
On the Practical and Security Issues of Batch
Content Distribution Via Network Coding

Qiming Li
Computer & Information Science Dept

Polytechnic University
Email: qiming.li@ieee.org

Dah-Ming Chiu
Information Engineering Dept

Chinese University of Hong Kong
Email: dmchiu@ie.cuhk.edu.hk

John C.S. Lui
Computer Science & Eng. Dept

Chinese University of Hong Kong
Email: cslui@cse.cuhk.edu.hk

Abstract— File distribution via network coding has received a
lot of attention lately. However, direct application of network
coding may have security problems. In particular, attackers
can inject “faked” packets into the file distribution process
to slow down the information dispersal or even deplete the
network resource. Therefore, content verification is an important
and practical issue when network coding is employed. When
network coding is used, it is infeasible for the source of the
content to provide all the hash values or signatures required for
verification, and hence the traditional “hash-and-sign” methods
are no longer applicable. Recently, a new on-the-fly verification
technique is proposed by Krohn et al. for rateless erasure codes
[1]. However, their scheme requires a large number of hash
values to be distributed in advance, and all of them are needed
to verify even for a single packet. We propose a new batch
delivery and verification scheme that is similar to the classical
scenario where the authentication information of a message is
embedded with the message and is sufficient for the verification
purpose. We investigate how our technique can be applied when
random linear network coding is employed, and show that both
the computational and the bandwidth overhead can be greatly
reduced by using a variant of the random network coding.
We further show by simulation that this variant is sufficiently
effective in practice.
Keywords: Content distribution, security, verification, network
coding.

I. INTRODUCTION

For the past few years, there has been an increasing interest
on the application of network coding on file distribution.
Various researchers have considered the benefit of using
network coding on P2P networks for file distribution and
multimedia streaming (such as [2], [3], [4], [5], [6]), while
other researchers have considered using network coding on
million of PCs around the Internet for massive distribution
of new OS updates and software patches (i.e., the Avalanche
project from Microsoft). What we are interested in is the
“security” and “practical” aspect of using network coding on
content delivery.

An important issue in practical large content delivery in a
fully distributed environment is how to maintain the integrity
of the data, in the presence of link failures, transmission errors,
software and hardware faults, and even malicious attackers
who can modify the data arbitrarily. Since the current Internet
does not implement any network access control, leaving the
network vulnerable to packet modification or packet injection

attacks where a malicious node can inject a large number of
faked packets into the network with the goal of depleting the
resources of the legitimate PCs relaying the packets. Also,
receivers which utilize networking coding may not be able
to determine the validity of the received packets until they
receive sufficient number of these packets. This may impede
the progress and reduce the efficiency of the file distribution.

In traditional scenarios, intermediate nodes in the network
only forward data without any modification. Hence, the task of
verifying the integrity of the data can be accomplished using
classical cryptographic techniques. In particular, given original
data X and a collision-free hash function h, a hash value h

�
X �

is computed, which is then signed by employing a digital
signature scheme S with some signing key k, and the signature
Sk

�
h
�
X ��� is published. When some Y is received by a sink

node T who already knows Sk

�
h
�
X ��� , the node T computes

h
�
Y � and verify the digital signature with h

�
Y � , Sk

�
h
�
X ��� , and

the verification key obtained from either the sender or some
trusted third party (e.g., a certificate authority). This is often
referred to as the “hash-and-sign” paradigm.

Recently, there are a number of works (such as [3], [7], [8],
[9]) that focus on how to apply network coding to achieve
efficient content delivery. The seminal work on network coding
was first studied by Ahlswede et al. [10], who showed that if
the nodes in the network can perform coding instead of simply
forwarding information, multiple sinks in a multicast session
can achieve their maximum network flow simultaneously.
Since then, the topic has been intensively studied, and there
are many variations (such as [11], [12], [13], [14], [15], [4]).
More details on the literature can be found in Section II.

In practical content delivery scenarios, the network can be
very dynamic, in the sense that the topology of the network
can change over time, nodes can join/leave the network, links
and nodes can fail, and so on. In this case, classical theoretical
results (such as [14]) would be difficult to be employed since
they require the knowledge of the network topology during
code construction, and require the link failures to follow
certain predefined pattern for the code to be reliable.

Random linear network coding [15], on the other hand,
avoids those problems by allowing each node in the network
to make local decisions. In their setting, the original X is
divided into n blocks x1 � x2 ��������� xn, and each node computes

and forwards some random linear combination p � ∑n
i � 1 cixi

for each of its downstream nodes, together with the coefficients
c � �

c1 ������� � cn � . We call the pair
�
p � c � a packet. When suffi-

cient linearly independent packets are received, a node would
be able to decode the original X. It is clear that data integrity is
even more important in this setting, since, without verification,
a node T could combine a damaged (or maliciously modified)
packet into all the packets that T generates, and hence all its
downstream nodes would received only corrupted data.

Unfortunately, traditional “hash-and-sign” techniques can-
not be easily applied with random linear network coding.
When a node receives a packet

�
p � c � from an upstream

node, it needs to be convinced that p is indeed the linear
combination of the data blocks defined by c, and not some
garbage. With classical digital signature schemes, only the
sender can produce the correct signature of the data. Hence, the
sender may have to pre-compute and distribute the signatures
for all possible linear combinations. The number of signatures
required to be generated can be prohibitively large.

This problem of detecting malicious modifications at inter-
mediate nodes, especially when it is infeasible for the sender to
sign all the data being transmitted, is sometimes referred to as
on-the-fly Byzantine fault detection. Freedman and Mazières
[1] considered the problem in the context of large content
distribution using rateless erasure codes (or fountain codes),
and proposed a technique using homomorphic cryptographic
hash functions [16]. Although their original intension was
to apply their technique to rateless erasure codes, it could
be used when random linear network code is employed,
as noted by Gkantsidis and Rodriguez [7]. A simple and
efficient verification method called secure random checksum
was proposed by Gkantsidis et al. [9], which comes at the
price of weaker security.

In the scheme in [1], given n data blocks x1 � x2 ������� � xn, the
sender firstly computes the hash values h1 � h2 ������� � hn for those
data blocks. Next, these hash values are distributed to all the
nodes in the network. When a packet

�
p � c � is received by

a node, the hash value hp of p can be computed from the
hash values h1 ������� � hn and the coefficients c, and the packet
is verified using p and hp. In this way, the sender would only
have to compute n hash values. The details can be found in
Section II.

