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1 Database privacy: an example

Suppose we have a database containing sensitive information (e.g. students’ grades, patients’
medical records) and we want to enable an outside user to query this database, while preserving
the “privacy” of the data. Let’s start with an example. Here is a database of students and their
CSCI 5440 grades:

name gender grade
Aisha  female  fail

Benny male pass
Erica  female  fail
Fabio  male fail
Johan male fail
Ming  male pass
Orhan male pass
Vijay  male pass
Vuk male pass
Yoshi  male pass

Assume that the names and genders are public and the grades are private. Eve now asks us to
provide her with the following information:

1. How many students passed the course?
2. Did Orhan pass the course?

3. How many female students failed the course?

We would like to provide Eve with the information she wants, but we don’t really want her to know
the individual grades of students in the class. If we tell her that 6 of students passed the class in
response to her first question, she would be getting information about the group as a whole, but
she couldn’t tell much about how any of the individual students did in the class. But we may refuse
to answer her second question as it concerns the privacy of a specific participant in the database.
How about the third question? In this specific instance, if we told her that 2 female students failed
the course, she would be able to deduce Aisha’s and Erica’s grades, violating individual privacy.

Hospitals commonly release their medical data to researchers who want to do various statistical
analyses (e.g. are cancer rates unusually high among patients that are at least 200cm tall). To
protect patients’ privacy it is common to remove identifying information like names and ID numbers.
However, based on the remaining data and some prior knowledge it is often possible to recover
unintended information about individuals, especially if one has access to several databases.

Database privacy studies to what extent one can provide useful answers to certain types of users’
queries, while preserving the database participants’ privacy. There are very few settings in which



one can provide completely accurate answers and fully preserve the privacy of the users. For
example, after finding out that the failure rate of CSCI 5440 is 40%, Eve may conclude that the
CSCI 5440 students are a bad lot and change her previously favorable opinion of Orhan.

We can achieve some interesting tradeoffs between the utility of query answers and the privacy
of database participants by allowing randomized and approximate answers. Let’s go back to the
above example. When Eve asks a query @, instead of giving her the true answer A, consider the
following mechanism that answers by A + N, where N is a random variable sampled from the
following distribution:
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That is, if the actual answer to query () is A, we answer A exactly with probability 25%, we answer
within the range A + 1 with probability 55%, we answer within A 4+ 2 with probability 73%, and
so on. This answer may still be useful for Eve as she finds out an approximation to her query.

On the other hand, when Eve asks ”How many female students failed the course” and we happen
to answer 1, Eve may have trouble telling whether the true answer to her query was 0, 1, or 2.
Suppose that before she made her query, Eve believed that each student fails the class independently
with probability 40%. How did the information that she found affect her belief that Aisha failed
the class? Let AF and E'F denote the events that Aisha and Erica failed the class, respectively.
Working over the probability space induced by Eve’s prior’s beliefs and the randomness of the
mechanism we obtain:

Pr[A+ N =1| AF]Pr[AF]
Pr[A+ N =1]

Pr[AF | A+ N =1] =

where

Pr[A+ N =1| AF,EF)
Pr[A+ N =1| AF,EF] =Pr[N =0] = 0.25
]

[

[ 0
Pr[A+ N =1| AF,FF| =Pr[N =0] =0.25
Pr[A+ N =1| AF,EF] = Pr[N = 1] = 0.15.

By averaging, we obtain

PrfA+N =1| AF] =0.4-0.15+ 0.6 - 0.25 = 0.21
Pr[A+ N =1]=04%-0.15+0.4-0.6-0.25+ 0.6 - 0.4 - 0.25 + 0.6% - 0.15 = 0.198



and so 0.21.0.4
PrfAF | A+ N =1] = == = — (.43,
AR A+ = 10 04

Therefore Eve’s belief in the event “Aisha failed the class” changed only from 40% to 43% after
observing the answer to the query.

2 Definitions of privacy

Let’s try to come up with a definitional framework that captures the above intuition. Given
a database x and a query ¢, we want to design a (possibly randomized) answering mechanism
M (z, q) with the following properties:

e Utility: The value M(x,q) is a good approximation to the actual answer that one would
obtain when ¢ is queried from zx.

e Privacy: Seeing the answer M (z,q) does not change one’s beliefs about any specific row of x
by much. In a probabilistic (Bayesian) model of beliefs, we can formalize this requirement as
follows. For any prior probability distribution X over the rows of the database modeling the
beliefs about various individuals, the posterior distribution of the ith row X; of X conditioned
on seeing the answer M (X, ¢q) is “close” to the distribution X;.

Formally, we think of each row in a database table as taking values in some finite set D. For
instance, D could consist of all triples of the form (name, gender, grade). Let’s fix the number n of
rows in the database. A database table x is an element of the power set D™. A query is a function
q from D™ to some set of values.

