
CSCI 5440: Cryptography Lecture 8 and 9
The Chinese University of Hong Kong 7 and 14 November 2012

1 Public-key encryption

We now turn to the study of public-key encryption. In private-key encryption, we had assumed
that Alice and Bob share a random secret key K ∈ {0, 1}k which is completely unknown to Eve.
One practical issue with this setup is that the parties need to get together and agree on this key in
a secure environment. While this may be possible in physical settings, it is not clear how this key
agreement can be achieved on the internet.

Public-key encryption offers a possible solution to this problem. In public-key encryption, Alice
has a pair of keys, a secret key SK and a public key PK. The secret key is known only to Alice,
while the public key is known to everyone, including Eve. If Bob wants to send a message to Alice,
he encrypts it with her public key. Although the public key is sufficient for encryption, it is useless
for decryption: The only way to recover the message (or extract any information about it) requires
knowledge of the secret key.

We achieved private-key cryptography by starting with an information-theoretic requirement –
perfect security – that could be in principle achieved but requires unreasonably large resources in
practice. We then relaxed the security requirement in order to obtain a more reasonable implemen-
tation. In contrast, public-key cryptography is not even possible to do in a perfect security setting,
no matter what the size of the keys.

Defining public-key encryption rigorously is a bit trickier than the private-key case. These compli-
cations arise mainly from the problem of choosing the keys. In the private-key setting, we could
assume – essentially without loss of generality – that the key is a random string in {0, 1}k. In the
public-key setting, the keys PK and SK will also be random, but they must also be related in some
special way in order to make encryption and decryption complementary to each other. So we will
assume that the pair (PK,SK) is generated as the output of a special randomized key generation
algorithm Gen.

It also happens that in many (but not all) constructions of public-key encryption, plaintexts and
ciphertexts do not come from sets like {0, 1}k, but rather from some other sets D, usually groups.
The set D itself is sometimes random.

Definition 1. A public-key encryption scheme is a triple of algorithms (Gen,Enc,Dec) where

• Gen is a randomized algorithm that takes no input and produces a pair of keys (SK,PK)
(and a domain D).

• Enc is a randomized algorithm that takes a public key PK and a message M ∈ D and outputs
a ciphertext Enc(PK,M).

• Dec is an algorithm that takes a secret key SK and a ciphertext C and produces a plaintext
Dec(SK,C).

• For every message M ∈ D,
Dec(SK,Enc(PK,M)) = M

1

where (SK,PK) is the output of Gen, with probability one over the randomness of Gen and
Enc.

Let us reflect a bit on how we would apply this definition in a practical scenario. If Bob wants to
send a message to Alice, then he would run the encryption, and Alice would run the decryption.
But who runs the key generation algorithm Gen? One possibility is for Alice to run her own key
generation, store the secret key in a secure place, and share the public key with Bob (and anyone
else who may wish to send her a message). On the internet, maybe she could do this by posting
her public key on a web page, for example. But if her channel to Bob is not authenticated – for
example if Eve impersonates Alice – then Bob may be operating under the wrong impression that
he is encrypting using Alice’s public key, while he may in fact be using someone else’s public key.
Various solutions to this key distribution problem have been proposed. At least for now we will
assume that the public key is indeed known to everyone.

We now define message-indistinguishability for public-key encryption:

Definition 2. A public-key encryption scheme (Gen,Enc,Dec) is (s, ε) message indistinguishable
if for every circuit A of size s and every pair of circuits M0, M1 of size s,

|Pr[A(PK,Enc(PK,M0(PK))) = 1]− Pr[A(PK,Enc(PK,M1(PK))) = 1]| ≤ ε

where the randomness is taken over Gen, Enc, and A.

Notice a difference from the private-key setting: since the adversary is given access to the public
key, the challenge messages M0 and M1 can also depend on the public key. This is why we model
them as circuits.

By giving the adversary access to the public key, we give him the ability to compute arbitrary
encryptions of his choice. So in the public-key setting, CPA security reduces to message indis-
tinguishability. An immediate consequence is that any message indistinguishable scheme must be
probabilistic.

Also notice that a “perfectly secure” variant of this definition (i.e., with s arbitrary) can never be
achieved, regardless of the key size: Whenever M0 6= M1, for any PK the possible encryptions
Enc(PK,M0) and Enc(PK,M1) must be disjoint, so a computationally unbounded adversary can
always recover the message from its encryption.

