
CSCI 5440: Cryptography Lecture 5
The Chinese University of Hong Kong 10 October 2012

1 Construction of CCA-secure encryption

We now show how the MAC can be applied to obtain a CCA-secure encryption scheme. Recall that
the attack we discussed (when applied to our CPA-secure encryption scheme) relied on the ability
of the adversary to obtain forged ciphertexts, which then allowed her to recover the plaintext. It
makes sense to apply a MAC to the ciphertext in order to prevent such forgeries.

For this application we will need to “upgrade” our definition of message unforgeability for MACs.
Recall that a MAC (Tag, V er) is (s, ε) secure against chosen message attack if any circuit A? of
size s with access to a tagging oracle cannot produce a forgery with probability more than ε, where
a forgery is a pair (M,T ) such that V er(K,M, T ) = 1 and M is different from all the queries A
submitted to its tagging oracle.

We will say a MAC is (s, ε) strongly secure against chosen message attack if under the same
assumptions A? cannot even produce even the following weaker form of forgery: We say (M,T ) is
a weak forgery if (M,T ) is different from all query-answer pairs from the interaction between A?

and its tagging oracle. Here is the difference. If A? queries the oracle on M , obtains a tag T , and
then outputs (M,T ′) for some T ′ 6= T such that V er(K,M, T ′) = 1, then (M,T ′) is a weak forgery
but not a forgery. You can check that the MAC from last lecture is strongly secure against chosen
message attack.

The scheme we construct will combine a CPA secure encryption scheme (Enc,Dec) with private key
KCPA and a MAC (Tag, V er) with private key KMAC. The resulting scheme (EncCCA, DecCCA) will
have as its private key the pair KCCA = (KCPA,KMAC) and the following encryption and decryption
algorithms:

EncCCA(KCCA,M) = (C, Tag(KMAC, C)), where C = Enc(KCPA,M)

DecCCA(KCCA, (C, T )) =

{
Dec(KCPA, C), if V er(KMAC, C, T ) = 1

error, otherwise.

Here is the intuition for this construction: For Eve to take advantage of the decryption oracle, she
ought to query the oracle at some ciphertext that is different from its challenge. However, we now
designed the decryption so that it returns the special message error unless the ciphertext C comes
with a proper authentication tag T . So if Eve wants to make use of this oracle, she must query it
at some pair (C ′, Tag(KMAC, C

′)) where C ′ is different from C. But this requires Eve to produce
a forged ciphertext. Since such a forgery is virtually impossible to produce (assuming the MAC
is secure), the decryption oracle should reveal essentially no useful information to the adversary,
because it will always return error. Then the adversary is only left with access to an encryption
oracle, and so we have reduced our task to arguing CPA security, which will follow from the CPA
security of (Enc,Dec).

One small complication is that we cannot actually assume the decryption oracle returns error most
of the time, because Eve could run the decryption oracle on an output produced by the encryption
oracle, in which case a valid tag will be produced. However, such queries are useless for Eve (since

1



she already knows the answer), so without loss of generality, we shall be able to assume that Eve
never makes such a query.

Theorem 1. If (Enc,Dec) is (s, ε) CPA-secure and (Tag, V er) is (s, ε/s) strongly secure against
chosen message attack, then (EncCCA, DecCCA) is (Ω(s/mt), 3ε) CCA-secure, where t is the circuit
size of Enc and Tag and m is the message length.

Proof. Let s′ = s/Cmt where C is a sufficiently large constant. For contradiction, suppose
(EncCCA, DecCCA) is not CCA-secure. Then there is a circuit ACCA of size s′ and messages M,M ′

such that∣∣Pr[A
EncCCA,Dec∗CCA
CCA (EncCCA(KCCA,M)) = 1]− Pr[A

EncCCA,Dec∗CCA
CCA (EncCCA(KCCA,M

′)) = 1]
∣∣ > 3ε.

(1)
Here we abuse notation a bit and use Dec∗CCA for the decryption algorithm that is allowed to query
every ciphertext except for the challenge provided as input to ACCA.