It is worth to note that all hash values h1 ������� � hn need to
be known by a node to be able to verify any packet. Hence,
this verification technique is significantly different from the
traditional message verification scenarios where the signature
of a message is transmitted together with the message, and is
sufficient for the verification of it. Their technique, in contrast,
requires all the hash values to be transmitted separately and
reliably in advance.

There are two disadvantages of the scheme in [1]. They are:� Problem 1: The total size of the hash values is propor-
tional to the number of blocks, which could be very large.
Hence the requirement that all nodes have to have the
knowledge of all the hash values beforehand would lead
to significant delay at the beginning of a content distri-

bution session, or when a node joins a network, which
we call start-up latency. This problem becomes more
serious for the intermediate nodes who only participate
in the distribution of a small portion of the content, since
they still need to know all the hash values regardless of
the number of packets they need to verify. Furthermore,
the large hash values themselves need to be distributed
reliably, which increases the complexity of the system. It
is proposed by Krohn et al. [1] that the hash values should
be recursively divided into blocks and hashed using the
same technique.� Problem 2: The cryptographic hash function proposed in
[1] is computationally expensive. To reduce the compu-
tational cost so that it would be feasible to be applied in
real networks, a probabilistic batch verification method
was proposed in [1] based also on the results in [16],
where the verification is performed only once for a batch
of packets. However, it is not straightforward to apply
this batch verification method when network coding is
used, since the existing network coding based content
distribution schemes do not deliver content in batches.

In this paper, we propose a new paradigm for on-the-fly
content verification. Our scheme is similar to the traditional
techniques where the hash values travel with the messages,
instead of being distributed in advance. To verify a packet,
only one hash value and some public parameters are required,
where the parameters are independent of the content, and
are typically of small constant size. In this way, a node can
perform verification of a packet as soon as it is received, with
the knowledge of the public parameters. Hence, the start-up
latency of our scheme is reduced significantly and the commu-
nication overhead for intermediate nodes is proportional only
to the number of packets they verify.

Our method employs a new homomorphic hash function
based on a new trapdoor function. The basic technique is
explained in detail in Section III. We prove its security by
showing that a successful attacker would be able to solve
a variant of the discrete logarithm problem. Our scheme
can be considered as a direct improvement on the on-the-fly
verification technique in [1] for rateless erasure codes. Note
that their batch verification technique can also be applied to
our scheme with minor modifications.

We also propose a probabilistic batch verification scheme
that further reduces both the computational complexity of the
verifications and the network bandwidth overhead by allowing
a node to send only a small number τ of hash values per batch
for verification, where τ can be just 1 or 2.

One major drawback of the current content distribution
schemes based on network coding, as pointed out by Bram
[17], is that each node has to cache all the received packets,
and has to scan all of them when the node computes a new
packet. To reduce the computational cost, our scheme deviates
from the classical network coding schemes in the sense that,
we allow each node to distribute a combination of only a
smaller number of data blocks. Details of the scheme can be
found in Section IV.

To study the effectiveness of our scheme, we simulate the
scheme under the classical settings with delay-free directed
acyclic graphs, and show that the success rate for the content
distribution does not suffer too much. Note that this success
rate is only a reference to the actual performance of the scheme
in real applications, where networks are typically not delay-
free, unlikely to be unidirectional and seldom acyclic.

We give some detailed survey of previous works on network
coding and error detection techniques in Section II. Our basic
scheme is explained in Section III, and the proposed batch
delivery and verification method can be found in Section IV. In
Section V we give an analysis on the effectiveness of our batch
delivery schemes using simulations. Section VI concludes.

II. RELATED WORKS

It is a well-known graph-theoretic result that the maximum
capacity between a source and a sink connected through a
network is the same as the maximum network flow f between
them. When the network can be viewed as a directed acyclic
graph with unit capacity edges, f is also the min-cut of the
graph between the source and the sink. However, when there is
a single source and multiple sinks, the maximum network flow
f may not be achieved. A seminal work of network coding[10]
reveals that if the nodes in a network can perform coding on
the information they receive, it is possible for multiple sinks
to achieve their max-flow bound simultaneously through the
same network. This elegant result provides new insights into
networking today since it now becomes possible to achieve the
theoretical capacity bound if one allows the network nodes on
the path to perform coding, instead of just the conventional
tasks of routing and forwarding.

Later, Li et al. [11] showed that, although the coding per-
formed by the intermediate nodes does not need to be linear,
linear network codes are indeed sufficient to achieve the max-
imum theoretical capacity in acyclic synchronous networks. In
their settings, each node computes some linear combination of
the information it receives from its upstream nodes, and passes
the results to its downstream nodes. However, to compute the
network code (i.e., the correct linear combinations) that is
to be performed by the nodes, the topology of the network
has to be known beforehand, and has to be fixed during the
process of content distribution. Furthermore, their algorithm
is exponential in the number of edges in the network.

Koetter and Médard [12], [13] also considered the problem
of linear network coding. They improved and extended the
results by Li et al. [11], and considered the problem of link
failures. They found that a static linear code is sufficient to
handle link failures, if the failure pattern is known beforehand.
However, as mentioned by Jaggi et al. [14], the code construc-
tion algorithm proposed by Koetter et al. still requires checking
a polynomial identity with exponentially many coefficients.

Jaggi et al. [14] proposed the first centralized code construc-
tion algorithm that runs in polynomial time in the number
of edges, the number of sinks, and the minimum size of
the min-cut. They also noted that, although the results of
Edmonds [18] shows that network coding does not improve the

achievable transmission rate when all nodes except the source
are sinks, finding the optimal multicast rate without coding
is NP-hard. They also showed that if there are some nodes
that are neither the source nor the sinks, then multicast with
coding can achieve a rate that is Ω

�
log �V � � times the optimal

rate without coding, where �V � is the number of nodes in the
network. It is also shown in [14] that their method of code
construction can handle link failures, provided that the failure
pattern is known a priori.

