ≤ ni/2, then by edge expansion |E(Si, Si)| ≥ d|Si|/4 ≥ dni/16. Since all the
constraints in the cut are violated, it follows that εi ≥ 1/4, so |Si| ≤ ni ≤ 4εini.

• If |Si| < ni/4, then no value in Σ is taken more than 1/4-fraction of the time inside the cloud,
so there must exist some partition of the values within the cloud so that the smaller side of
the partition has between ni/4 and ni/2 vertices. Just like in the previous case, we get that
|Si| ≤ ni ≤ 4εini.

We see that no matter what, |Si| ≤ 4εini for every i.

Now consider what happens in Ψ′ when we replace the assignment x′ with the plurality assignment
x′plur (i.e. one that equals the plurality of x′ on every cloud). For each cloud, this may cause the
violation of at most (d/2)|Si| additional constraints that go out of the cloud. So if x′ violates εdm
constraints in Ψ′, x′plur will violate at most

ε(dm/2) +
n∑
i=1

(d/2)|Si| ≤ ε(dm/2) +
n∑
i=1

(d/2)(4εini) ≤ ε(dm/2) + 8ε(dm/2) = 9ε(dm/2)

constraints of Ψ′. This is a 9ε-fraction of all the constraints in Ψ′. So the assignment x can violate
at most a 18ε fraction of constraints in Ψ.

5

2.3 Expanderizing

The expanderizing transformation starts with a CSP Ψ with two variables per constraint and
(sufficiently large) constant degree d and creates a new CSP Ψ′ with two variables per constraint,
degree 2d, and the property that the constraint graph is an expander with λ ≤ 3/4.

This transformation is very simple. Suppose the constraint graph G of Ψ has n vertices. Let Z be
an expander on n vertices with degree d and λ ≤ 1/2 (which we can construct in polynomial time
using the zig-zagging method). The variables of Ψ′ will be the same as the variables of Ψ. The
constraints of Ψ′ will incude all the constraints of Ψ. In addition, for every edge in Z, we add a
“dummy” constraint in Ψ′, namely one which is satisfied for any assignment to its endpoints.

Clearly if Ψ is satisfiable, then Ψ′ is satisfiable by the same assignment. On the other hand, if x
fails to satisfy a δ fraction of the constraints in Ψ, then it will fail to satisfy the same constraints
in Ψ′, which form a δ/2-fraction of all the constraints.

Let G′ be the constraint graph of Ψ′. We now show that if G and Z are regular graph of the same
degree, then λG′ ≤ (λG + λZ)/2 ≤ 3/4. Notice that the adjacency matrices satisfy the relation
AG′ = (AG +AZ)/2. Then for every v ⊥ u, we have

‖vAG′‖ ≤ 1
2

(
‖vAG‖+ ‖vAZ‖

)
≤ 1

2

(
λG‖v‖+ λZ‖v‖

)
= 1

2(λG + λZ)‖v‖.

3 Gap amplification

Fix a constant t. The gap amplification step is a transformation from a 2CSP Ψ with degree d and
λ = 3/4 to a 2CSP Ψ′ with the following parameters:

Ψ → Ψ′

size m → (|Σ|d)5tm

alphabet size Σ → Σ1+d+d2+···+dt

completeness 1 → 1
soundness 1− δ → 1− Ω(tδ/|Σ|4)

We will describe a slightly modified version of Dinur’s transformation due to Jaikumar Radhakr-
ishnan. Let G be the constraint graph of Ψ. We define the instance Ψ′ as follows:

• Variables of Ψ′: For each variable xv of Ψ, there is a corresponding variable x′v of Ψ′.

• Values of x′v: The value of x′v is a collection (tuple) of values in Σ, one corresponding to every
vertex u at distance ≤ t from v in G. We write x′v(u) for the component of x′v corresponding
to u.

• Distribution over constraints of Ψ′: The constraints ψ′p of Ψ′ correspond to paths p of
length at most 5t ln|Σ| in G. (We will identify constraints and the paths they represent.) The
paths are generated from the following distribution:

6

1. Choose a starting vertex v0 of p. Set i = 0

2. Repeat for at most 5t ln|Σ| times: (1) Set vi+1 to be a random neighbor of vi and
increment i (2) With probability 1/t, stop the repetition.