How do we construct secure public-key encryption? Ideally, we would like to proceed as in private-
key cryptography: We identify a simple primitive, like a pseudorandom generator, that is necessary
and sufficient for the construction of public-key encryption and give a scheme assuming the security
of the primitive. Unfortunately no such primitive is known in the public-key setting. (In particular,
there is evidence that public-key encryption requires more than the existence of pseudorandom
generators.)

We will shortly define an object called a trapdoor permutation, a primitive that can be used to
construct public-key encryption. However, not all public-key encryption schemes are based on
trapdoor permutations. In order to show how public-key encryption schemes look like, we begin
by describing a “direct” construction: the El Gamal encryption scheme.

2

2 The El-Gamal encryption scheme

The El Gamal encryption scheme is based on a computational hardness assumption called the
Decisional Diffie Hellman (DDH) assumption. Let G be a cyclic group of size q with generator g.
We say the (s, ε) DDH assumption holds for (G, g) if for every circuit of size s,

|Prx,y∼Zq [A(gx, gy, gxy) = 1]− Prx,y,z∼Zq [A(gx, gy, gz) = 1]| ≤ ε.

The DDH assumption is related to the hardness of taking discrete logarithms. If the discrete
logarithm problem in G was easy – namely, given h we could find an x so that gx = h – then the
DDH assumption would not hold: On input (a, b, c) we take the discrete logs of a and b and c and
output 1 if the product of the first two equals the last. This happens with probablity 1 on the left,
but with probability at most 1/q on the right.

However, the hardness of computing discrete logarithms is in general not sufficient for (G, g) to
satisfy the DDH assumption. For example, when p is a random prime number, and g is a generator
for Z∗p, it is believed that the discrete logarithm problem is usually hard in Z∗p, but it is known that
Z∗p does not satisfy the DDG assumption.

One way to obtain a group for which the DDH assumption may be true is like this. Choose a
number p where both p and q = (p− 1)/2 are prime numbers. Let h be a generator for Z∗p and Qp

be the subgroup of Z∗p generated by g = h2. Then Qp is a cyclic group of order q and it is plausible
that the DDH assumption holds with high probability for such groups.1

We now describe the El Gamal encryption scheme. Next time we will argue that this scheme is
message indistinguishable provided that the DDH assumption holds:

Key Generation: Choose a random prime p, so that (p− 1)/2 is also prime, p ≤ 2k, and a
random h ∈ Z∗p. Let g = h2. Choose a random x ≤ (p−1)/2. Output the pair SK = (p, g, x),
PK = (p, g, gx).

Encryption: Enc((p, g, gx),M) = (gr, gxr ·M) where M ∈ Q and r is chosen at random
from Zq.

Decryption: Dec((p, g, x), (C,C ′)) = C ′/Cx.

It is easy to see that this scheme is correct. To argue that it is secure, we need to show that for
every pair of small circuits M0, M1, the distributions (p, g, gx, gr, gxr ·M0) and (p, g, gx, gr, gxr ·M1)
are indistinguishable, where M0 and M1 may depend on the public key (p, g, gx). To do this, we
will compare both distributions with the distribution (p, g, gx, gr, gz) and argue that if they are
distinguishable, we can break the DDH assumption.

Claim 3. Suppose the (s, ε) DDH holds with probability 1 − ε over the choice of the subgroup Qp

of Z∗p. Then El Gamal encryption is (s/2, 4ε) message indistinguishable.

Proof. Suppose not. Then there is are circuits A,M0,M1 of size s/2 so that

|Pr[A(p, g, gx, gr, gxr ·M0) = 1]− Pr[A(p, g, gx, gr, gxr ·M1) = 1]| > 4ε.

1Such numbers are called safe primes. It isn’t known if there are an infinite number of them, but it is believed
that a random number in {0, 1}n is a safe prime with probability about 1/n2.

3

(To keep notation simple, we omit the input PK = (p, g, gx) of M0 and M1 from this description.)
By a hybrid argument, for at least one b ∈ {0, 1} we must have:

|Pr[A(p, g, gx, gr, gxr ·Mb) = 1]− Pr[A(p, g, gx, gr, gz) = 1]| > 2ε.

Then

Prp,g
[
|Prx,r[A(p, g, gx, gr, gxr ·Mb) = 1]− Prx,r,z[A(p, g, gx, gr, gz) = 1]| > ε

]
> ε.

