CSCI 5440: Cryptography Lecture 6
The Chinese University of Hong Kong 24 October 2012

1 Cryptographic hash functions

Last time we saw a construction of message authentication codes (MACs) for fixed-length messages.
We then showed a way to extend the construction in order to handle variable-length messages. There
is another method for constructing variable-length MACs which is quite popular in practice, as it
has very efficient implementations. It involves the use of another cryptographic primitive called a
cryptographic hash function.

Definition 1. A collection of functions {hg: {0,1}* — {0,1}*} is an (s,e) cryptographic hash
function family if for every circuit A of size at most s,

Prg[A(S) = (z,2'), © # 2, and hg(z) = hg(2')] < e.

Since the domain of hg is infinite and its range is finite, it is guaranteed that for every hg a pair
(z,2") such that = # 2’ and hg(x) = hg(z’) always exists (in fact, there are infinitely many). The
definition requires that finding such a pair is computationally intractable.

The parameter S is called the seed, and it plays a similar role as the key in pseudorandom functions.
There is one difference: The key of the hash function is known to the adversary that is trying to
break it, while a pseudorandom function key must be kept private.

Since it is intractable to find collisions in a hash, the hash hg(M) completely “determines” the
message M for any computationally bounded party. So it seems reasonable that instead of tagging
M to obtain an authentication, we could obtain almost the same effect by tagging hg(M).

Claim 2. Suppose (T'ag,Ver) is a MAC for message length k that is (s,e) secure against chosen
message attack and computable by a circuit of size t and {hs} as an (s,e) secure cryptographic
hash family where hg is computable by a circuit of size t. Then the scheme

Tag (K,S),M) = Tag(K,hs(M)) Ver' (K, S),(M,T)) = Ver(K,hs(M),T)

is a variable-length MAC that is (Q(s/t),2e) secure against chosen message attack.
The hash key S can in fact be made public in this scheme.

Proof. Suppose (Tag’,Ver’) is not (2(s/t),2¢) secure and let A’ be a circuit of size Q(s/t) such
that
Pr[AT%" produces a forgery] > 2.

We use A’ to construct two adversaries: A circuit A’ that tries to forge (T'ag, Ver) and a circuit
C that tries to find a collision in hg. Intuitively, every time A7 produces a forgery, either its
forged message collides with one of its queries under hg, or else AT produces a forgery.

More formally, consider the following circuits A’ and C:

A”: Choose a random S and simulate A”?. When A’* wants to query its oracle on M,
query your oracle on hg(M), and when A outputs a potential forgery (M,T), output

C(S): Choose a random K and simulate A’7%9'((5:5)) Remember all the queries
M, ..., My, made by A" and its output M. If hg(M;) = hg(M) for some i, output the
pair (M;, M).

Then A” and C are both of size at most s. We now argue that whenever A”7%9" produces a forgery,
either one of the queries of A’ collides with M under hg in which case C' outputs a collision, or
ATa9 outputs a forgery. So we either obtain an adversary that (s,) breaks the collision resistance
of {hg} or an adversary that (s,e) breaks the security of (T'ag, Ver), obtaining a contradiction.

So let’s assume that A79" makes queries My, ... , M, and outputs the forgery (M,T). By the
definition of forgery, M # M; for all i. If hg(M;) = hg(M) for some ¢, then C' outputs a collision
for hg. Otherwise, hg(M;) # hs(M) for all i. Since (M,T) is a forgery for (Tag’,Ver’), we must
have Ver'(M,T) = Ver(hs(M),T) = 1, so the output (hs(M),T) of AT% will then be a forgery
for (Tag, Ver). O

What is the advantage of this variable-length MAC over the one from last time? This is a sim-
pler design, and moreover hash functions often have faster implementations that pseudorandom
functions.

