
CSCI 5440: Cryptography Lecture 3
The Chinese University of Hong Kong 26 September 2012

1 Indistinguishability for multiple encryptions

We now have a reasonable encryption scheme, which we proved is message indistinguishable, and
so semantically secure, assuming pseudorandom generators exist. Let’s recall how it works. Given
a pseudorandom generator G : {0, 1}k → {0, 1}m, encryption and decryption work like this:

Enc(K,M) = G(K) + M Dec(K,C) = G(K) + C

One thing that is unrealistic about our scheme is that it allows Alice and Bob to communicate
only one message. In reality, we would expect them to exchange multiple messages. Is the scheme
secure in such a scenario?

How do we define security for multiple messages? The setting is the same as before, but now there
are c messages that Alice and Bob want to communicate. Even defining the functionality of such a
scheme raises several questions: Are the messages always sent from Alice to Bob, or can they also
go the other way? Are they always received in the same order in which they are sent? Should Bob
be required to decode the second message even if he hasn’t received the first one? And so on.

Let us not worry too much about formalizing all these functionality requirements for now, since
eventually we will be able to achieve even the strongest ones. Instead let us focus on the security
requirement. Just as before, our notion of security will require that Eve cannot distinguish between
scenarios where different messages are sent:

Definition 1. A private-key encryption scheme (Enc,Dec) with key length k and message length
m is (s, ε) message indistinguishable for c messages if for all messages M1, . . . ,Mc,M

′
1, . . . ,M

′
c ∈

{0, 1}m:

|Pr[A(Enc(K,M1), . . . , Enc(K,Mc)) = 1]− Pr[A(Enc(K,M ′1), . . . , Enc(K,M ′c)) = 1]| ≤ ε

for every circuit A of size at most s.

You can also define semantic security for multiple messages and show it is an equivalent notion.

Does the encryption scheme that we saw achieve multiple message indistinguishability? It is not
difficult to see that it doesn’t – think of what happens when the same message is sent twice: Then
the encodings of the two messages are the same, so by adding them up Eve can find out that the
same message has been sent twice.

It seems that our source of trouble is that we are using the same portion of the pseudorandom
generator output to encrypt multiple messages. One way around this is to use the first m bits to
encrypt the first message, the second m for the second one, and so on. (This amounts to treating
the c messages as one long message of length cm.) However, an annoying aspect of this solution is
that the encoder and decoder need to keep state: In particular Bob must know when he is looking
at the ith message so he can start his decoding at the correct position. If the messages are always

1

sent sequentially from Alice to Bob and they are received in the same order this is not a problem,
but that is not always a realistic assumption.

Can we design a stateless encryption scheme for multiple messages?1 As a first observation, notice
that no deterministic encryption algorithm is up to the task, because it is vulnerable to the same-
message attack that broke our original single message scheme. So we need to use randomness in
the encryption. But before we go onto designing such a scheme, it will be convenient to introduce
a new, stronger notion of security.

2 The chosen plaintext attack

For a moment let’s go back to the setting of single message encryption. Recall the objective
of message indistinguishability: Eve cannot tell apart the encryption of any two messages. An
implicit assumption that we made when we defined message indistinguishability is that Eve is a
passive adversary: She gets to observe all she wants (apart from the secret key), but does not get
to interact with the scheme in any way.

Here is an imaginary scenario in which Eve can do more. Perhaps what Alice is sending to Bob
is the encryption of messages Eve already knows (say the contents of an inflammatory email that
Eve wrote about Bob). Can this information help Eve recover the content of other messages that
Alice sends to Bob?

Here is how we formalize this scenario. We want to allow Eve the ability to encrypt some messages
(without knowing the key), and ask if this ability helps her distinguish other encryptions. One
possibility that comes to mind is to give Eve the private key so she can encrypt her own messages.
But once Eve has the key, she can also decrypt anything she wants. How do we allow Eve to
encrypt without access to the private key?