Among all queries, the following kind will play an important role. The counting query qp associated
to predicate P: D — {true, false} is an integer-valued query given by the formula

gp(x) = number of rows i such that P(x;) is true.

For example, the queries “How many students passed”, “Did Orhan pass”, and “How many female
students passed” are all counting queries for the grades table.

A mechanism is a possibly randomized algorithm that on input a database z and query ¢ outputs
an answer M (x,q). If M is randomized, for every fixed x and ¢, M(z,q) is a random variable.
Intuitively, the mechanism M (z, q) should be useful if the mechanism’s answer M (z, q) is typically
close to the actual answer ¢(z). I do not know of a definition of utility that captures all settings of
interest so I won’t attempt to give one. For numerical queries, one natural measure of utility could
be the inverse of the standard deviation

1
max,,q \/E[(M (2, q) — q(2))?]

utility (M) =

Let us now define privacy. Following the intuition we suggested, we want to say that for any
prior distribution X on n-row tables, no test can distinguish the ith row X, from the posterior
distribution on the ith row after observing the mechanism’s answer M(x,q). Here is a fairly strong
quantitative definition that captures this:



Definition 1. Let ¢ be a query over an n-row database x € D™. We say mechanism M is e-
semantically private for ¢ if for every distribution X ~ D", every i € [n], every y such that
Pr[M(X,q) = y] > 0, and every test A: D — {0,1},

[PHA(X;) = 1] = PrA(X,) = 1| M(X,q) = y]| <=

where X; is the i-th row of X.

By analogy with cryptography, we might expect that there is also a definition that talks about
indistingushability of tables. This is the notion of differential privacy.

Definition 2. We say mechanism M is e-differentially private for ¢ if for every i € [n], every pair
of tables x, 2’ that differ only in row i, and every test A: D — {0,1},

Pr[A(M(z,q)) = 1] < e Pr[A(M (2, q)) = 1]. (1)

To understand this definition let us look at the extreme setting where ¢ = 0 so ¢ = 1. Then
we must have Pr[A(M(z,q)) = 1] < Pr[A(M(2',q)) = 1]. By switching the roles of z and 2’ we
obtain the same inequality in the other direction, and therefore it must be that Pr[A(M(z,q)) =
1] = Pr[A(M(2',q)) = 1]. Since we require that this equality holds for all tests A, it must be that
M (z,q) and M (2, q) are identically distributed. This can only happen if M is independent of the
database, in which case it doesn’t appear to be very useful at all.

By setting ¢ to a small nonzero value, we can hope to get some tradeoff between the mechanism’s
utility and its privacy. Since e = 1 + & + O(g?), by the same reasoning we can interpret (1) as
asking that

|Pr[A(M (2, q)) = 1] — Pr[A(M(a', q)) = 1]|
< (e + O(e2)) max{Pr{A(M(, )) = 1], Pr[A(M (2, g)) = 1]}.
Notice that this is stronger than the usual statistical distance requirement, in which the right

hand side is €. There are simple examples which show Definition 2 would become meaningless if
inequality (1) was replaced with the requirement |Pr[A(M(z,q)) = 1] — Pr[A(M(2',q)) =1]| <e.

Claim 3. If M is e-semantically private for q, then M is (2¢ + O(e?))-differentially private for q.
Proof. Assume M is e-semantically private. Let zg and z1 be any two databases that differ in row
1. Let

¥ {xo, with prob. 1/2 and  A(r) = {O, if r is the i’th row of zg

x1, with prob. 1/2 1, if ¢ is the ¢’th row of x7.

Since xo and z; differ in the 7’th row, A is well-defined. Then Pr[A(X;) = 1] = 1/2 and so for every
y such that Pr[M(X) = y] > 0,

[PrlA(X;) =1| M(X) =y] - 1/2| <e.
Looking at A, we have that

Pr[X::UO\M(X):y]:%—'y(y) and Pr[X:xllM(X):y]:%—kfy(y)



for some y(y) satisfying —e < y(y) < e. On the other hand we have

Pr[M(zo) = y] = PriM(X) =y [ X = 0]
_ Pr[M(X) =y and X = x]
B Pr[X = 0]
— Pr[X = 0 | M(X) =y -2 Pr{M(X) = 3]

where we use Pr[X = x| = 1/2. We get an analogous equation for z1. Taking the ratio of the two
we obtain that

yl  PriX =ao | M(X)=y] _ 1/2-9() _ 2evo0(?)
v

| " PrX =a [M(X)=y]  1/2+7()

where the last step follows by Taylor expansion of the function f(t) =1In((1/2—1t)/(1/2+1t)) in the
range —¢ < t < e. (If Pr[M(X) = y] = 0, then both probabilities are zero.)