3. Output the path v0, v1, . . . , vi.

• Constraints of Ψ′: Let (u′, v′) be the endpoints of a path p. The constraint ψ′p(x
′
u′ , x′v′) is

satisfied if all of the following hold:

1. For every edge (u, v) in G such that u and v are both within distance t of u′, the
constraint ψ(u,v) is satisfied.

2. For every edge (u, v) in G such that u and v are both within distance t of v′, the
constraint ψ(u,v) is satisfied.

3. For every vertex v that is within distance t from both u′ and v′, x′u′(v) = x′v′(v).

The size and alphabet size of Ψ′ are easy to check. We need to argue completeness and soundness.
By design, the transformation has perfect completeness. Suppose x is a satisfying assignment of Ψ.
Now consider the assignment x′ of Ψ′ given by x′u(v) = xv. This satisfies all the constraints of Ψ′.

The (relatively) difficult part is to argue soundness. To do this, we must show that for every x′

that satisfies 1− ΩΣ(tδ) constraints of Ψ′, there is an x that satisfies 1− δ constraints of Ψ.

The assignment x is constructed from x′ via the following procedure. For every vertex v,

1. Define the following distribution Dv on vertices. Initially, set v′ = v. Now repeat the
following experiment: With probability 1/t stop, and with the remaining probability, set
v′ = a random neighbor of v′.

2. Set xv to equal the plurality value of x′v′(v), when v′ is chosen from Dv, among those v′ that
are within distance t of v.

We now need to argue that if x′ satisfies 1 − Ω(tδ/|Σ|4) constraints of Ψ′, then x satisfies 1 − δ
constraints of Ψ. In fact, we will argue the contrapositive:

Claim 3. Assume tδ < 1. If x violates δ constraints of Ψ, then x′ violates Ω(tδ/|Σ|4) constraints
of Ψ′.

Before we prove the claim, let us make one simplification. We will modify the distribution over
constraints of Ψ′ so that the path p is not truncated after 5t ln|Σ| steps (see step 2), but can be
of any length. Intuitively, this simplification should not make a difference because long paths are
unlikely. Formally, we will analyze the effect of this simplification later.

Now let’s explain the intuition behind this claim. Let F be the set of constraints of Ψ (which we
also think of as edges of G) that are violated by x (so |F | = δm). Now take a random constraint
ψ′ of Ψ′. What are the chances that this constraint is violated by x′? We have that

Pr[x′ violates ψ′] = Pr[ψ′ intersects F] · Pr[x′ violates ψ′ | ψ′ intersects F].

7

Let’s try to estimate both of these quantities. We expect ψ′ to have about t edges; since |F | = δm,
we expect ψ′ to contain about δt edges of F . Since δ is fairly small, we might expect that most
ψ′ which intersect F intersect only a single edge of F . If this is the case, then Pr[ψ′ intersects F]
should be about δt. Roughly, this is where the soundness amplification happens: While
“bad” edges occur in Ψ only with probability δ, they occur in Ψ′ with probability about tδ.

What about the other probability? Let’s now fix an edge (u, v) ∈ F that is contained in ψ′. Now
consider the distribution of the endpoints u′ and v′ of the path ψ′. Since the endpoints of the path
are determined by a Poisson process, it follows that conditioned on (u, v) being in ψ′, the endpoint
v′ is determined by the following distribution: Start from v and at each step (1) with probability
1/t stop and (2) with the remaining probability move to a random neighbor of v and continue. But
this is exactly the distribution Dv! Ignoring for now the fact that ψ′ could be too long, we reason
as follows. Since the value xv was defined as the plurality value xv′(v), the two should match with
probability at least 1/|Σ|. For the same reason, xu′(u) and xu should match with probability 1/|Σ|.
But since the constraint ψ(xu, xv) is violated, this implies ψ′(x′u′ , x′v′) is also violated.

So roughly, we expect that the probability that a random constraint of Ψ′ is violated is about
δt/|Σ|2. However, our “analysis” ignored several crucial points, namely:

• Why can we assume that few ψ′ intersect multiple edges of F?

• What happens when ψ′ contains more than t edges? In this case, it may happen that ψ′

contains a “bad” edge, but this edge cannot be “seen” from its endpoints.

Roughly, the answer is: (1) The fact that ψ′ is unlikely to intersect many edges of F follows from
the expansion of G and (2) Long paths will contribute little to the analysis as they only happen
with small probability.

3.1 Analysis of gap amplification

Now let us do the actual analysis. Call an edge (u, v) faulty (with respect to ψ′, x′, x) if (1)
(u, v) ∈ F , (2) d(u′, u), d(v, v′) < t, and (3) x′u′(u) = xu and x′v′(v) = xv, where u′, v′ are the
endpoints of ψ′. If some edge in ψ′ is faulty, then ψ′ is violated as the inconsistency between xu
and xv can be seen either by x′u′ or by x′v′ .

