Problem 1

In this question you will investigate the hardness of the distributional Diffie-Hellman problem in cyclic groups. Assume p and (p-1)/2 are both prime numbers. Recall that \mathbb{Z}_p^* is the group $\{1, \ldots, p-1\}$ under multiplication modulo p and $Q_p = \{y^2 \colon y \in \mathbb{Z}_p^*\}$.

- (a) Choose a generator h of \mathbb{Z}_7^* . Calculate the distributions h^{xy} where x, y are chosen uniformly and independently from $\{1, \ldots, 6\}$ and h^z where z is chosen uniformly from $\{1, \ldots, 6\}$.
- (b) Repeat part (a) for Q_7 instead of \mathbb{Z}_7^* .
- (c) Let h be a generator of \mathbb{Z}_p^* . Show that there exists a circuit A of size polynomial in the number of bits of p (i.e. $\log p$) such that

$$\Pr_{x,y \sim \{1,\dots,p-1\}}[A(h^{xy}) = 1] - \Pr_{z \sim \{1,\dots,p-1\}}[A(h^z) = 1] \ge \varepsilon$$

for some constant $\varepsilon > 0$. You may assume that adding, multiplying, and powering numbers modulo p can be done by circuits of size polynomial in the number of bits of p.

(d) Is part (c) true if we replace \mathbb{Z}_p^* by Q_p ?

Problem 2

Prove Theorem 4 from Lecture 10. You do not need to match the exact parameters as long as the loss of security is polynomial.