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1. INTRODUCTION
The spread of viruses, ideas, technologies or behaviors in

networks has been widely studied using mathematical mod-
els of contagion [7, 5, 8]. Understanding these dynamical
processes is important to control and prevent the spread
of diseases, and to maximize the influence of a product in
online social networks. One of the most studied contagion
models so far is the Susceptible-Infected-Susceptible (SIS)
model. In this model, there are k = 2 states and each node
in the graph is in one of these two states: Susceptible or
Infected. This model describes the spread of contagions like
flu (without immunity) or idea.

In practice, the SIS model can be quite restrictive since
the degrees of interest in a contagion among individuals are
different. For example, consider the case in which the diffu-
sion process is designed to describe a product adoption [1, 6].
At some point of time after the product release, some people
may have purchased the product while some may have not.
For example, the consumer purchase decision process theory
[2] suggests that there are five stages until a consumer pur-
chases a product and influences others. The states include
produce recognition, information search, alternative evalu-
ation, purchase decision, and post-purchase behavior. This
implies that one needs to further divide the susceptible state
into several states according to the degree of interest. This
is also intuitive because the adoption of a new product may
need exposure from more than one customers.

In this work, we propose a generalization of the SIS model
by allowing the number of states of adoption (or infection)
to be more than two (k ≥ 2). In particular, the states can
range from 0 to k−1, where the state k−1 is the active state,
that the node is infected and can influence other neighboring
nodes. Nodes whose state is in 0 to k−2 can be promoted to
a higher state if they are exposed to their infected neighbors
(whose state is in k−1). We analyze the epidemic thresh-
old dynamics, according to which initial condition leads to
or prevents a disease outbreak. However, the traditional
branching process approaches (that deal with a single initial
spreader) [7] cannot be applied directly to this setup since
we allow any fraction of initial infective nodes. Specifically,
we use the multidimensional mean-field method to analyze
our model and determine the condition of phase transition.

We believe that our work is a step towards elucidating the
complex interactions between nodes in the epidemic spread-
ing. The key result of our research is that our method pre-
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dicts the behavior of the diffusion process accurately, and
allows us to design a simple and effective vaccination or ad-
vertisement strategy. The analysis presented in this paper
focuses on the case of a fully connected graph, but we also
show experimentally that our method predicts the dynamics
of the multi-state diffusion well for various types of networks
if the initial node states are assigned in an i.i.d. manner. In
the future work, we are planning to extend the analysis to
arbitrary networks, under mild assumptions.

2. MODEL AND ANALYSIS
In our multi-state SIS model, we have a fully connected

undirected graph G = (V,E). Any node a ∈ V can be in one
of k ≥ 2 states: {0, 1, . . . , k − 1}. Only nodes in state k − 1
(infected or active state) can increase the state value of its
neighbors, say node s, which is in state j ∈{0, 1, . . . , k− 2},
to state value j+1 with the rate βj+1 (infection rate). Each
node can be independently recovered with a rate γ (recovery
rate). Figure 1 depicts our multi-state model.
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Figure 1: The multi-statemodel with k states.

First, we briefly review the analysis of the 2-state SIS
model. For this SIS model, state 0 corresponds to suscep-
tible (S) while state 1 corresponds to infected (I). The in-
fection rate and the recovery rate are assumed to be β and
γ, respectively. Let x0(t) and x1(t) be the fraction of nodes
in state S and in state I, at time t ≥ 0, respectively. Let
(x0, x1) be an equilibrium for this model. Given that G
is a fully connected graph, we have dx1

dt
= βx0x1 − γx1

and x0(t) + x1(t) = 1. For this model, there are two pos-
sible equilibria, one is (x0, x1) = (1, 0) and the other is
(x0, x1) = ( γ

β
, 1− γ

β
).

For an arbitrary graph G, let A be the adjacency matrix

of G. Let x
(i)
0 (t) and x

(i)
1 (t) be the fraction of nodes in state

S and state I, for each node i ∈ V at time t, respectively.

Let (x
(i)
0 , x

(i)
1 )i∈V be an equilibrium for this model. Then,

dx
(i)
1
dt

= βx
(i)
0

∑
j Aijx

(j)
1 − γx

(i)
1 = 0. In the beginning,

x
(i)
0 (0) = 1 − c/n ≈ 1 if there are c = o(1) initial infected

nodes selected uniformly at random from G. Therefore, for

each node i ∈ V ,
dx

(i)
1
dt

= β(1 − x(i)1 )
∑
j Aijx

(j)
1 − γx

(i)
1 ≈



β
∑
j Aijx

(j)
1 − γx

(i)
1 . At equilibrium, we have

dx
(i)
1
dt

= 0,

which implies β
γ
Ax ≈ x. Let λ1 be the largest eigenvalue

of A. It can be shown that the condition for the infection
to die out over time is β

γ
< 1

λ1
, and infection survives and

becomes an epidemic if β
γ
> 1

λ1
[3, 5].