Random network coding was proposed by Ho et al. [15] as
a way to ensure the reliability of the network in a distributed
setting where the nodes do not know the network topology,
which could change over time. In their setting, each node
would perform a random linear network coding, and the
probability of successful recovery at the sinks can be tightly
bounded. Chou et al. [3] proposed a scheme for content
distribution based on random network coding in a practical
setting, and showed that it can achieve nearly optimal rate
using simulations. Recently, Gkantsidis and Rodriguez [4]
proposed another scheme for large scale content distribution
based on random network coding. They show by simulation
that when applied to P2P overlay networks, using network
coding can be 20 to 30 percent better than server side coding
and 2 to 3 times better than uncoded forwarding, in terms of
download time.

The problem of on-the-fly Byzantine fault detection in
content distribution in P2P networks using random network
coding is considered by Gkantsidis and Rodriguez [7], who
noted that the verification techniques proposed by Krohn,
Freedman and Mazières [1] can be employed to protect the
integrity of the data without the knowledge of the entire
content. The verification techniques were originally developed
for content distribution using rateless erasure codes and were
based on homomorphic cryptographic hash functions [16].

x2 xnx1

Homomorphic Hash Function

h1 h2 hn... ...

Random linear
combinations

x c1 cnc2

Distribute to
all nodes verification

Perform

... ...X =

H(X) =

coefficients

SOURCE

NODE

Fig. 1. On-the-fly Byzantine fault detection.

The overall picture of the on-the-fly detection technique in
[1] is illustrated in Fig. 1. In their scheme, the content X is
divided into n blocks x1 ������� � xn, and a hash function � is
applied on each blocks to obtain the hash values h1 ������� � hn.
The hash function � is homomorphic in the sense that for
any xi � x j, it holds that � �

xi ���
�
x j � ��� �

xi � x j � . These
hash values are distributed to all the nodes reliably using some

other mechanisms. In fact, the authors propose to use the same
technique recursively on the hash values until the final hash
value is small enough to be distributed without coding. After
receiving a coded block x, which is a linear combination of
the original n blocks with coefficients C � �

c1 ��������� cn � , a node
will be able to verify the integrity of x using x, C, and the hash
values h1 ������� � hn, making use of the homomorphic property of
� . In particular, the node checks if the following holds

� �
x � � n

∏
i � 1

hci
i � (1)

As noted earlier, there are two major limitations when the
above verification methods are applied. First of all, all nodes
have to have the knowledge of all the hash values before any
verification can be done. Unfortunately, the total size of the
hash values is proportional to the number of blocks (e.g.,
for a 1 GB file, one has to distribute hash values of size
around 8 MB). Hence there could be a significant delay before
the nodes can receive and verify the actual data. Secondly,
the computation of (1) is expensive, which hinders efficient
verification with high speed networks. To make the scheme
practical, the authors in [1] proposed a batch verification
algorithm. In essence, they show that it is possible to verify
a batch of packets by computing a random combination of
the packets in the batch and check only the integrity of the
combination. With this method, a corrupted packet can be
detected with high probability.

Another simple and efficient on-the-fly verification scheme
was proposed by Gkantsidis et al. [9]. Their scheme provides
weaker security compared to that in [1], and it also suffers
from the limitation that the size of the data required for
verification is proportional to the size of the content, and they
have to be distributed beforehand.

III. THE BASIC SECURITY SCHEME

In this section, we present our basic security scheme. We
also provide the necessary background on a trapdoor homo-
morphic hash function, which we will use in later encoding
and verification algorithms.

In Fig. 2 we illustrate our basic technique. In this basic
scheme, the source node chooses a seed S, and feed it
to a pseudo-random generator

�
. Instead of computing the

hash values for each data block, the source uses the random
numbers h1 ������� � hn generated by

�
as the “intended” hash

values. Next, given the original data X and the hash values
h1 ������� � hn, the source inverts the hash function � to get
a list of paddings d1 ������� � dn, such that when a block xi is
padded with di to form the new message block �xi, it holds
that � � �xi � � hi. Note that � can only be inverted using a
secret key that is known only by the source. Now, since the
hash values can be computed from S and public function

�
,

there would be no need to distribute all the hash values, and it
suffices if all the nodes knows S. In fact, S can be the SHA-1
hash of some public information of the content that is to be
distributed (e.g., its unique identifier). Hence, even distributing
S would be unnecessary.

A. A Trapdoor Permutation

As mentioned in the introduction, our scheme is based on a
trapdoor homomorphic hash function using an invertible per-
mutation that is built upon the one-way trapdoor permutation
proposed in [19]. We will use this permutation as a building
block in our construction.

Let N � pq be the product of two large primes p and q.
Let λ � lcm

���
p � 1 � �

�
q � 1 ��� be the Carmichael’s function of

N, which is the maximal order for any element in ���N. Note
that the Carmichael’s function of N2 is λN. Let o

�
x � denote

the order of x in the multiplicative group ���
N2, and we use

x � y to denote that x divides y. We choose g � h �	� N2 such that
o
�
g � � α and o

�
h � � N, where 1
 α
 λ and gcd

�
α � N � � 1.

Note that in this case, o
�
gh � � αN.

We use CRT � � x1 � p1 � �
�
x2 � p2 �� to denote the unique element

x ��� p1 � p2
such that x � x1 mod p1 and x � x2 mod p2, where

gcd
�
p1 � p2 � � 1. Given x1 and x2, such x can be computed

using the Chinese Remainder Theorem. Conversely, given any
x ��� p1p2

, we have x1 � x mod p1 and x2 � x mod p2. We
follow [19] and define the function L

�
� � as L

�
u � � �

u � 1 ��� N.
Now we give our algorithms for the permutation and the

inverse permutation.
Algorithm Permutation � �

x � g � h � α � N � : Given x ���
N2, split

x into x1, x2 and x3 such that x � CRT � � x1 � α � �
�
x2 � N �� � αNx3.