Cryptographic hashes in practice There are several practical construction of cryptographic
hashes with very efficient implementations, which makes them very popular in applications. I don’t
know much about the rationale behind practical constructions, but if you are interested you can
start by looking at the following descriptions of MD5 and SHAO, SHA1, SHA2, SHA3. Collisions
in MD5, SHAO, and SHA1 have been found.

SHA3 was chosen a few weeks ago after a three-round competition by the US National Institute of
Standards and Technology that was carried out from 2008 until 2012. It was an open competition
where every entrant could present their design as well as point out weaknesses in their competitors.

One feature of practical hash functions is that they usually do not have a seed. Instead of a family
of hash functions, the constructions give a single hash function. In our theoretical framework,
an adversary can trivially find a collision for any specific hash function, as the collision can be
hardwired into the adversary circuit. One way to reconcile the practical constructions with the
definition is to think of an unseeded hash function as a sample from a family of hash functions to
which the seed has been fixed once and for all. If the function is secure enough, then the a collision
is hard in any foreseeable future, so it should not hurt to reuse the same seed (which is — remember
— public) in all applications.

Attacks There is a fairly fundamental difference between the security of pseudorandom gener-
ators and the security of hash functions. Suppose you want to break a pseudorandom generator
G: {0,1}* — {0,1}™. If you have no additional information about how G works, you can try the
following generic attack: Given a string y € {0,1}™, try all possible seeds z € B¥ and output 1 if
and only if G(x) = y for some x. This attack can distinguish an output of G from a truly random

http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Secure_Hash_Algorithm
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

string with probability 1/2, but takes time more than 2¥. However, without additional information
on the structure of G, it is essentially the best possible attack.

In contrast, if we want to find a collision in a cryptographic hash family hg: {0,1}* — {0, 1}*, the
task can always be accomplished with constant probability in time O(t2k/ 2), where t is the time it
takes to evaluate hg. So if we have a cryptographic family with 128 bits of output, it can always
be broken in time about 264, which is large but not prohibitively so.

Do cryptographic hash functions exist? While many researchers believe that indeed they do
exist, we do not know the answer to this question. In particular, if the answer is “yes”, then it
would follow that pseudorandom generators exist, and P £ NP. Can we then obtain cryptographic
hash functions from pseudorandom generators, doing some construction like the one we used for
pseudorandom functions? The answer is believed to be “no”, and in particular we know for sure
that a construction of the type that we used for pseudorandom functions cannot work to construct
hash functions from pseudorandom generators. Making sense of this statement is way beyond the
scope of this lecture.

There is another object called a universal one-way hash function (UOWHF') which provides weaker
collision-resistance properties, but can be constructed from a pseudorandom generator. Known
transformations of a pseudorandom generator into a UOWHEF are, however, very ineflicient.

2 The Merkle-Damgard transform

One mystifying aspect of the definition of hash function is that it can be used to hash messages
of arbitrary length. We now show that it is in fact sufficient to have a variant that works for
fixed-length messages. The construction that turns a fixed-length scheme into a variable-length
one is called the Merkle-Damgard transform.

For simplicity let’s suppose we have a cryptographic hash function family hg: {0,1}%** — {0,1}*
for some k. The Merkle-Damgard transform produces a new family hlg: {0,1}* — {0,1}* defined
by

Wg(MiMsy ... My) = hg(hs(... hs(hs(0%, My), M) ..., My),).

(We assume there is some canonical padding that makes the length of every message be a multiple
of k.)

Claim 3. Suppose {hs} is an (s,e) cryptographic hash family for fixed-length messages, and hg
can be computed by a circuit of size t. Then {h's} is an (Q(s/t),e) cryptographic hash family for
variable-length messages.