We first replace ACCA by an adversary that never queries its decryption oracle on an output of the
encryption oracle. This can be done by maintaining a table of all the queries and answers that ACCA

makes to its encryption oracle and consulting this table before the decryption oracle is queried.
The new adversary will have size O(s′m) (with a careful implementation). Abusing notation we’ll
call this adversary ACCA also.

We now want to use ACCA to design an adversary A that breaks CPA encryption. We will make A
simulate ACCA, but every time ACCA calls the decryption oracle, A will pretend that the decryption
oracle returns error. More formally, A? is the following randomized oracle circuit:

AE : On input C, choose a random key KMAC and simulate AE′,D′

CPA (C, Tag(KMAC, C)),
where E′ is an oracle that on input M returns (E(M), Tag(KMAC, E(M))), and D′

always returns error.

Notice that A? makes at most O(s′m) calls to the tagging algorithm and so it has circuit size

O(s′mt) ≤ s. By construction, AEnc(KCPA,·) behaves exactly like A
EncCCA(KCCA,·),Dec∗CCA(KCCA,·)
CCA , except

that the decryption oracle always returns error. (To simplify notation from now on we omit the

private keys.) We want to argue that if AEnc behaves very differently from A
EncCCA,Dec∗CCA
CCA then A

breaks the unforgeability of (Tag, V er), and otherwise A breaks the CPA security of (Enc,Dec).

Formally, by (1), at least one of the following three conditions must hold:∣∣Pr[A
EncCCA,Dec∗CCA
CCA (EncCCA(M)) = 1]− Pr[AEnc(Enc(M)) = 1]

∣∣ > ε or∣∣Pr[A
EncCCA,Dec∗CCA
CCA (EncCCA(M ′)) = 1]− Pr[AEnc(Enc(M ′)) = 1]

∣∣ > ε or∣∣Pr[AEnc(Enc(M ′)) = 1]− Pr[AEnc(Enc(M)) = 1]
∣∣ > ε.

The last inequality cannot occur because Enc is (s, ε) CPA-secure. So let us assume that the first in-

equality holds (the second one is symmetric). Since A
EncCCA,Dec∗CCA
CCA (EncCCA(M)) and AEnc(Enc(M))

are identically distributed conditioned on the decryption oracle never returning error, it follows

that the probability of Dec∗CCA returning something other than error in A
EncCCA,Dec∗CCA
CCA (EncCCA(M))

is greater than ε.

2



By the union bound, there exists a query round i so that the decryption oracle returns error in
rounds up to i− 1 but not in round i is at least ε/s. If the decryption oracle does not return error

in round i, then it must have been called on a query (Ci, Ti) such that V er(KMAC, Ci, Ti) = 1. Now
consider the following adversary AMAC that implements a chosen message attack on (Tag, V er):

AT
MAC: Choose a random key KCPA and simulate AE′,D′

CCA (Enc(KCPA,M), T (Enc(KCPA,M)),
where E′ is the oracle (Enc(KCPA, ·), T (Enc(KCPA, ·))) and D′ returns error for the
first i− 1 queries. Output the ith query (Ci, Ti) made to D′.

We claim that AT
MAC is a chosen message attack on (Tag, V er) that succeeds with probability at

least ε/s. Notice that AMAC only calls its tagging oracle when ACCA calls its encryption oracle,
in which case ACCA stores the answer (C, T ) in a lookup table. When ACCA makes the ith query
(Ci, Ti) to the decryption oracle, we know that (Ci, Ti) must be different from all such (C, T ), for
otherwise ACCA would have just looked up the answer instead of querying the oracle. So with
probability at least ε/s, AT

MAC produces a weak forgery (Ci, Ti) for (Tag, V er). Since A?
MAC has size

O(s′mt) ≤ s, (Tag, V er) cannot be (s, ε/s) strongly secure against message attack, contradicting
our assumption.

2 How not to combine encryption and authentication

The design of the CCA-secure authentication scheme in the last section came about naturally as
we attempted to resolve the malleability issue in the original, CPA-secure encryption scheme. The
malleability of the original scheme allowed an active adversary to take the encryption of any message
M and turn it into an encryption of another message M ′. To prevent this problem, we realized that
it is sufficient to authenticate the ciphertext. We then abstracted the problem of authentication
for general messages, gave a solution to it, and proved that authenticated CPA-secure encryption
provides a CCA-secure scheme.