We will do so with the help of a theoretical device called an oracle. Informally, an oracle is a black
box that allows us to perform a given functionality without getting any information about how that
functionality is implemented. In programming we do this all the time: Suppose you are writing
a computer program that does data analysis and you need to calculate the eigenvalues of some
matrix. Instead of writing your own function f for this, it makes more sense to use a library: In
such a case you only care about the interface of f (i.e. how many arguments it takes and what those
arguments mean), but not about its implementation. In cryptography (and complexity theory) we
make the stronger requirement that not only do you not care about the implementation of f , but
you cannot figure out what it is even if you wanted to.

Formally, an oracle circuit, denoted by C?, is an augmented kind of circuit which, in addition to
its AND, OR, and NOT gates, also has special “oracle gates”, each of which has k inputs and m
outputs. The size of Cf is the number of AND, OR, and function gates. To give an oracle circuit
meaning we need to instantiate the oracle gates by an oracle O : {0, 1}k → {0, 1}m. To evaluate an
oracle circuit CO on input x we evaluate the gates in order as usual. An evaluation of an O-gate
on input y is simply the output O(y).

We will allow the oracles to be randomized, that is the output O(y) is not a single value but a
random variable. In that case, we will assume that different evaluations make use of independent

1In our formalism, the encryption algorithm Enc is stateless by definition, since it only gets a key and a message
as inputs.

2

randomness.

To describe the chosen plaintext attack, we will give Eve access to an encryption oracle. This is
simply an oracle that computes the function f(M) = Enc(K,M). This oracle gives Eve the ability
to encrypt arbitrary messages but without seeing the key.

Definition 2. A private-key encryption scheme (Enc,Dec) (with key length k and message length
m) is (s, ε) message indistinguishable for a chosen plaintext attack (in short CPA message indis-
tinguishable) if for every oracle circuit A? of size at most s and every pair of messages M,M ′:

|Pr[AEnc(K,·)(Enc(K,M)) = 1]− Pr[AEnc(K,·)(Enc(K,M ′)) = 1]| ≤ ε.

In this definition, the probability is taken over the choice of key K ∼ {0, 1}k, the randomness of
Enc, and the randomness of A. We use Enc(K, ·) to denote the function that on input M , outputs
Enc(K,M).

A chosen plaintext attack allows Eve to encrypt arbitrary messages of her choice. After seeing
all these encryptions, can Eve tell the encryptions of M and M ′ apart? If the encryption scheme
is deterministic, she certainly can: She merely needs to ask the oracle for the encryptions of M
and M ′ and see which one she holds in her hand. But if the scheme is randomized, it could be
that although she asks the oracle to give her encryptions of M , the oracle returns a different one
every time, and this may not give her much information about the encryptions she is trying to
distinguish.

It turns out that CPA message indistinguishability is a fairly strong requirement: In particular it
implies indistinguishability for multiple messages.

Claim 3. If (Enc,Dec) is (s, ε) CPA message indistinguishable, then it is (s − cm, cε) message
indistinguishable for c messages.

Proof. We prove the contrapositive. Suppose (Enc,Dec) is not (s, cε) message indistinguishable
for c messages. Then there exist two sequences of c messages (M1, . . . ,Mc) and (M ′1, . . . ,M

′
c) and

a circuit A of size s such that

|Pr[A(Enc(K,M1), . . . , Enc(K,Mc)) = 1]− Pr[A(Enc(K,M ′1), . . . , Enc(K,M ′c)) = 1]| > cε (1)

We will apply the hybrid argument. Consider the following sequence of distributions H0, H1, . . . ,Hc:

H0 : Enc(K,M1), Enc(K,M2), · · · , Enc(K,Mc)
H1 : Enc(K,M ′1), Enc(K,M2), · · · , Enc(K,Mc)
H2 : Enc(K,M ′1), Enc(K,M ′2), · · · , Enc(K,Mc)

...
...