That is, we compute x3 ��� x
αN � , x � � x mod αN, x1 � x �

mod α , and x2 � x � mod N. Note that x1 ��� α, x2 � x3 ��� N
and x3 ��� N � α � . Next, compute permutation y as

y � gx1hx2xN
3 mod N2 � (2)

Note that gx1hx2 � �
gh � CRT � � x1 � α � � � x2 � N �! mod N2. This permu-

tation essentially maps every point x in �
N2 to another distinct

point y in the same domain.
Algorithm Inverse Permutation " �

y � g � h � α � N � λ � : Given
y �#�

N2, compute

x � � L
�
yλ mod N2 �

L
�
hλ mod N2 � mod αN (3)

and compute x1 and x2 such that x � � CRT � � x1 � α � �
�
x2 � N ��

x1 � x � mod α � x2 � x � mod N � (4)

Next, compute y � � y
�
gh �%$ x & mod N, and finally

x3 � y � 1
N mod λ mod N � (5)

Hence, x can be recovered as x � CRT � � x1 � α � �
�
x2 � N �� � αNx3.

In other words, given any point y ���
N2, we can efficiently

find an x such that x is mapped to y under the permutation
algorithm, provided that λ is known.

Our permutation is very similar to that proposed by Paillier
in [19]. The difference is that Paillier chooses a random
element in �

N2 with order αN for some random α , whereas
we choose the value of α and represent the element in the form
of the product

�
gh � . Hence the correctness of the permutation

directly follows from that of Paillier’s scheme.
The one-wayness of the permutation depends on the diffi-

culty to find discrete logarithm in �'�N2. If we view � as a

x2 xnx1X =

h1 h2 hn... ... Pseudo−random
generator

a secret key
Invert with

d1 d2 dn... ...

Seed

padding
Perform

Homomorphic Hash Function

h1 h2 hn... ...

X =^

d1

x1
^

d2

x2
^

dn

xn
^... ...

H(X) =

Random linear
combinations verification

Perform

h1 h2 hn... ...

Pseudo−random
generator

Distribute to
all nodes

x̂
c1 cnc2

SOURCE

NODE

coefficients

Fig. 2. The basic security scheme.

function of x1 � x mod α , and make x2 and x3 public param-
eters, � remains one-way. Formally, we define DL � g � α � N2 �
to be the computational problem: Given y, g and N, where
o
�
g � � α in � �

N2, find an x such that y � gx mod N2. Hence,
we have

Theorem 1 Given x2 � � N, x3 � � �N and x3 � � � N � α � � , y �
� �N2, and public parameters g � h � α � N, it is computationally
infeasible to find an x1 such that � �

x � g � h � N � α � � y where
x � CRT � � x1 � α � �

�
x2 � N �� � αNx3, if DL � g � α � N2 � is hard.

Proof: To prove the theorem, it suffices to show that if
the permutation can be efficiently inverted, we can solve the
problem DL � g � α � N2 � efficiently. In particular, assume there is
a polynomial time algorithm A such that given x2 � x3 � y as the
above and public parameters g � h � α � N, the algorithm A outputs
x1 � A

�
x2 � x3 � y � such that � �

x � g � h � N � α � � y with a probabil-
ity p that is not negligible, where x � CRT � � x1 � α � �

�
x2 � N �� �

αNx3.
Now, given g � α � N and w, we construct a polynomial

algorithm B which performs the following steps.

1) Find an h such that the order of h is N in �'�N2.
2) Randomly choose x2 � � N and x3 � � �N such that x3 �� � N � α � � .
3) Compute y � � �

x � g � h � N � α � .
4) Output A

�
x2 � x3 � y � .

It is clear that algorithm B runs in polynomial time and outputs
x such that w � gx mod N2 with probably at least p.

Essentially, the above theorem shows that, while it is easy
to invert the permutation if λ (or equivalently, the factorization
of N) is known, it would be infeasible to perform the inversion

otherwise. Note that Theorem 1 is a necessary condition for
the security of our scheme.
Homomorphic Property: The permutation � has the fol-
lowing homomorphic property: Given x � y � z � � N2 such that
x � CRT � � x1 � α � �

�
x2 � N � � � αNx3, y � CRT � � y1 � α � �

�
y2 � N �� �

αNy3, and z � CRT � � z1 � α � �
�
z2 � N �� � αNz3, we have

� �
x � � �

y � � � �
z � if and only if z1 � x1 � y1 mod α , z2 �

x2 � y2 mod N, and z3 � x3y3 mod N.
Choosing the Parameters: To choose the appropriate param-
eters for the permutation the following conditions need to be
satisfied.

� Factoring N is hard.� p � 1 and q � 1 have large distinct prime factors p � and
q � respectively. In this case the discrete logarithm on � p

and � q is hard.� α should be large enough and should contain only large
prime factors. For example, one can choose α � p � q � .

B. A Trapdoor Homomorphic Hash Function

We choose parameters p � q � N � α � g � h as in Section III-A.
Furthermore, we randomly select m � 1 numbers u0 � u1 ������� � um

from � α. Next, we compute gi � gui mod N2 for all 0 �
i � m. The public parameters of the hash function is N,
g0 � g1 ��������� gm. whereas the factorization of N (or equivalently
λ) and u0 ������� � um should be kept secret.

Assume that each message is of the form: x ��
x0 � x1 ������� � xm � d � r � where xi � � α for 0 � i � m, d � � N, and

r � � N � α � . The hash of x is computed as

� �
x � �

�
m

∏
i � 0

gxi
i � hdrN mod N2 � (6)

Based on this construction, we have

� �
x � � g∑m

i � 0 uixi hdrN mod N2

� � �
CRT � �

m

∑
i � 0

uixi � α � �
�
d � N � � � αNr� g � h � α � N � �

(7)

For any two messages x � �
x0 ������� � xm � dx � rx � and y ��

y0 ������� � ym � dy � ry � , we define the addition (represented by
�

)
of x and y as

x
�

y � �
z0 ��������� zm � dz � rz � � where

zi � xi � yi mod α � for 0 � i � m

dz � dx � dy mod N

rz � rxry mod N �

(8)

Hence, from the results in Section III-A, this hash function
has the following homomorphic property.

� �
x ��� �

y � � � �
x
�

y � � (9)

The security of � is defined in terms of the difficulty in
finding collisions. In particular, we have

Definition 1 A hash function h is collision-free if it is compu-
tationally infeasible to find two messages x1 and x2 such that
h
�
x1 � � h

�
x2 � .

It can be shown that the hash function � is indeed collision-
free if discrete logarithm on � �

N2 is hard, using an argument
similar to that in [16] (proof of Theorem 3 � 4). In other words,
it would be infeasible to find two messages having the same
hash value without the knowledge of λ (or equivalently the
factorization of N).