But isn’t it possible to combine encryption and authentication in other ways that achieve CCA-
security? We will now see that some natural-looking combinations are in fact insecure – not only
do they fail to achieve CCA-security, but they may even break the CPA-security of the original
encryption scheme.

Encrypt-and-authenticate. The goal of encryption is to provide security, while the goal of
authentication is to provide message integrity. This suggests that together, encryption and authen-
tication should provide both security and integrity. Specifically, if (Enc,Dec) is CPA-secure and
(Tag, V er) is unforgeable against chosen message attack, will the following scheme be CPA-secure
and unforgeable against chosen message attack?

Enc′(K,M) = (Enc(KCPA,M), Tag(KMAC,M))

In general, such a scheme is not only CPA-insecure, but could be insecure even against single
message encryption! The fact that a MAC can be deterministic (in particular, the construction we
gave was a deterministic ones), while CPA-secure encryption requires randomness already indicates
that something is fishy. Suppose we want to CPA distinguish messages M and M ′. We query
the CPA oracle on M and compare the tag provided by the oracle with the tag provided to the

3



distinguisher. If the tag is the same, the distinguisher can be confident that it is looking at an
encryption of M and not of M ′.

In fact, if the MAC we used was a bit different, this scheme would be even insecure for a single
encryption. It could be that the tag of a message completely gives away the message: In fact,
the scheme Tag(K,M) = (M,FK(M)) is a perfectly valid MAC as long as FK is a pseudorandom
function, but it completely reveals the message! In this case there is clearly no security of any kind
in the encryption.

Authenticate-then-encrypt. What if instead of authenticating the encryption, we first authen-
ticate the message, and then encrypt the authenticated message?

Enc′(K,M) = Enc(KCPA, (M,Tag(KMAC,M)))

Dec′(K,C) =

{
M part of Dec(KCPA, C), if V er(KMAC , Dec(KCPA, C)) = 1

error, otherwise.

It is not difficult to see that if (Enc,Dec) is CPA-secure, then so is (Enc′, Dec′). Intuitively,
applying any function to a message (in particular, a MAC) should not affect indistinguishability of
encryptions, since the ciphertext of a CPA-secure scheme gives negligible information about what
was encrypted. More formally, if we can break the CPA-security of (Enc′, Dec′) then we can also
break the CPA-security of (Enc,Dec) by having the new adversary/encryption oracle apply a tag
before simulating the old adversary/encryption oracle. It is a good exercise to work out the details.

In general, however, (Enc′, Dec′) will not be CCA-secure.1 Here is an example. Suppose (Enc,Dec)
is a modified CPA-secure encryption scheme where Enc always applies a zero at the end of the
ciphertext, and Dec ignores this zero in the decryption. It is easy to see that the resulting scheme is
still CPA-secure. However, an adversary can now mount a chosen ciphertext attack: On a challenge
ciphertext C, change the last bit of C from 0 to 1 and call the decryption oracle. This attack will
reveal the original message (and its tag).

While this attack is contrived, one can imagine practical scenarios where the ciphertext contains
some extra information that is ignored in the decryption – an end of file symbol, routing information,
the header of an email. On the other hand the ciphertext attack sounds a bit unnatural: Why
would a decryption algorithm agree to decode an incorrectly formatted ciphertext? There are
more natural examples, where by merely obtaining the knowledge that a ciphertext was incorrectly
formatted, the adversary can completely decrypt its challenge ciphertext.

Encryption and authentication with the same key. In our construction of CCA-secure en-
cryption it was very important that we used different private keys for encryption and authentication.
Using the same key for both can make the scheme insecure.

It is possible to give an example where our method for constructing CCA-secure encryption becomes
insecure when the encryption key and the authentication keys are identical, but I don’t know of a
simple construction. Here is a direct construction that is based on similar ideas. This construction

1(Enc′, Dec′) may be CCA-secure for specific implementations of the CPA-secure scheme and the MAC used in
the construction. However, it will not be so in general, which means that it is unsafe to use this design methodology
for combining encryption and authentication.