Hc : Enc(K,M ′1), Enc(K,M ′2), · · · , Enc(K,M ′c)

Equation (1) says that |Pr[A(H0) = 1] − Pr[A(Hc) = 1]| > cε. By the triangle inequality, there
must exist some i, where 1 ≤ i ≤ c, such that

|Pr[A(Hi−1) = 1]− Pr[A(Hi) = 1]| > ε

Notice that the distributions Hi−1 and Hi only differ in position i: They are both of the form

(Enc(K,M ′1), . . . , Enc(K,M ′i−1), Enc(K,M), Enc(K,Mi+1), . . . , Enc(K,Mc))

3

where M = Mi in Hi−1 and M = M ′i in Hi.

Using A, we now design a circuit BEnc(K,·) that CPA distinguishes messages Mi and M ′i . On in-
put a ciphertext C, B calls its oracle on inputs M ′1, . . . ,M

′
i−1,Mi+1, . . . ,Mc to obtain ciphertexts

C ′1, . . . , C
′
i−1, Ci+1, . . . , Cc, respectively and outputs A(C ′1, . . . , C

′
i−1, C, Ci+1, . . . , Cc). By construc-

tion, B is an oracle circuit of size at most s such that

Pr[BEnc(K,·)(Enc(K,Mi)) = 1] = Pr[A(Hi−1) = 1]

and Pr[BEnc(K,·)(Enc(K,M ′i)) = 1] = Pr[A(Hi) = 1]

and so
|Pr[AEnc(K,·)(Enc(K,Mi)) = 1]− Pr[AEnc(K,·)(Enc(K,M ′i)) = 1]| > ε.

Besides being a convenient theoretical tool, CPA security also models certain cryptographic attacks
that occur in practice. The following paragraph describes one of the tactics used in the breaking
of the Enigma Codes (from the Wikipedia page on Cryptanalysis of the Enigma):

Occasionally, when there was a particularly urgent need to break German naval Enigma,
such as when an Arctic convoy was about to depart, mines would be laid by the RAF
[Royal Air Force] in a defined position, whose grid reference in the German naval system
did not contain any of the words (such as sechs or sieben) for which abbreviations or
alternatives were sometimes used. The warning message about the mines and then
the “all clear” message, would be transmitted both using the dockyard cipher and the
U-boat Enigma network.

3 Towards CPA security

We have now reduced the task of constructing an encryption scheme that is indistinguishable for
multiple messages to the task of constructing CPA message indistinguishable encryption. The
construction will make use of a powerful cryptographic primitive called a pseudorandom function.

To gain some intuition about how to get CPA security, let’s start with the ingredient that we have,
namely a pseudorandom generator G : {0, 1}k → {0, 1}t. We observed that the naive use of the
output G(K) as a pad to mask the message is inadequate because the scheme is deterministic, and
so the encryption of the same message always comes out identical. Here is an idea: Think of the
output of G as a stream of pseudorandom bits. Our current scheme takes the message M and adds
it to the first m bits of G(K). How about, instead of using the first m bits, we take a random offset
r and output

(M1 + G(K)r,M2 + G(K)2, . . . ,Mm + G(K)r+m−1)

where G(K)i is the ith bit of the output of G? (if r+m−1 > t, you can wrap around to the initial
part of G(K).)

Now the previous attack doesn’t work, because different encryptions will use different values of r,
which won’t always hit the same part of the pseudorandom stream G(K). However, we have a
problem: How can Bob decrypt without knowing r? So it makes sense to include r as part of the
encryption too:

Enc(K,M) = (r,M1 + G(K)r,M2 + G(K)2, . . . ,Mm + G(K)r+m−1)

4

where r is a random number between 1 and t. Now Bob can decrypt using the algorithm

Dec(K, (r, C1, . . . , Cm)) = (C1 + G(K)r, . . . , Cm + G(K)r+m+1).