Fix a pair (p, g) for which the expression inside is greater than ε. For this pair (p, g), we give a circuit
B that (s, ε) breaks the DDH assumption: On input (a, b, c), output A(p, g, a, b, c·Mb(p, g, a)). Then
B has size s and

Prx,r[B(gx, gr, gxr) = 1] = Pr[A(p, g, gx, gr, gxr ·Mb) = 1]

while

Prx,r,z[B(gx, gr, gz) = 1] = Pr[A(p, g, gx, gr, gz ·Mb) = 1] = Pr[A(p, g, gx, gr, gz) = 1]

because gz is uniformly random in Q and independent of x and r. It follows that the (s, ε) DDH
assumption fails to hold for more than ε of the pairs (p, g).

There is one implementation issue regarding El Gamal encryption: The messages reside in a group
Qp, which is a subgroup of Z∗p. How do we represent bit strings as elements of Qp? In our example,
Qp consists of the quadratic residues in Z∗p (namely those elements that are perfect squares), and
so a message coming from the set {0, . . . , q − 1} can be represented by its square modulo p. To
decode the message from its square, we need to take square roots modulo p.

How do we do this? Given y ∈ Z∗p, we need to find x so that x2 = y. Since y is a quadratic residue,
it must be that y = h2t for some t, so we need to solve the equation x2 = h2t. This equation has
two solutions given by x = ±ht. It looks like in order to find x, we need to know the discrete log of
y. But there is a trick that avoids taking discrete logs: Since hp−1 = h, we have that h2t = h(p+1)t,
and so the square roots of h2t are the values ±h(p+1)t/2 = ±y(p+1)/4. So taking the square root of
y is the same as raising y to the power (p + 1)/4 (as long as p and q = (p− 1)/2 are both primes).

3 Trapdoor permutations

Let’s go back to generic public-key encryption and consider intuitively the requirements that a
public-key scheme should satisfy. For this, it will help to think of decryption as the “inverse” of
encryption:

• For every public key, encryption should be easy to compute.

• If we know the public key but do not know the secret key, encryption should be hard to invert.

• If we know the secret key, encryption becomes easy to invert.

Notice that these requirements subsume the requirements of a one-way function: Easy to compute,
but hard to invert. However there is an additional requirement: Encryption should become easy to

4

invert in the presence of some extra information, the secret key. We call this a trapdoor: it allows
us to magically go back where we came from.

This suggests that the core of public-key encryption is the existence of “trapdoor functions”. Un-
fortunately it turns out that this intuition is not quite correct.2 However, if the function happens
to be a permutation, then we can indeed obtain public-key encryption.

Definition 4. A family of functions fPK is a (s, ε) trapdoor permutation family with key generation
algorithm Gen and trapdoor inversion algorithm Inv if

• For every possible output (SK,PK) of Gen, the function fPK is a permutation.

• For every circuit A of size at most s, Pr[A(PK, fPK(x)) = x] ≤ ε where the probability is
taken over the choice of (SK,PK) ∼ Gen and x chosen at random from the domain of fPK .

• For every pair (SK,PK) ∼ Gen and every x in the domain of fPK , Inv(SK, fPK(x)) = x.

Trapdoor permutations are somewhat difficult to come by. We now describe a conjectured con-
struction.

Quadratic residuosity To describe this construction we need a bit of algebra. As before, let p
be a prime number so that (p−1)/2 is also a prime, h a generator of Z∗p, and Qp ⊆ Z∗p the subgroup
of quadratic residues generated by h2. To get some intuition about Qp, let’s look at Z∗11:

1 3 4 5 92 6 7 8 10
h1 h2 h3h4 h5h6h7h8 h9h10

The arrows indicate the graph of the map x→ x2. The numbers in bold are the quadratic residues.
Notice that each quadratic residue has two square roots: One inside Qp (the black incoming edge)
and one outside Qp (the gray incoming edge). In particular, the map x → x2 is a permutation
of Qp. However, this permutation is easy to invert: As we said before, the square roots of y are
±y(p+1)/4.

We can generalize these observations to every group Z∗p where (p− 1)/2 is an odd number. If h is
a generator for Z∗p , the set of quadratic residues is Qp = {h2, h4, . . . , hp−1 = 1}. All these elements

have distinct squares: For if (h2a)2 = (h2b)2, then p − 1 must divide 4a − 4b, so (p − 1)/2 must
divide a− b, and so a = b. Therefore the map f(x) = x2 is a permutation of Qp, and its inverse is
the map y → y(p+1)/4.