Theorem 2 The hash function � is collision-free if
DL � g � α � N2 � is hard.

Proof: We prove this theorem by showing that if there
is a polynomial time algorithm A that finds a collision in
� with probability p that is not negligible, we can use it
to construct a polynomial time algorithm B that solves the
problem DL � g � α � N2 � with probability that is not negligible.

Given g � h � N � α and y, algorithm B chooses v0 ������� � vm ��
0 � 1 � and u0 ��������� um � � N at random. For i � 0 ������� � m, the

algorithm computes

gi �
�

gui if vi � 0
yui if vi � 1 � (10)

Next, algorithm B invokes algorithm A and finds a collision
on the hash function � with parameters g0 ������� � gm � h. If A
fails, B declares that it has failed and halt. Otherwise, let the
distinct messages having the same hash values be

w � �
w0 ������� � wm � d1 � r1 � and z � �

z0 ������� � zm � d2 � r2 � �
Now, let a � ∑vi � 1 ui

�
wi � zi � mod N. If the inverse of a does

not exist in � �α, algorithm B declares that it has failed and
halts. Otherwise, the algorithm computes an inverse b of a in
� �α, and outputs x � b � ∑vi � 0 ui

�
zi � wi � mod α and halts. Note

that the inverse can be computed (or its existence determined)
using Euclid’s algorithm in polynomial time.

Since B only invokes A once and other computations can
all be done in polynomial time, B itself halts in polynomial
time. Now we examine the probability that B succeeds.

Note that the distribution of g0 ������� � gm is uniform and
independent, which is the same for � . Hence the algorithm
A succeeds with probability at least p. Since the two messages
w and z forms a collision, we have�

m

∏
i � 0

gwi
i � hd1rN

1 �
�

m

∏
i � 0

gzi
i � hd2rN

2 mod N2 �
Considering (10) and rearranging the items we have�

∏
vi � 1

yui � wi $ zi � � hd1rN
1 �

�
∏
vi � 0

gui � zi $ wi � � hd2rN
2 mod N2 �

Suppose there is an x such that y � gx mod N2, we have

g
x∑vi � 1 ui � wi $ zi � hd1rN

1 � g∑vi � 0 ui � zi $ wi � hd2rN
2 mod N2 �

However, since � is a permutation, we have

x ∑
vi � 1

ui

�
wi � zi ��� ∑

vi � 0

ui

�
zi � wi � mod α

d1 � d2 mod N

r1 � r2 mod N �
Therefore, we have

x � b � ∑
vi � 0

ui

�
zi � wi � mod α �

The algorithm B could fail, however, when the inverse of
a does not exists in � α. This can happen only when (1)
a � 0, or (2) a � 0 but gcd

�
a � α �	�� 1. As noted in the proof

of Theorem 3 � 4 in [16], the probability that case 1 happens
is at most 1 � 2. Since we choose α in such a way that it
only contains large prime factors, the probability p � that case
2 happens is negligible. Therefore, algorithm B will succeed
with probability

�
p � 2 � p � � , which is not negligible.

C. The Basic Secured Encoding and Verification Schemes

Our proposed scheme consists of two algorithms, namely
the encoding algorithm where the original data are coded for
distribution, and the verification algorithm, which is used by
individual nodes to verify the integrity of the received data.
Basic Encoding Algorithm: Suppose the data X we want
to encode is of the form X ��
 x1 ��������� xn � , where xi ��
xi � 1 ������� � xi �m � T for all 1 � i � n, and � xi � j � � γ for all 1 � i � n

and 1 � j � m. We require that n
 m.
Firstly we choose the parameters p � q � N � α � g � h as in Section

III-A, such that α � 2γ and each xi � j can be represented by
an element in � α. Next, we generate g0 ������� � gm as in Section
III-B. Now, given data X, the encoder performs the following
steps.

1) Choose a random seed S and a pseudo-random number
generator

�
. 1

2) Generate pseudo-random numbers h1 ��������� hn ��� �N2 from�
with S.

3) For each 1 � i � n, compute ei � " �
hi � , and write ei �

CRT � � e �i � α � �
�
di � N �� � αNri.

4) For each 1 � i � n, compute xi � 0 � �
e �i � ∑m

j � 1 xi � ju j � u $ 1
0

mod α �
5) Let �X �
 �x1 ������� � �xn � , where �xi ��

xi � 0 � xi � 1 ��������� xi �m � di � ri � T for all 1 � i � n.

6) Output �X, the pseudo-random generator
�
S �
� � , and the

hash function
�
g0 ��������� gm � h � N � α � .

In summary, we randomly “choose” the hash values for
each data block, and pad the original data such that the hash
of each data block is the same as the chosen ones. Note
that Step 3 is always possible since � is a permutation. In
this way, each node only needs to know the seed S and the
function

�
to compute the hash values. In practice, the need

for distributing S can be further eliminated by using a public
random function. For example, S can be the SHA-1 hash of
the original file identifier, creation date, publisher, and other
data that are public and should be known to all the receivers
before the download session begins2.
Basic Verification Algorithm: During verification, each net-
work node is given a packet � x � c � and public information
t. In the case where this packet is not tampered with, c ��
c1 ������� � cn � are the coefficients where each ci ��� N, x is the

linear combination x � ∑n
i � 1 ci �xi, where the addition is

�
as de-

fined in (8), and t represents public parameters S,
�

,g0 ������� � gm,
h, N and α .

Each node can verify the integrity of the packet as the
following.

1) From S and
�

, compute h1 ��������� hn �#� �N2.
2) Compute the hash value H1 � � �

x � .
3) Compute the hash value H2 � ∏n

i � 1 hci
i

mod N2.
4) Verify that H1 � H2.

D. Security Analysis of the Basic Schemes

Intuitively, an attack is considered as successful if the
attacker can find a packet

�
p � c � such that p is not a linear

combination of the original data specified by c but the packet
still passes the verification. Here we have

Definition 2 The basic schemes are secure if it is com-
putationally infeasible to find �X � � �x1 ������� � �xn � , y and c ��
c1 ������� � cn � such that for x � ∑n

i � 1 ci �xi, we have y �� x and
� �

x � � � �
y � .