How secure is this scheme? It depends on the value of t. One attack that Eve can always run when
she wants to CPA distinguish between C = Enc(K,M) and C ′ = Enc(K,M ′) is to ask the oracle
for 1/t encryptions of M . With constant probability, one of these encryptions will be identical to
C, while we expect the chances of Eve hitting C ′ to be much smaller, on the order of 2−m. So if t is
reasonable – say polynomial in k – then Eve would be able to implement the attack in polynomial
time and get constant distinguishing advantage.

To make the scheme more secure, it seems that what we want is a pseudorandom generator
G : {0, 1}k → {0, 1}t where t is very large, say super-polynomial in k. Can we obtain such a
pseudorandom generator? Last lecture we saw a technique that converts a pseudorandom genera-
tor G0 : {0, 1}k → {0, 1}k+1 into one that produces many bits of output. However, we had to pay
a price: Each time we wanted an extra bit we had to do another evaluation of G0, so if we want t
bits we must evaluate G0 t times. It means that Alice and Bob must do an amount of work that
is larger than the one we allotted Eve to do the inversion, and so this scheme does not meet our
standards of being simultaneously efficient and secure.

The reason that a G with many output bits is too inefficient to evaluate is because the length
extension of pseudorandom generators from last lecture was sequential: To obtain the rth bit of
G(K), we have to first evaluate all the r − 1 bits before it. Can we come up with a parallel
construction instead? The answer is yes, but to understand why it will help to shift perspective a
bit. Instead of thinking of the output G(K) as a sequence of t bits, it will be more helpful to think
of it as a function that given an index r outputs the value G(K)r.

4 Pseudorandom functions and CPA security

Definition 4. A collection of functions {FK : {0, 1}k → {0, 1}m | K ∈ {0, 1}k} is called an (s, ε)
pseudorandom function family if for every oracle circuit A? of size at most s,

|PrK∼{0,1}k [AFK = 1]− PrR[AR = 1]| ≤ ε,

where R is a random function from {0, 1}k → {0, 1}m.

It is common to abuse terminology and say “pseudorandom function” for a random member of a
pseudorandom function family. Let’s explain this definition. Going back to the analogy with pseu-
dorandom generators, we can think of FK as a list of all its 2k values FK(0k), FK(0k−11), . . . , FK(1k),
called the truth table of FK . If we put them together, we obtain a list of m2k bits. The definition
essentially postulates that this list of m2k bits when K is random should be computationally indis-
tinguishable from a truly random list of as many bits, i.e. from the truth table of a truly random
function.

Notice that this is a very strong requirement: There are 2k functions FK in the pseudorandom
family {FK}, while there are 2m2m possible functions R. Although 2k is a tiny fraction of 2m2k ,
the definition asks that the two collections of functions be indistinguishable!

Notice also that the distinguisher A here is given oracle access to the function it is supposed to
distinguish. In contrast, when we defined pseudorandom generators, we gave the distinguisher

5

access to the output of the generator. The reason for this is technical: It is infeasible to feed the
whole description of the function (which is m2k bits long) as the input to an “efficient” distinguisher
A (whose size would be polynomial in m and k). So we provide the function as an oracle instead.
The distinguisher is allowed to evaluate the oracle in arbitrary places and use the results of previous
evaluations in arbitrary ways, but it cannot evaluate the mystery function more than s times, as
the size of the distinguisher is at most s.

Let us now construct CPA secure encryption from an efficiently computable pseudorandom function
family {FK}. The idea is to use the output of FK evaluated at a random place as a pad to mask
the message. Since the domain of FK is so large, even when FK is evaluated many times, it is
unlikely to hit the same seed twice, thwarting the attack we had when a pseudorandom generator
was used instead of {FK}.

Formally, consider the following encryption scheme (Enc,Dec):

Enc(K,M) = (S, FK(S) + M) Dec(K, (S,C)) = (FK(S) + C).

Here S denotes a random string in {0, 1}k (chosen by Alice). We now prove the security of this
scheme.