Now suppose n = pq is a product of two distinct prime numbers, and let us assume that both
(p − 1)/2 and (q − 1)/2 are odd numbers. The group Z∗n consists of those numbers that have a
multiplicative inverse modulo n. These are all the numbers that are not multiples of p or multiples
of q (or both). The elements of Z∗n can be identified with pairs of elements, one in Z∗p, the other

2One reason for this is that a “trapdoor function” is a deterministic object, while encryption may (and should)
be randomized.

5

one in Z∗q by the representation map u → (u mod p, u mod q). This is a one-to-one map from Z∗n
to Z∗p × Z∗q .

What do the quadratic residues Qn of Z∗n look like? First, notice that if y ∈ Qp and z ∈ Qq, then
the pair (y, z) is in Qn, and it has four square roots represented by the pairs

(−y(p+1)/4,−z(q+1)/4) (−y(p+1)/4, z(q+1)/4) (y(p+1)/4,−z(q+1)/4) (y(p+1)/4, z(q+1)/4)

Since Qp × Qq has a quarter of the size of Z∗n, and each pair (y, z) ∈ Qp × Qq has exactly four
square roots, it follows that Qn contains exactly those elements that are represented by pairs in
Qp×Qq. Moreover, exactly one of these four square roots comes from Qp×Qq, so the map x→ x2

is a permutation of Qn. This is our candidate one-way permutation:

Let p and q be prime numbers where (p− 1)/2 and (q− 1)/2 are also prime and Qn be
the subgroup of quadratic residues of Z∗n. Then the map f(x) = x2 is a permutation
over Qn.

Is the permutation f one-way? Suppose there is a circuit A that inverts f with probability ε. Now
choose a random x ∈ Z∗n and look at the output of A(x2). Since x2 is a random element of Z∗n,
with probability ε, A(x2) will output a square root u of x2. But didn’t we already know a square
root? Yes, but there are four, and u could be different from the square root we already know. In
fact, conditioned on x2 (represented by (y, z)), x is equally likely to take any of the four values

(−y(p+1)/4,−z(q+1)/4) (−y(p+1)/4, z(q+1)/4) (y(p+1)/4,−z(q+1)/4) (y(p+1)/4, z(q+1)/4).

To be specific, let us assume that u = A(x2) is represented by (y(p+1)/4, z(q+1)/4). Then with
probability at least 1/4, x is represented by (y(p+1)/4,−z(q+1)/4), and therefore x+u is represented
by (2y(p+1)/4, 0), which is a multiple of q. Then the GCD of n and x + u must equal q.

To summarize, we just showed that if A inverts f on an ε-fraction of its outputs, then the following
circuit produces one of the factors of n with probability at least ε/4:

On input n = pq:
Choose x ∈ Z∗n at random.
Run A(x2) to obtain u. Output the GCD of n and x + u.

By repeating this algorithm O(1/ε) times, we can increase the chances of finding a factor of n from
ε/4 to a constant. So if the permutation f is easy to invert, then it is almost equally easy to factor
the number n.

It is believed that factoring numbers like n may be computationally intractable:

Hardness of factoring assumption (for parameters (s, ε)): Let p 6= q be random primes between
1 and 2k so that (p− 1)/2 and (q − 1)/2 are also prime. Then for every circuit A of size s,

PrA,p,q[A(pq) = p or A(pq) = q] ≤ ε.

The best known factoring algorithm (for numbers of any form) appears to run in time about

2
3√
k. Using a quantum algorithm, it is possible to factor in time polynomial in k. The quantum

6

algorithm, however, does not have a scalable implementation, and it is a matter of debate whether
it is a credible threat to the hardness of factoring assumption.

The hardness of inverting f relies heavily on the assumption that the factors of n are difficult to
find. If the factors of n are known, it turns out that f is easy to invert. We already know that the
square roots of u ∈ Qn are the numbers represented by

(−y(p+1)/4,−z(q+1)/4) (−y(p+1)/4, z(q+1)/4) (y(p+1)/4,−z(q+1)/4) (y(p+1)/4, z(q+1)/4).

To find a square root of u, all that remains is to figure out which numbers in Z∗n are represented by
these pairs (and which one of them resides in Qn, which we can figure out by attempting another
square root). If we know p and q, there is a formula for inverting such representations:

if (y, z) = (u mod p, u mod q), then u = zp · (p−1 mod q) + yq · (q−1 mod p).

To summarize, the following algorithm inverts the map f(x) = x2 given access to p and q:

Inv((p, q), u):
Let (y, z) = (u mod p, u mod q).