We show that the basic schemes are secure by showing that
otherwise we can easily find a collision in � .

1Generally � and S should be chosen such that the output is independent
of other random coin tosses made by the encoder. For instance, � should not
happen to reveal a collision of � . In practice, it is sufficient to choose such
� and S randomly.

2In case these data are not sufficiently random, however, the seed should
be explicitly chosen and distributed by the source.

Theorem 3 The basic schemes are secure if DL � g � α � N2 � is
hard.

Proof: Suppose on the contrary that an adversary A can
find such �X, y and c with a probability p that is not negligible.
Now we use A to construct an algorithm B as below.� Invoke A, and let �X � � �x1 ������� � �xn � , y and c � �

c0 ������� � cn �
be the output.� Output x � ∑n

i � 0 ci �xi and y.

Clearly, if A successfully finds �X, y and c such that y �� x and
� �

x � � � �
y � with probability p, B would find a collision

x and y in � with the same probability p, which is not
negligible.

However, if DL � g � α � N2 � is hard, by Theorem 2 the hash
function � is collision free, and thus p should be negligible,
which is a contradiction. Therefore, the basic schemes are
secure if the discrete logarithm DL � g � α � N2 � is hard.

IV. EXTENDED SECURITY SCHEME WITH BATCH

VERIFICATION

Our main idea is the following. When a node computes
the padding for the message blocks it is going to send to
its downstream, it only computes some small padding for a
batch of blocks instead of for every block. In this way, the
communication overhead caused by the padding is reduced by
a factor of k, where k is the number of blocks per batch.

In particular, our proposed batch verification is a challenge-
response process between the verifier and its upstream node.
The algorithm is as illustrated in Fig. 3. However, we note
that the challenge step can be avoided with carefully designed
protocols. We show such an example in Section IV-A.

w1 w2 wk...

v 1 v 2 v k...
Randomly choose

v iwi

i=1

k

w =

Compute padding for

w0 d rpadding:

v 1 v 2 v k...

Compute w
Verify padding for w

Upstream Node Verifier Node

Fig. 3. Batch verification.

Suppose each batch contains the packets�
w1 � c1 � ���������

�
wk � ck � , where each wi is a linear

combination of the original data blocks. In particular,
let ci � �

ci � 1 ������� � ci � n � be the coefficients, we have
wi � �

wi � 1 ������� � wi �m � T � ∑n
j � 1 ci � jx j. We assume that the

upstream node knows the correct padding for each of the
packets, which can be computed from the paddings for the
packets received from its own upstream nodes. That is, the
upstream node keeps wi � 0 � ∑n

j � 1 ci � jxi � 0, di � ∑n
j � 1 ci � jdi,

ri � ∏n
j � 1 r

ci � j
i

.
After receiving this batch of packets, the verifier generates

a list of random coefficients as the challenge v � �
v1 ������� � vk � .

Next, the verifier sends v to its upstream from whom it
received the batch of packets. After that, the upstream node
computes the linear combination of the batch of packets using
v as the coefficients. That is, w � ∑n

j � 1 v jw j.
Finally, the upstream node generates the padding for w as

w0 � ∑n
j � 0 v jw j � 0, d � ∑n

j � 1 v jd j, r � ∏n
j � 1 r

v j
j

, and sends the
tuple

�
w0 � d � r � to the verifier. The verifier computes w in the

same way, and verify the padding v with w as in the basic
scheme. It is worth to note that w is computed locally by both
nodes and is never transmitted.

A. Eliminating the Challenge Step

The batch verification presented above can be further sim-
plified and the challenge step can be avoided. This is possible
because the purpose of the challenge step is to allow the
verifier to pick a “random” linear combination of the received
blocks and perform verification on that block. If the upstream
node is allowed to choose arbitrary coefficients, it may be
able to cheat. Nevertheless, if the upstream node can somehow
“prove” that its choices of the coefficients are indeed random,
the challenge can be avoided.

A standard technique to achieve such a proof is well
studied in the literature of zero-knowledge proofs. Such a
technique employs a random oracle accessible by both parties
[20], which can be used to transform interactive protocols
to equivalent non-interactive protocols. One simple way of
implementing such a random oracle is to make use of a
publicly known pseudo-random generator G, and let the seed
to the generator depend on some random value. For example,
the upstream node can calculate the SHA-1 hash value over
all the blocks in the batch, and use that as the seed to generate
the random coefficients.

S = SHA−1(

1 w2 wk...

v iwi

i=1

k

w =

Compute padding for

Compute w
Verify padding for w

w0 d rpadding:

v 1 v 2 v k... G(S)
Generate the coefficients

v 1 v 2 v k... G(S)
Generate the coefficients

w1 w2 wk... w1 w2 wk...

Upstream Node Verifier Node

Compute the seed
)S = SHA−1(

Compute the seed
)

w

Fig. 4. Batch verification without challenge.

The verification process is illustrated as in Fig. 4. In par-
ticular, given a batch w1 ��������� wk, the upstream node computes
the SHA-1 digest S of all the data in the batch. Next, a random
number generator G is applied to generate random coefficients
v1 ��������� vk, where the digest S is used as the seed. After that,
a combination of the packets is computed using the random
coefficients w � ∑k

i � 1 viwi. Finally, the padding
�
w0 � d � r � for w

is computed. This batch and the padding is transmitted to the
downstream node, who follow the same method used by the
upstream node to compute the random coefficients and then
verify the padding for the linear combination w.

Remarks: Since all the nodes have the pseudo-random gener-
ator

�
as a public parameter, they can re-use it as the generator

G in this case. Furthermore, although we used SHA-1 hash of
the data block as the seed, in fact we can derive the seed in
any one-way manner.

In Fig. 4, the verifier node obtains one piece of padding after
the verification is done. However, we can let both nodes to
generate more random coefficients using the seed, and hence
allow the verifier node to verify multiple (say, τ) pieces of
padding. Typically τ
 k.

B. A Practical Batch Content Distribution Scheme

Now we give a practical scheme where content is distributed
and verified in batches. We assume that every node (except
the source) has at least k upstream nodes at any point of time
(e.g., k � 16). We also assume that each node sends packets in
batches, and each batch contains k packets. Furthermore, we
assume that all the nodes except the source are interested in
the content, as in the case of most file-sharing applications.