Claim 5. If {FK} is an (s, ε) pseudorandom function family, then (Enc,Dec) is (s, 2ε + s/2m)
CPA message indistinguishable.

The idea of the proof is that as long as the adversary A who is trying to CPA distinguish between
the encryptions of M and M ′ invokes the encryption oracle on distinct values of S (that A has
no control over), what he observes are messages masked with distinct pseudorandom strings. If
FK is pseudorandom, this should look like completely random information to him and so he gets
essentially no help from the oracle in distinguishing the two encryptions.

Proof. For contradiction, suppose (Enc,Dec) is not (s, 2ε+ s/2m) CPA message indistinguishable,
so there exists an oracle circuit A? of size at most s and a pair of messages M , M ′ so that

|Pr[AEnc(K,·)(Enc(K,M)) = 1]− Pr[AEnc(K,·)(Enc(K,M ′)) = 1]| > 2ε + s/2m. (2)

The first step is to replace the pseudorandom function FK in Enc with a truly random function R
and argue that this does not affect the distinguishing probability by much. Let REnc be an imagi-
nary encryption scheme whose key is a truly random function R and REnc(R,M) = (S,R(S)+M).

We claim that

|Pr[AEnc(K,·)(Enc(K,M)) = 1]− Pr[AREnc(R,·)(REnc(R,M)) = 1]| ≤ ε (3)

If this was not the case, then the {FK} could not be (s, ε)-pseudorandom, for the following oracle
circuit BF would distinguish it:

BF : First, choose a random S ∼ {0, 1}k and run A?(S, F (S)+M). Whenever A? makes
an oracle query Q, respond by (T, F (T) + Q) where T is a random string in {0, 1}k.

By construction, B? has size s, BFK has the same distribution as AEnc(K,·)(Enc(K,M)), and BR

has the same distribution as AREnc(R,·)(REnc(R,M)), so |PrK∼{0,1}k [AFK = 1]−PrR[AR = 1]| > ε
and FK is not (s, ε)-pseudorandom. So equation (3) must hold, and by analogy we also get that

|Pr[AEnc(K,·)(Enc(K,M ′)) = 1]− Pr[AREnc(R,·)(REnc(R,M ′)) = 1]| ≤ ε.

6

Using (2) and the triangle inequality, we have that

|Pr[AREnc(R,·)(REnc(R,M)) = 1]− Pr[AREnc(R,·)(REnc(R,M ′)) = 1]| > s/2m.

Expanding the expression for REnc(R,M) and REnc(R,M ′),

|Pr[AREnc(R,·)(S,R(S) + M) = 1]− Pr[AREnc(R,·)(S,R(S) + M ′) = 1]| > s/2m. (4)

Let E denote the event that in at least one of the queries made by A in AREnc(R,·), the oracle
REnc(R, ·) returns an answer of the form (S, ·). (Notice that this event is independent of the
input to A?.) The random variables AREnc(R,·)(S,R(S) + M) | E and AREnc(R,·)(S,R(S) + M ′) |
E are identically distributed: Conditioned on S never appearing in the oracle answers, R(S) is
independent of all other random variables, so it can be replaced by a new random variable T that
is independent of E as well of all the other random variables. Therefore the random variables

AREnc(R,·)(S, T + M) | E and AREnc(R,·)(S, T + M ′) | E

are both identically distributed to AREnc(R,·)(S, T) | E. Therefore

Pr[AREnc(R,·)(S,R(S) + M) = 1 | E] = Pr[AREnc(R,·)(S,R(S) + M ′) = 1 | E]

so by a conditional probability calculation, we have

|Pr[AREnc(R,·)(S,R(S) + M) = 1]− Pr[AREnc(R,·)(S, T + M) = 1]| ≤ Pr[E] ≤ s/2m

which contradicts (4).

7

	Indistinguishability for multiple encryptions
	The chosen plaintext attack
	Towards CPA security
	Pseudorandom functions and CPA security