2.1 Ternary model
For the clarity of presentation, let us first consider a multi-

state model with k = 3 states. Here, the state 1 represents
that a node is exposed but not infected yet. For each state
s ∈ {0, 1, 2}, let xs(t) be the fraction of nodes with state s
at time t. Let (x0, x1, x2) be an equilibrium for the model.
Note that x0(t) + x1(t) + x2(t) = 1 ∀t. By the mean-field
analysis, we derive a system of differential equation that
describes the system dynamics:

dx2
dt

= β2x2x1 − γx2, (1)

dx1
dt

= −β2x2x1 + β1x2x0 − γx1. (2)

Setting dx2
dt

= 0, we have (x2 = 0) or (x2 6= 0 and x1 = γ
β2

).
We are interested in identifying the condition for the non-
trivial equilibrium which is the second case. Setting dx1

dt
= 0,

we have −β2x2x1 + β1x2x0 − γx1 = 0. This implies that

x0 =

(
β2x2 + γ

β1x2

)
x1. (3)

Thus, if x2 6= 0, then x1 = γ
β2

and x0 = (β2x2+γ
β1x2

)x1. Since∑2
i=0 xi = 1, we have 1 = x2 + γ

β2
+ (β2x2+γ

β1x2
) γ
β2

, or

β1β2x2 = (β1x2 + γ)(β2x2 + γ) (4)

The discriminant of this quadratic equation is D = (γ(β1 +
β2)− β1β2)2− 4γ2β1β2. The condition that D ≥ 0 is equiv-
alent to

β2 ≥
(
β1 + γ

√
β1

β1 − γ

)2

, (5)

yielding a rational solution if D ≥ 0. Using this, we can
determine the region for the phase transition, which is shown
in Figure 2. The asymptotic lines are β1 = γ and β2 = γ.
Therefore, the infection survives if both β1 and β2 are large
enough. Interestingly, we also discover that the condition
is symmetric for β1 and β2. In Section 2.2, we extend this
condition to a more general case with any arbitrary k ≥ 2.
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Figure 2: The phase transition diagram for the
ternary model when γ = 1.

Stability analysis: Let us present the stability condition
of the ternary model. Let f1(x1, x2) = dx1

dt
= −β2x2x1 +

β1x2(1−x1−x2)−γx1 and f2(x1, x2) = dx2
dt

= β2x2x1−γx2.

Define the Jacobian matrix J = ( dfi
dxj

)i,j=1,2. Then, it can

be shown that a fixed point (or an equilibria) of the system
of differential equation defined by (1) and (2) is stable if the
determinant (Det) of J is positive and the trace (Tr) of J
is negative. We prove that Tr < 0 if x1 = γ

β2
and Det > 0

if x2 >
1
2

+ γ
β1

+ γ
β2

. Therefore, a non-trivial equilibrium

(x1, x2) is stable if x2 > 1
2

+ γ
β1

+ γ
β2

, or a saddle point

elsewhere. Since the sum of solutions of Eq. (4) is 1− γ
β1
− γ
β1

,
there can be a stable non-trivial equilibrium where β1 and β2
are not so small with respect to γ. Note that (x1, x2) = (0, 0)
is a stable equilibrium since the eigenvalues of J are less than
or equal to zero and the multiplicity of each is 1.

Examples: For instance, let β1 = β2 = 5 and γ = 1. Then
x1 = 0.2 and 25x2 = (5x2 + 1)2 from Eq. (4). Solving
this, we have x2 = 0.076 or 0.523 where x0 = 1 − x1 − x2,
respectively. Since 1

2
+ γ
β1

+ γ
β2

= 0.9, there is no stable non-
trivial equilibrium. On the other hand, when β1 = β2 = 20
and γ = 1, we have x2 = 0.003 or 0.897. Then, 0.897 >
1
2

+ γ
β1

+ γ
β2

= 0.6 assures that there is a stable non-trivial
equilibrium for this case.

Applications: By using our results, we can determine γ
values to prevent large-scale disease spreading for any given
(β1, β2). This leads to the following simple vaccination strat-
egy. For the vaccination with a uniform rate γ, we set γ
value so that D < 0. Note that D < 0 is equivalent to
(β1 − γ)(β2 − γ) < γ2 + 2γ

√
β1β2, and γ > β1β2

(
√
β1+
√
β1)2

.

When γ satisfies the above condition, the fraction of nodes
at the final state converges to zero for large t.