For any node A, after receiving and verifying a batch of
message blocks from one of its upstream nodes, node A knows
the proper padding for τ random linear combinations of the
message blocks. Now, since node A has at least k upstream
nodes, it will receive at least k batches of packets. Hence, node
A knows the padding for the τk linear combinations generated
from the k batches of message blocks. In this way, node
A can use those τk linear combinations to generate batches
of packets and deliver them to its downstream nodes. This
process continues until the content is no longer needed to be
propagated.

u 1,1 u 1,ku 1,2

d’1w’1,0 r’1w1 w2 wk...

...

w1 w2 wk... d’2w’2,0 r’2

u 2,ku 2,2u 2,1 ...

wk,1 wk,kwk,2 dkwk,0 kr

v k,1 v k,kv k,2 ...

...

v 1,1 v 1,kv 1,2 ...

w1,0 rd1 1w1,1 w1,kw1,2 ...

w2,1 w2,2 w2,k d2w2,0 r2

v 2,kv 2,2v 2,1

...

...

1

2

k

w1 v1,iw1,i

i=1

k

=

w1,0 rd1 1

d2w2,0 2r

w2,iw2 v2,i

i=1

k

=

wk wk,ivk,i

i=1

k

=

dkwk,0 kr

Upstream Nodes

...

Node A

Fig. 5. File-sharing with batch delivery (τ � 1).

This process is illustrated in Fig. 5, where τ � 1 for sim-
plicity. From the i-th upstream node, node A receives a batch
of message blocks wi � 1 ������� � wi � k, and the padding

�
wi � 0 � di � ri �

for the linear combination wi � ∑k
j � 1 vi � jwi � j, where vi � j’s

are random coefficients generated during batch verifications.
Hence, for the i-th downstream node, node A sends the batch
of message blocks w1 ��������� wk, and the padding

�
w �i � 0 � d �i � r �i � for

the linear combination w �i � ∑k
j � 1 ui � jw j, where ui � j’s are the

coefficients generated during the batch verification between
node A and its i-th downstream node.

This scheme has the following advantages compared to
previous schemes.

� Each node A only has to cache τk blocks of data (in the
above case, w1 ��������� wk), which are linear combinations of
the received batches. Each node only delivers combina-
tions of the cached data to its downstream nodes. Hence
it reduces the storage and computational costs to τ � k of
that would occur with previous schemes.� The communication overhead for the verification is re-
duced to τ � k of that in the basic scheme, hence the
overhead is O

�
k � τ � times less than that of the batch

verification technique in [1].

V. EVALUATION OF THE BATCH DELIVERY SCHEME

A. Communication Overhead

Here we study the communication overhead of our scheme.
This overhead refers to the amount of data we need to
distribute to each node for the purpose of the verification of
the integrity of the application data. The actual communication
overhead largely depends on the parameters chosen for the
actual implementations.

In the scheme proposed by Krohn et al. [1], the file to be
distributed is divided into blocks of 16 KB, and the parameters
chosen for the homomorphic hash function would generate a
hash value of size 1024 bits per data block. Hence, the total
size of the “first-order” hash values would be about 0 � 78%
of the original data. For a file of size 1 GB, their method
would require hash values of size 8 MB. To distribute these
hash values, the authors in [1] propose to recursively apply the
same scheme on the 8 MB hash values, which would generate
more “second” or higher order of hash values. The size of the
high order hash values constitutes about 0 � 01% of the size of
the original file. Hence the total overhead is about 0 � 79%, or
about 8 � 1 MB for a 1 GB file.

For fair comparisons, we choose parameters that are com-
parable to those given in [1]. In particular, we choose N to
be 1024 bit long, and the primes � p � � � � q � � � 160, hence
�α � � 320. We also choose 16 KB as the size of the data
block. Recall that our scheme requires padding of three values
x0 � d and r, such that x0 � � α, d � r � � N and r � � N � α � .
Hence, the total padding for one packet is 2048 bit long,
or 1 � 56% of the original data. However, since the padding
is done only once for every batch, the overhead is reduced by
a factor of k � τ . As we show later in this section, we conducted
two sets of experiments with τ fixed to be 2, and k � 8 and
k � 16 respectively. Hence, the communication overhead for
the two sets of experiments would be

�
2 � 8 � � 1 � 56% � 0 � 39%

and
�
2 � 16 � � 1 � 56% � 0 � 20% respectively. For a file of size 1

GB, the above percentiles are equivalent to about 4 MB and
2 MB respectively.

Note that the above calculation is done based on the
assumption that every node in the network receives the entire
file eventually. If some of the intermediate nodes receive only
a fraction of the data, the overhead would be much less than
4 MB (resp. 2 MB), which would be 0 � 39% (resp. 0 � 20%) of

the size of the data they receive. Whereas in the scheme in
[1], each node has to obtain all 8 MB hash values regardless
of the amount of actual data it needs to verify.

B. Start-Up Latency

At the beginning of a content distribution session, the source
and all the nodes participating the distribution have to agree
on the set of parameters used for the coding and verification.

Recall that the public parameters in our scheme are�
g0 ������� � gm � h � N � α � . When we choose the block size to be

16 KB, �N � � 1024 and �α � � 320, we have m � 410 and the
total size of the parameters is approximately 16 � 3 KB. With
these parameters it would be sufficient for any node to perform
verification of any given padded packet. Assuming that the
bandwidth between a node and the source (or any other node
from which these parameters are distributed) is 1 Mbps, it
would take less than 0 � 13 seconds before the node is ready
to perform verification. The start-up latency in our scheme is
fixed once the parameters for the hash function and the block
size are chosen, and is independent of the size of the content
to be distributed.

On the other hand, for the scheme in [1], the size of all
the public parameters is the same as the size of the data in
a packet, which is 16 KB and it takes 0 � 125 seconds to be
transmitted on the same link. However, when the node needs
to receive 8 MB hash values of a 1 GB file as in the example
given in [1], it would require 64 seconds, with the same 1
Mbps link. The start-up latency is proportional with the size
of the file. This would hinder the application of the scheme
in latency critical scenarios such as real time streaming.