Let N denote the number of faulty edges of ψ′, where ψ′ is chosen at random. We have that

Pr[ψ′ is violated] ≥ Pr[N > 0] ≥ E[N]2/E[N2]. (1)

The first moment. We first estimate E[N]. For f ∈ F , let If denote the number of occurrences
of f in ψ′, and let Nf = If is f is faulty, and 0 otherwise. Then:

E[N] =
∑
f∈F

E[Nf] =
∑
f∈F

∞∑
k=1

Pr[Nf ≥ k] =
∑
f∈F

∞∑
k=1

k · Pr[If ≥ k] · Pr[f is faulty | If ≥ k].

Let us analyze the probability that f is faulty conditioned on If ≥ k > 0. Fix an arbitrary
collection of k occurrences of f in ψ and let u be the left endpoint of the first occurrence and v

8

be the right endpoint of the last occurrence. As discussed above, u′ follows the distribution Du,
and v′ independently follows the distribution Dv. In this distribution, the probability that u′ is at
distance more than t from u is ≤ (1−1/t)t < 1/2. Conditioned on this distance being at most t, the
distribution on u′ is exactly the one used to define the plurality assignment xu, so the probability
that x′u′(u) = xu is at least 1/|Σ|. As the same is true for v and v′ independently, for any k > 0 we
have that

Pr[f is faulty | If ≥ k] ≥
(1

2
· 1
|Σ|

)2

and therefore

E[N] ≥ 1
4|Σ|2

·
∑
f∈F

∞∑
k=1

Pr[If ≥ k] =
1

4|Σ|2
·
∑
f∈F

E[If] =
δt

4|Σ|2
,

because the expected number of occurrences of any particular edge in ψ′ is 1/m times the expected
length of ψ′, which is t.

The second moment. We now upper bound E[N2]. To do so, let N ′ be the number of edges in
F that intersect ψ′. Obviously N ≤ N ′ (since N counts the number of such edges that are also
faulty). So we will bound E[N ′2] instead. To do so, let Zi be a random variable that indicates if
the ith edge of ψ′ is in F (if ψ′ has fewer than i edges, then Zi = 0). Then

E[N ′2] =
∞∑
i=1

E[Zi] + 2
∑

1≤i<j
E[ZiZj]. (2)

It is easily seen that E[Zi] = δ · (1− 1/t)i, so the first summation is at most tδ.

For the second summation, notice that E[ZiZj] is the probability that both edges i and j are present
in the path and faulty. The probability they are both present is (1 − 1/t)j . Conditioned on them
being both present, the probability they are both faulty is bounded using the following lemma.

Lemma 4. Let G be a d-regular graph with spectral gap 1− λ and F be a subset consisting of a δ
fraction of the edges of G. The probability that both the first and the last edge of a random walk of
G of length ` ≥ 2 are in F is at most δ2 + δλ`−2.

It follows that E[ZiZj] ≤ (1− 1/t)j · δ · (δ + λj−i−1). Plugging this in (2) we have

E[N ′2] ≤ δt+ 2δ
∑

1≤i<j
E[ZiZj]

≤ δt+ 2δ
∞∑
i=1

(1− 1/t)i
∞∑

j=i+1

(1− 1/t)j−i · (δ + λj−i−1)

≤ δt+ 2δ
∞∑
i=1

(1− 1/t)i(δt+ 1/(1− λ))

≤ δt+ 2δt(δt+ 4)

= 9δt+ 2(δt)2.

9

Second moment calculation. Finally, from (1) we have:

Pr[N > 0] ≥ E[N]2

E[N2]
≥ (δt/4|Σ|)2

9δt+ 2(δt)2
= Ω(δt/|Σ|4).

The effect of truncation. This calculation was done in the idealized setting where ψ′ can be
arbitrarily long, while it is actually restricted to have length at most 5t ln|Σ|. It is not hard to see
that these long paths contribute little to N . In particular, the contribution from the long paths
can be bounded by

∞∑
`=5t ln|Σ|

E[N | ψ′ has length `] Pr[ψ′ has length `] ≤
∞∑

`=5t ln|Σ|

(δ`) · (1− 1/t)` < E[N]/2

For the calculation of E[N2], the truncation of long paths only improves this quantity, so the lower
bound on the probability that N > 0 is only affected by a constant.

Proof of Lemma 4. Let A be the (normalized) adjacency matrix of G and A′ be the adjacency
matrix of a graph representing `− 2 steps of a random walk on G. Then A′ = A`−2 and λ′ = λ`−2.

In Lecture 8 we proved that if we write A′ = (1− λ′)J +E then for every vector v, ‖vE‖ ≤ λ′‖v‖.
Here J represents the complete graph on n vertices. Now we write

1
2n
|vA′vT| ≤ (1− λ′) 1

2n
|vJvT|+ 1

2n
|vEvT|.