Now let B be an arbitrary test that maps outputs of M to 0 or 1. Then

Pr(B(M(zo)) =1] = > Pr[M(xo) = y]
y: B(y)=1
< Y SO =y
y: B(y)=1
= e210E) pr[B(M(21)) = 1].

Since this holds for every B and every pair zg,z; that differ in one row, M is (2 + O(e?))-
differentially private. O

Claim 4. If M is e-differentially private for q, then M is (e + O(g?))-semantically private for q.

Proof. Let ¢’ = ¢+ O(e?). If M is not &’-semantically private for ¢, then there exists a distribution
X, an index i, an answer y and a test A such that

PrlA(X;) =1| M(X) =y] — Pr[A(X;) = 1] > €.
Let X_; denote the marginal distribution on all but the ¢’th row of X. By averaging we get
Ex_,[PrlA(X;) =1 | M(X;,X_;) =y, X—i] - Prl[A(X;) = 1| X_j]] > ¢
Let x_; be the value of X_; that maximizes the probability on the left. Then
PY[A(X;) =1 M'(X;) = y] - Pr[A(X;) = 1] > ¢

where Pr'[ - ] denotes Pr[ - | X_; = z_;] and M’(x;) denotes M (x;,7—_;). We can rewrite the last
inequality in the form

PrM'(X;) =y | A(Xi) = 1] Pr[A(X;) = 1] = PY[M'(X;) = y| P[A(X;) = 1] > &' Pr[M'(X;) = y].
Since Pr'[A(X;) = 1] < 1, we have

PYIM'(X;) =y | A(X;) = 1] = PY'[M'(X;) =y] > ¢ PY[M'(X;) = y).



from where
PY[M'(X;) =y | A(X;) = 1] > (1 +&") Pr'[M'(X;) = y] > e PY'[M'(X;) = y]

by our choice of &. Now let xy be table that equals x_; on all other rows that maximizes
Pr'[M’(z0) = y], and x1 be the table that equals z_; on all other rows that minimizes Pr'[M’(z1) =
y]. Then we must have

Pr[M (z0) = y] > Pr'[M'(X;) = y | A(X;) = 1] > " PY[M'(X;) = y] > e Pr[M(z1) = y]

and so M is not e-differentially private for ¢q. (The distinguisher on input = outputs 1 if M(z) =y
and 0 if not.) O

One nice property of differential privacy is that this notion is preserved (or rather, it degrades
gracefully) if we allow more queries. Formally, given queries ¢1: D" — Ry,...,q: D™ — Ry their
product query q¢: D™ — Ry X --- X Ry, g =q1 X -+ X ¢ is given by the formula

q(z) = (q1(z), ..., q@(2)).
The following claim has an easy proof.

Claim 5. If M is e-differentially private for all of qi1,...,q, then it is te-differentially private for
the product query q1 X -+ X qy.

3 The Laplace mechanism

Inspired by our example, we construct and analyze a differentially private mechanism for counting
queries. The Laplace mechanism with privacy parameter £ > 0 answers a counting query ¢ by
M(z,q) = q(x) + N, where N is chosen from the Laplace distribution

1
Pr[N =t] = Ee*dt‘, t is an integer.

Here Z = >0 e~¢l is a normalization factor which ensures the above formula describes a
probability distribution over the integers.

We now show that the Laplace mechanism is e-differentially private for counting queries. Let
z and 2’ be databases that differ in exactly one row. Because ¢ is a counting query, we have
lg(z) — q(2")] < 1. So for every value v,

Pr[M(z,q) =y] = Pr[g(z) + N =y] =Pr[N =y — q(z)] = %efa\yfqu)l

1 / 1 /
< Lemshmatele — g Lomehat)l — o P (ot g) = )

By the same argument as in the proof of Claim 3, we conclude that M is e-differentially private.

What about the utility of the Laplace mechanism? If our notion of utility is the inverse of the
standard deviation, we get that the utility of the mechanism is the inverse of the standard deviation
o of the Laplace distribution with parameter ¢, which is ¢ = v/2/e. So the utility of this mechanism



is £/1/2. The Laplace mechanism illustrates a general phenomenon: The more private we want our
mechanism to be, the less useful it tends to be.

In cryptography we usually think of the indistinguishability parameter € as taking extremely small
values, e.g. € = 27190, These kinds of parameters don’t make much sense in the Laplace mechanism,
since then the utility of the mechanism would be extremely small. To get reasonable utility we may
want to use the Laplace mechanism with larger values of €, say € = 0.1. This could be a reasonable
level of privacy if we allow only one query to the database. However, Claim 5 suggests that once
we make 1/e = 10 queries, no privacy will be left!

So it seems that the Laplace mechanism is not terribly useful. However, in the next lecture we
will see (time permitting) that the Laplace mechanism plays a role in the construction of a more
complex mechanism with a better privacy-utility tradeoff.
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