C. Effectiveness of the Batch Random Network Coding

Recall that our batch distribution deviates from the random
linear network coding scheme [15] by allowing each node to
compute and send the linear combination of only some of the
packets it receives. Since it is difficult to analytically study the
effectiveness of our scheme, we investigated the effectiveness
using experiments.

Following the classical theoretical framework on random
network coding (such as [15]), we model the network as
a random directed acyclic graph. In contrast with classical
assumption that each edge in the network is used for the
transmission of one symbol, we assume that each edge is able
to transmit a batch of k symbols. We also assume that each
node (except for the source node) has at least k incoming
edges, and the total number of symbols is k2.

A content delivery session starts with the formation of
a random network of n nodes, and the source node begins
to distribute combinations of all its data to its downstream
nodes in batches. When a node has received one batch of
packets on every incoming edge, it will generate random linear
combinations of the τk blocks in its cache and pass them to
its downstream nodes. This process continues until all edges
are used. At the end of a content delivery session, we check
the data received by every node, and determine if the node can
successfully recover the original data X. We use the success

rate (i.e., the probability that a node successfully recovers
X) as the measure of the effectiveness of our scheme, which
we estimated by computing the average number of successful
nodes over n � 1. In classical works on random linear network
coding, this rate can be arbitrarily close to 1.

Fig. 6. Simulation results (τ � 2).

In our simulations, we fix τ � 2, and the modulo p � 251,
which is large enough for the random linear network coding
to have a success rate very close to 1. We conducted two
sets of experiments for k � 8 and k � 16, and in each set
we vary the number of nodes n from 200 to 1000. Each
experiment is repeated for 15 times, and the average success
rate is shown in Fig. 6. We have the following observations.
From the figure it seems that our scheme works well when
n is large or k is small, i.e., when the network is sparsely
connected. It is not intuitive since more densely connected
network should normally provide better capability in content
distribution. However, in our scheme, the total number of
symbols is k2, which grows fast when k becomes larger. The
better performance when k is small actually comes at the price
of more computational and communication overhead. In fact,
the ratio of the number cached blocks over total number of
data blocks is τ � k and the overhead of verification can be
considered as cτ � k, where c is some constant that represents
the overhead in the verification of one packet.

VI. CONCLUSION

In this paper we study the problem of on-the-fly detection of
Byzantine errors during the content distribution process when
the traditional “hash-and-sign” techniques are no longer feasi-
ble. In particular, we consider content distribution schemes uti-
lizing network coding, where each “packet” of data consists of
some linear combination of the original data to be distributed.
A known technique proposed for rateless erasure codes uses
homomorphic hash functions on the original data blocks, such
that the hash value for any linear combination of blocks can
be computed from the hash values for every individual block.
However, this technique suffers from some major limitations
that result in high start-up latency and inefficiencies in the
verification.

We devise a new homomorphic hash function based on a
modified trap-door one-way permutation as in [19]. We also
propose a new paradigm where the hash values are generated
from a pseudo-random number generator and the actual data
are padded so that they are hashed to the pre-generated hash
values. In this way, we allow each packet to carry its own
authentication information so that high start-up latency can be
avoided, and it also becomes possible to pad an entire batch of
packets to save the bandwidth overhead. We further propose a
batch distribution and verification scheme based on random
linear network coding, such that each node can generate
combined data blocks from a relatively smaller number of
blocks. This not only allows each node to have a smaller cache,
it also reduces the computational overhead. Although this
deviates from the standard random linear network coding, we
show by simulation that it is sufficiently effective in practice
for small batches or large networks.
Acknowledgement: This work is supported in part by the
Microsoft Research Fund and the MSRA-CUHK Lab.

REFERENCES

[1] M. N. Krohn, M. J. Freedman, and D. Mazières, “On-the-fly verification
of rateless erasure codes for efficient content distribution,” in IEEE
Symp. Security and Privacy, Oakland, CA, May 2004, pp. 226–240.

[2] S. Acedanski, S. Deb, M. Medard, and R. Koetter, “How good is random
linear coding based distributed networked storage,” in Workshop on
Network Coding, Theory and Applications, Italy, April 2005.

[3] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Allerton
Conf. Commun., Contr., and Comput., October 2003, invited paper.

[4] C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale
content distribution,” in IEEE INFOCOM, 2005, pp. 2235–2245.

[5] M. Wang, Z. Li, and B. Li, “A high-throughput overlay multicast
infrastructure with network coding,” in IWQoS, 2005.

[6] Y. Zhu, B. Li, and J. Guo, “Multicast with network coding in application-
layer overlay networks,” IEEE JSAC, vol. 22, pp. 107–120, 2004.

[7] C. Gkantsidis and P. Rodriguez, “Cooperative security for network
coding file distribution,” Microsoft Research, Tech. Rep., 2004.

[8] T. Ho, B. Leong, R. Koetter, M. Médard, M. Effros, and D. R.
Karger, “Byzantine modification detection in multicast networks using
randomized network coding,” in IEEE Intl. Symp. Inf. Theory, 2004.

[9] C. Gkantsidis, J. Miller, and P. Rodriguez, “Anatomy of a P2P content
distribution system with network coding,” in Intl. Workshop on Peer-to-
Peer Systems, Santa Barbara, CA, February 2006.

[10] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Inf. Theory, vol. 46(4), pp. 1204–1216, 2000.

[11] S. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, 2003.

[12] R. Koetter and M. Médard, “Beyond routing: An algebraic approach to
network coding,” in IEEE INFOCOM, 2002, pp. 122–130.

[13] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782–795, 2003.

[14] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. M. Tolhuizen, “Polynomial time algorithms for multicast network
code construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–
1982, June 2005.

[15] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” in IEEE ISIT, 2003.

[16] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptogra-
phy: The case of hashing and signing,” in CRYPTO, 1994.

[17] B. Cohen, “Bram Cohen’s comments on Microsoft’s Avalanche,”
http://www.livejournal.com/users/bramcohen/20140.html.

[18] J. Edmonds, “Minimum partition of a matroid into independent sets,” J.
Res. Nat. Bur. Standards Sect., vol. 869, pp. 67–72, 1965.

[19] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in CRYPTO, ser. LNCS, vol. 1592, 1999, pp. 223–238.

[20] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm
for designing efficient protocols,” in ACM CCS, 1993, pp. 62–73.