4



is CCA-secure when instantiated with independent keys, but not even CPA-secure when the same
key is reused twice:

Enc((K1,K2),M) = (S, FK1(S) + M,FK2(S + M)) where S is a random string

Dec((K1,K2), (S,C, T )) =

{
C + FK1(S), if FK2(S + C + FK1(S)) = T

error, otherwise.

In conclusion: Cryptographic components (in particular, encryption and authentication) cannot be
combined in arbitrary ways. Such combinations may sometimes even be harmful and destroy the
security properties of the original components.

3 Authenticating messages of arbitrary length

One annoying aspect of our definition of authentication is that it only works for messages of a given
length m. What if the length of the message is not known in advance?

This is not merely a technical issue. To explain, let us go back to our original construction of MACs.
To tag a message of length m, we used the scheme Tagm(M) = FK(M), where FK : {0, 1}m →
{0, 1}k is a pseudorandom function.

Now suppose we want to tag a message M1M2 of length 2m (where M1 are the first m bits and M2

are the last m bits). To tag this message, we need a pseudorandom function F ′K that takes 2m bits
of input. Suppose FK was obtained by the GGM construction from some pseudorandom generator
G. We can get F ′K by extending the construction FK for another m levels, namely

F ′K(x1 . . . x2m) = Gx2m(. . . Gx1(K) . . . ).

In particular, F ′K(M1M2) = FFK(M1)(M2). Then the scheme Tag2m(M1M2) = F ′K(M1M2) (with
the appropriate verification procedure) is certainly a secure MAC (against chosen message attack)
for messages of length 2m. But what happens if we use Tagm and Tag2m together? Consider the
following attack: I first use the tagging oracle for Tagm to obtain a tag FK(M) for some message
M ∈ {0, 1}m. Now I can produce the tag F ′K(MM) = FFK(M)(M), which is a forgery for Tag2m!
So it is possible to use short message tags in order to produce forgeries for long message tags.

One possible solution would be to use this scheme with an independently chosen key for every input
length. However this is quite cumbersome. Without an a priori length on the messages that Alice
and Bob want to authenticate, Alice and Bob will need infinitely long keys.

We will show an alternative solution which will allow authentication of arbitrarily long messages
using private keys f fixed length. Before doing so, let us discuss the changes in the definition of
MAC that need to be implemented to handle the variable-length case. In the functionality part,
we now allow Tag and V er to take arbitrary length messages as inputs – that is, they now have
type Tag : {0, 1}k × {0, 1}∗ → {0, 1}t and V er : {0, 1}∗ × {0, 1}t → {0, 1}. The security part of the
definition doesn’t change. However, the change in the functionality does have an effect on security,
because an adversary that tries to produce a forgery of length m is now allowed to invoke the
tagging oracle on messages that are shorter or longer than m.

Since we already have a fixed-length message MAC, it makes sense to turn it into a variable-length
message one. For simplicity, let’s suppose we start with a MAC (Tag, V er) for message length

5



k (that also produces tags of length k). Now say we want to authenticate a message of length
m > k. A natural thing to try is to split this message into ` = m/k blocks M1 . . .M` of length k
and authenticate each block separately:2

Tag′(K,M) = (Tag(K,M1), . . . , Tag(K,M`))

Is this MAC secure against chosen message attack? A moment’s thought shows that it isn’t – in
fact it is not even secure as a fixed-length scheme: Given the tag of M1M2, we can produce the tag
of M2M1 by rearranging the blocks.

This attack suggests including some additional information that fixes the order of the blocks, like

Tag(K,M) = (Tag(K, (1,M1)), . . . , Tag(K, (`,M`)))

Now it is not possible to reorder blocks from the same message anymore. However, we can do
an attack where we combine blocks from two different messages: If we see the tags of M1M2 and
M ′1M

′
2, we can produce the tag of M1M

′
2. To guard against this type of attack, we introduce a

random identifier:

Tag′(K,M) = (S, Tag(K, (S, 1,M1)), . . . , Tag(K, (S, `,M`))) where S is random.