Proof. Suppose A is a circuit of size s’ = Q(st) that finds a collision in h'y with probability .
Now consider the following circuit B: On input S, B runs A(S), and if A(S) outputs a collision
(My ... My, M; ... M) then B does as follows:

e If ¢ # ¢/, then output the collision ((z, £), (z', '), where = hg(... hs(hs(0F, My), My) ..., My)
and 2’ = hg(...hg(hs(0F, M), M3) ..., My).

e If / =/, recursively find the largest ¢ for which
hs(...hs(hg(0F, My), My) ..., My 1) # hs(... hs(hg(0F, M]), M) ..., M!_|) or M;# M|
and output the collision
(hs(...hg(hs(0F, My), My) ..., My 1), My), (hs(...hg(hg(0F, M), M) ..., M/), M)).

Such a t must exist, for otherwise the output of A is not a collision.

B can be implemented by a circuit of size O(s't) < s, contradicting the assumption that hg is a
(s,e) cryptographic hash family. O

3 One-way functions and one-way permutations

One-way functions are the most fundamental cryptographic primitive. Without them, most cryp-
tographic tasks, including encryption and authentication, are impossible to achieve. With them,
private key cryptography is possible — at least in principle. We already saw that private-key encryp-
tion and authentication can be realized from a pseudorandom generator. What is the advantage of
using a one-way function?

The advantage is mainly theoretical: A one-way function is a much simpler object than a pseu-
dorandom generator, and there are many examples of functions that we believe are one-way. In
contrast, constructing a pseudorandom generator is quite a bit harder, and because the definition
is stringent we may not have as much confidence in the construction. However there is a price
to pay for this confidence: Current constructions of pseudorandom generators based on (general)
one-way functions are extremely inefficient, so they have no practical value. However if we start
with a one-way function with extra properties — for example the function is a permutation — then
the resulting pseudorandom generators can be quite simple and useful. These techniques will also
come up when we talk about public-key encryption in a couple of lectures.

Intuitively, a one-way function f: {0,1}" — {0,1}"™ is a function that is easy to compute, but hard
to invert. “Easy to compute” means that on input x, f(z) can be calculated fast. “Hard to invert”
should mean that given f(z), it is hard to recover x. But recovering x from f(z) could be hard for
trivial information-theoretic reasons. For example, if f(x) = 0 for all x, then certainly recovering
x from f(z) will be hard because there are too many choices for z, so we are unlikely to guess the
correct one. A more reasonable inversion criterion is to find some 2’ so that f(z) = f(z').

Definition 4. A function f: {0,1}"™ — {0,1}"™ is (s,e) one-way if for every circuit A of size s,

Pry 013 [A(f(x)) = 2’ so that f(2/) = f(z)] <e.

The definition of one-way function makes sense even when ¢ is very large, say ¢ = 0.99. In fact,
it is possible to take a one-way function where ¢ is large and turn it into a new one-way function
where ¢ is small.

We can also give an asymptotic definition: A family of functions {f,: {0,1}* — {0,1}™™} is
one-way if f, is computable in time polynomial in n and for every polynomial p and sufficiently
large n, f, is (p(n),1/p(n)) one-way.

There are quite a few examples of functions that are believed to be one-way. In the subset sum
function, the inputs are integers x1,...,x (represented by bit strings of length k) and a subset
S C{1,...,k} and the function is defined as

SSk(x1, ... 2k, S) = (21, .. Tk, Y Ti)-
i€S
Clearly this function is efficiently computable; however the inversion problem: “Given k (random)
integers and a sum of some (random) subset of them, can you find the subset?” is believed to be
computationally intractable.

Here is another example. Let M be a 3n x n matrix and fys: {0,1}" — {0,1}3" be the function
fu(x,e) = Max +e, where z € {0,1}" is a random (column) vector, e € {0,1}3" is a random vector
that has exactly 0.1n entries equal to one, and the multiplication and addition are modulo two. It
is believed that when M is chosen at random, with high probability the function fas is one-way.
Conjectures have been made even for specific choices of M.

A one-way permutation is a one-way function f: {0,1}"™ — {0,1}" which is also a permutation of
{0,1}™. In a one-way permutation, for every y there is a unique x with f(z) =y, so the definition
is simpler: The adversary now has to output A(f(x)) = = with probability at least e.