Let v be the vector such that v(u) equals the fraction of edges incident to u that are in F . Then
(vA′vT)/2n equals exactly the fraction of paths with the first and last edge in F , and (vJvT)/2n
equals Eu[v(u)]2 = δ2. For the last term we have

1
2n
|vEvT| ≤ 1

2n
‖vE‖ · ‖v‖ ≤ λ′ 1

2n
‖v‖2 ≤ λ′ 1

2n

∑
u

v(u) = δλ′,

so the desired quantity is at most (1− λ′)δ2 + δλ′ ≤ δ2 + δλ`−2.

4 Alphabet size reduction

The purpose of alphabet size reduction is to transform a 2-query PCP Ψ over large (but constant)
alphabet Σ into a q-query PCP Ψ′ over alphabet {0, 1}, where q is independent of the size of Σ. We
want to preserve completeness and lose only a constant factor (independent of Σ) in the soundness
gap. On the other hand, the size of the instance is allowed to increase by a constant factor, which
may depend on Σ.

Without loss of generality, we can think of Σ as {0, 1}σ for some constant c. Then we can think of
every variable yi of Ψ as taking values in {0, 1}σ and we can view every constraint ψ(yi, yj) of Ψ
as a function from {0, 1}2σ to {0, 1}.

10

Assume Ψ has full completeness and soundness δ. Now consider the following candidate PCP: The
proof is a string of length {0, 1}σn which for every yi contains all the bits of yi. The verifier chooses
a random constraint ψ(yi, yj), reads the bits of yi and yj , and accepts if the constrant is satisfied.
This is a PCP of full completeness and soundness δ. However, its query complexity is 2σ, which is
too large: We want a PCP whose query complexity is independent of σ.

This is much like the situation we had in the last lecture: It seems that what we need is a PCP
which proves that ψ(yi, yj) = 1 with query complexity independent of σ. Since the size of ψ itself
is a most O(22σ)) (if we represent it as a circuit), the size of the PCP will only go up by a factor
that depends on σ.

To implement the PCP construction from last lecture, we want to transform each constraint ψ(yi, yj)
into an “equivalent” system of quadratic equations Q. Recall that the system Q will have at most
O(22σ)) equations; however in addition to the variables yi and yj , the system will also depend on
at most O(22σ)) auxiliary variables zij .

The proof in the PCP Ψ′ will now consist of two parts:

1. For each yi taking values in {0, 1}σ, an encoding Ci ∈ {0, 1}2
σ

which is supposed to equal
Ci(a) = 〈a, yi〉 for every a ∈ {0, 1}σ.

2. For every constraint ψ(yi, yj) consider the corresponding quadratic system Q(yi, yj , zij) where
zij takes values in {0, 1}O(22σ). Provide an encoding Cij for zij where Cij(a) is supposed to
equal 〈a, zij〉, as well as an encodingDij ofQ, where for every linear combination b of quadratic
terms in the variables yi, yj , zij , Dij(b) is supposed to equal the value of this combination.

The verifier of Ψ′ chooses a random constraint ψ(yi, yj) in Ψ and runs the PCP from last lecture
on the part of the proof that contains the encodings Ci, Cj , Cij , Dij to verify that the constraint is
satisfied.1

Clearly if Ψ is satisfiable, the verifier of Ψ′ will accept with probability 1. Now we argue that if
Ψ′ rejects with probability at most δ/2, then some sassignment violates at most a δ-fraction of
constraints in Ψ.

Assume Ψ′ rejects with probability at most δ/2. Let yi be the most likely assignment encoded by
Ci (i.e. the one such that the encoding of yi and Ci differ in the smallest number of places, breaking
ties arbitrarily). Then for at least a 1− δ fraction of the constraints ψ, when ψ is chosen Ψ′ accepts
with probability at least 1/2. By the analysis from last time if this is the case, then all of Ci, Cj
and Cij must be 1/8-close to encodings of some assignments y′i, y

′
j and zij so that Q(y′i, y

′
j , zij) is

satisfied and therefore ψ(y′i, y
′
j) = 1. Since yi is the most likely assignment encoded by Ci, it must

be that the encodings of yi and y′i differ in at most a 1/4-fraction of places. But any two distinct
linear functions differ on at least half the outputs, so it must be that yi = y′i. Similarly yj = y′j .
Therefore y satisfies the constraint ψ, so it satisfies a 1− δ fraction of constraints of Ψ.

1This is not exactly the same PCP. In the last lecture Ci, Cj , and Cij were grouped into a single chunk, while
here they are separate. However we can run the linearity test and local decoding procedures on each part separately
with the same effect.