Under this scheme, it appears difficult to combine the tags of different messages. However there is
still a type of attack that can be done: The tag of M1M2 reveals the tag of M1! To prevent this
attack, we want to mark the last block of M with a special “end of message” symbol. One way to
achieve this is to include an extra bit in each block which is set to 1 if this is the last block in the
message, and 0 otherwise.

We have arrived at our candidate scheme for encryption of variable length messages. Let (Tag, V er)
be a MAC for message length m = 3k + 1. We construct a variable-length MAC (Tag′, V er′) as
follows:

Tag′(K,M) = (S, Tag(K, (S, 1,M1, 0)), Tag(K, (S, 2,M2, 0)),

. . . , Tag(K, (S, `,M`, 1))) where S ∼ {0, 1}k is random.

V er′(K,M1 . . .M`, (S, T1, . . . , T`)) =


1, if V er(K, (S, i,Mi, 0)) = 1 for 1 ≤ i ≤ `− 1

and V er(K, (S, `,M`, 1)) = 1

error, otherwise.

Here S, i, and Mi as represented by k bit strings.3

Claim 2. If (Tag, V er) is a (O(s′t), ε′/s′ − s′/2k) secure against chosen message attack, then
(Tag′, V er′) is (s′, ε′) secure against chosen message attack, where t is the size of the tagging
circuit Tag.

Proof. Let’s assume (Tag′, V er′) is not (s′, ε′) secure, so there exists an oracle circuit A′? of size s′

such that A′Tag′ produces a forgery with probablity ε′. Consider the following circuit A?

2We’ll assume m divides k; this can be handled at the message level by padding.
3Technically, this means Tag can only be used to sign messages up to length 2k, but this is not a practical

limitation.

6



AT : Simulate the circuit A′?. Whenever A′? calls its tagging oracle on input M , choose
a random string S and answer its query by

(S, T (S, 1,M1, 0), T (S, 2,M2, 0), . . . , T (S, `,M`, 1)).

when A? outputs a possible forgery (M1 . . .M`, (S, T1, . . . , T`)), choose a random i be-
tween 1 and ` and output ((S, i,Mi, 0), Ti) if i < ` and ((S, i,Mi, 1), Ti) if i = `.

Then A has size O(s′t). We now show that ATag produces a forgery with probability at least ε.
Let Sj be the random string that A? chooses when the jth oracle call of A′? is made. We will show
that

Pr[ATag outputs a forgery] ≥ 1

s′
Pr[A′Tag′ outputs a forgery and all Sj are different].

To see this, assume that A′Tag′ outputs a forgery F = (M1 . . .M`, (S, T1, . . . , T`)) and all Sj are
different. Since F is a forgery, A′? must not have queried its oracle on M1 . . .M`. We claim that A?

must not have queried its oracle on at least one of (S, 1,M1, 0), . . . , (S, `− 1,M`−1, 0), (S, `,M`, 1).
For if A? has made all these queries, then S must equal Sj for some j and because this Sj is unique,
all these queries were made in the same round, and A′? must have queried M1 . . .M` in that round.
It follows that at least one of ((S, 1,M1, 0), T1), . . . , ((S, `− 1,M`−1, 0), T`−1), ((S, `,M`, 0), T`) is a
forgery, so ATag must output a forgery with probability at least 1/` ≥ 1/s′ under these conditions.

To finish the proof, we calculate that

Pr[A′Tag′ outputs a forgery and all Sj are different]

≥ Pr[A′Tag′ outputs a forgery]− Pr[not all Sj are different].

By assumption, the first probability is at least ε′. We bound the second one as follows:

Pr[not all Sj are different] ≤ Pr[Sj 6= Sj′ for some j 6= j′] ≤
∑
j 6=j′

Pr[Sj 6= Sj′ ] ≤
(
s′

2

)
· 2−k

because there are at most
(
s′

2

)
pairs (j, j′). Putting all the inequalities together we have that

Pr[ATag outputs a forgery] ≥ 1

s′

(
ε′ −

(
s′

2

)
2−k
)
≥ ε′

s′
+

s′

2k
.

7


	Construction of CCA-secure encryption
	How not to combine encryption and authentication
	Authenticating messages of arbitrary length