One-way permutations are harder to construct than one-way functions. The only construction of
a candidate one-way permutation with domain and range {0,1}" that I know of is complicated.
Here is a candidate construction of a one-way permutation over the set {1,...,p— 1}, where p is a
suitable (large) prime number.

To introduce this function, we need a bit of algebra. For a prime number p, the multiplicative group
Z; is the set {1,...,p—1} together with the operation multiplication modulo p. This group is known
to be cyclic, which means that there is a generator g € Z, so that Z, = {g, g%, ...,g°"t =1}. Then
the function

EXPyp: 7, — 7, EXPyp(x) =g"

is a permutation of Z,. If p is a random prime chosen from the range {1,...,2"}, then a random
g € Z,, is a generator with high probability (as n grows), and it is believed that EX Py, is one-way
with high probability over the choice of a prime p and generator g.!

The fastest known algorithm for inverting EX P, ,, runs in time on'/?,

4 One-way functions and cryptography

While we have plenty of candidates for one-way functions, we do not know how to prove that they
exist. If one-way functions exist, then P cannot be equal to NP, so the problem of proving the
existence of one-way functions is considered very difficult.

We now make the case that one-way functions are necessary to have the kinds of cryptography we
have seen so far. Let us begin by arguing that one-way functions are a prerequisite for pseudorandom
generators — if pseudorandom generators exist, then so do one-way functions.

Claim 5. IfG: {0,1}" — {0,1}?" is an (s, &) pseudorandom generator, then G is an (s—t,e+27")
one-way function, where t is the circuit size of G.

!There are, however, bad choices of p that make EX P, , easy to invert, for example primes of the form 2™ 4 1.

Proof. If G is not a one-way function, then there is a circuit A of size s — ¢ so that
Pr, 0,13n[A(G(x)) = 2’ so that G(a2') = G(z)] > e+ 27"

However, for a uniformly chosen y ~ {0,1}2"

277/
Pr, (01320 [A(y) = 2’ so that G(z') = y] < Pry,(o132:[G (") = y for some 2] = Jon = 27"
Then the circuit D(z) = G(A(z)) can e-distinguish the output of G from a random string. O

Similarly, if cryptographic hash functions exist, so do one-way functions: If {hg: {0,1}" — {0,1}"/?}
is an cryptographic hash family, then for most S the function hg is a one-way function. We won’t
prove this, but here is some intuition: If hg(x) can be inverted, then one can produce a collision
by choosing a random = and running the inverter on hg(xz). This has probability at least 1/2 of
producing an input 2’ # x that maps to hg(x).

There are arguments of a similar nature that even more complicated cryptographic objects, like
message indistinguishable encryption and MACs secure against chosen message attack imply the
existence of one-way functions.

This gives overwhelming evidence that one-way functions are necessary in order to have private-key
cryptography. Are they also sufficient? There is a famous theorem of Hastad, Impagliazzo, Levin,
and Luby, which gives a “yes, but...” answer to this question:

Theorem 6. If (asymptotically secure) one-way functions exist, then (asymptotically secure) pseu-
dorandom generators exist.

The proof of this theorem gives a construction that allows us to turn any one-way function into a
pseudorandom generator. This construction is, however, very inefficient: If the input to the one-
way function is n-bits long, the corresponding pseudorandom generator takes inputs of size about
n'® and produces only about n additional bits of randomness. Recently the construction has been
improved by Haitner, Reingold, and Vadhan, and Vadhan and Zheng, but it still quite inefficient
for practical purposes.

If we are given a one-way permutation, there is a much simpler and more efficient construction of
pseudorandom generators, which we will show in the next lecture.

	Cryptographic hash functions
	The Merkle-Damgård transform
	One-way functions and one-way permutations
	One-way functions and cryptography