Compute the representations u1, u2, u3, u4 of (±y(p+1)/4,±z(q+1)/4).
If u21 6= u, return error (u 6∈ Qn).
Return ui, where i is the unique index for which Inv((p, q), ui) does not return error.

In conclusion, it is plausible that the function f is a trapdoor permutation: It is hard to invert
assuming the hardness of factoring assumption, but easy to invert if we are given the factorizaton
of n. Let Gen be an algortihm that chooses random primes p, q ≤ 2k, p 6= q where (p − 1)/2 and
(q − 1)/2 are also prime, and outputs the pair SK = (p, q), PK = n. We just argued that

Theorem 5. Assume the (s, ε) hardness of factoring assumption holds. Then {f : Qn → Qn} is
an (s/kO(1),Ω(ε)) trapdoor permutation family with key generation algorithm Gen and trapdoor
inversion algorithm Inv.

4 Public-key encryption from trapdoor permutations

In the private-key setting, our encryption schemes were naturally based on pseudorandom gener-
ators. A pseudorandom generator, in turn, can be constructed from a one-way permutation and
a hard-core bit. Once one bit of pseudorandomness is obtained, the length of the output can be
increased by carefully constructed iterative applications of the pseudorandom generator.

An analogous sequence of transformations can be used in the public-key setting to obtain public-
key encryption from trapdoor permutations. To illustrate this, we begin by designing a one-way
encryption scheme from a trapdoor permutation and its hardcore bit.

Definition 6. Let {fPK : DPK → DPK} be a family of trapdoor permutations with key generation
Gen and trapdoor inversion Inv. A function family {hPK : DPK → {0, 1}} is a (s, ε) hardcore bit
family for {fPK} if for every circuit P of size s,

PrPK,x[P (PK, fPK(x)) = hPK(x)] ≤ 1

2
+ ε.

7

Just as in the case of one-way permutations, if hPK is a hardcore bit for fPK , the pair (fPK(x), hPK(x))
is difficult to distinguish from the pair (y, b), where y is a random element in the domain of fPK

and b is a random bit. This suggests that hPK(x) can be used to hide a one-bit message M ∈ {0, 1}
via the following encryption scheme:3

Enc(PK,M) = (fPK(R), hPK(R) + M) where R ∼ DPK is random

Dec(SK, (Y,B)) = B + hPK(Inv(SK, Y)).

Claim 7. Assume {hPK} is an (s, ε) hardcore bit family for {fPK}. Then (Gen,Enc,Dec) is
(s/2−O(1), 2ε) message indistinguishable.

Proof. If not, then there are circuits A,M0,M1 of size s/2−O(1) so that

|Pr[A(PK, fPK(R), hPK(R) + M0(PK))) = 1]

− Pr[A(PK, fPK(R), hPK(R) + M1(PK))) = 1]| > ε

so there is some b ∈ {0, 1} for which

|Pr[A(PK, fPK(R), hPK(R) + Mb(PK))) = 1]− Pr[A(PK, fPK(R), B) = 1]| > ε

where B ∼ {0, 1} is a random bit. Let D be a circuit that on input (PK, y, c) returns A(PK, y, c+
Mb(PK)). Then D has size s−O(1) and

|Pr[D(PK, fPK(R), hPK(R)) = 1]− Pr[D(PK, fPK(R), B) = 1]| > ε.

By the same argument that we used in the last lecture, using D we can construct a predictor P of
size s for which

Pr[P (PK, fPK(x)) = hPK(x)] >
1

2
+ ε

violating our assumption.

One annoying thing about this scheme is that it can only encrypt single bits. To do better, we
need to obtain multiple hardcore bits, which we can do using the same approach that allowed us
to extend the output of pseudorandom generators. To encrypt messages in {0, 1}m, we use the
following encryption:

Enc(PK,M) = (f
(m)
PK (R), hPK(R) + M1, hPK(fPK(R)) + M2, . . . , hPK(f

(m−1)
PK (R)) + Mm)

where f (i)(x) = f(f(. . . f(x) . . .)) a total of i times. The proof of security is very similar to the
proof of Theorem 9 from Lecture 2.

Under the hardness of factoring assumption, there are several known hardcore bits for the function
f(n, x) = x2 mod n. For example, the least significant bit of x is known to be a hardcore bit.

3We will assume that the public key is implicitly contained in the secret key.

8

	Public-key encryption
	The El-Gamal encryption scheme
	Trapdoor permutations
	Public-key encryption from trapdoor permutations