2.2 Multi-state model
Let us proceed to analyze the multi-state model for any

k ≥ 2. For each s ∈ {0, 1, . . . , k−1}, let xs(t) be the fraction
of nodes of in state s at time t. Let (x0, x1, . . . , xk−1) be an
equilibrium for the model. Then, we obtain the following
system of differential equation.

dxk−1

dt
= βk−1xk−1xk−2 − γxk−1, (6)

dxs
dt

= −βs+1xk−1xs + βsxk−1xs−1 − γxs

∀s ∈ {1, . . . , k − 2}, (7)

dx0
dt

= −β1xk−1x0 + γ(1− x0). (8)

Setting
dxk−1

dt
= 0, we have (xk−1 = 0) or (xk−1 6= 0 and

xk−2 = γ
βk−1

). We also set dxs
dt

= 0 for any 1 ≤ s ≤ k − 2,

and −βs+1xk−1xs + βsxk−1xs−1 − γxs = 0. This implies
that

xs−1 =

(
βs+1xk−1 + γ

βsxk−1

)
xs =

(
k−1∏
j=s

βj+1xk−1 + γ

βjxk−1

)
xk−1.

(9)

Thus, if xk−1 6= 0, then the condition
∑k−1
i=0 xi = 1 is equiv-

alent to 1 = xk−1 + γ
βk−1

+
∑k−1
s=1 (

∏k−1
j=s

βj+1xk−1+γ

βjxk−1
)xk−1,

which is a (k − 1)-dimension equation of xk−1. Multiplying
β1β2 . . . βk−1x

k−2
k−1 on both sides, we have

β1β2 . . . βk−1x
k−2
k−1 = (β1xk−1 + γ) . . . (βk−1xk−1 + γ). (10)

This holds for any k ≥ 2, and one can check that this argu-
ment holds via mathematical induction on k.



Now let us consider the case in which the infection rates
are increasing geometrically with a growth rate α so that
βk−1 = αβk−2 = . . . = αk−2β1. Then, for nonzero β1, .., βk−1,
Eq. (1) is equivalent to 1

x
= (1 + γ

β1xk−1
) . . . (1 + γ

βk−1xk−1
).

For simplicity, we take β = β1. Substituting y with 1/βxk−1,
we have βy = (1 + γy)(1 + γ

α
y) . . . (1 + γ

αk−2 y).
Let g1(y) = βy and g2(y) = (1 + γy)(1 + γ

α
y) . . . (1 +

γ

αk−2 y). Then, these two functions of y are positive, mono-
tone increasing, and convex for y > 0 since g2(y) = 0 has
only negative solutions y = −γ,−γα, . . . ,−γαk−2. Thus,
g1(y) = g2(y) has at most two solutions. Moreover, for a
fixed α, there is a tipping point βt (or equivalently epidemic
threshold) so that the equation has no solution if β < βt
and has two solutions if β > βt.

For instance, for the case that α = 1 (i.e., the infec-
tion rates are homogeneous), g1(y) = g2(y) is equivalent
to βy = (1 + γy)k−1. Note that the slopes of g1(y) and
g2(y) are the same at the tipping point with β = βt. Since
d
dy
βy = β and d

dy
(1 + γy)k−1 = γ(k − 1)(1 + γy)k−2, y =

1
γ
{( β
γ(k−1)

)1/(k−2) − 1} at the intersecting point. Substitut-

ing y with 1
γ

(
( β
γ(k−1)

)1/(k−2) − 1
)

, we have β
γ
{( β
k−1

)1/(k−2)−
1} = ( β

γ(k−1)
)(k−1)/(k−2). When β is nonzero, the solution

of the above equation is

β = γ(k−1) (k − 1)(k−1)

(k − 2)(k−2)
. (11)

For instance, the threshold of β is 1, 2, 6.75 if γ = 1 and
k = 2, 3, 4, respectively.

Applications: Consider a computer virus outbreak in a
network which is represented by G. We can devise an ef-
fective vaccination strategy from Eq. (6). For the vac-
cination with a uniform rate γ, we can prevent a large-
scale virus spreading by using a suitable γ value. When

γ(k−1) > (k−2)(k−2)

β(k−1)(k−1) , the fraction of nodes at the final state

converges to zero for large t. Furthermore, when k increases
(i.e., it takes more phases for a computer virus to activate),
the threshold for γ decreases exponentially. Thus it is easy
to control the disease spread when the number of steps to
reach the infection state is large. On the other hand, if the
application of this model is to capture the dynamics of prod-
uct’s influence in an online social network, then decreasing
k is more crucial.

3. NUMERICAL RESULTS
We conducted a set of experiments under the multi-state

model. We study the dynamics of fractions of states for
different network datasets. Our network datasets include
(i) a complete graph KN with N nodes, (ii) a Erdös-Rényi
random graph G(N, p) with N nodes and the probability
of having an edge p, and (iii) a random power law graph
P (N,α, d) with N nodes, the exponent α and the expected
average degree d [4]. In our experiments, the initial state
value of each node is chosen independently and uniformly
at random from {0, 1, . . . , k− 1} according to a given initial
rate.

Note that although our analysis focuses on the case (i), we
can also derive threshold values for the case (ii) by scaling
the previous values by 1/p. Figure 3 compares the dynam-
ics for the ternary model with different β1 and β2 values.
Figure 3(a) shows that if there is no stationary non-trivial
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(a) KN , β1 = β2 = 5 (b) KN , β1 = β2 = 20
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(c) G(N, p), β1 = β2 = 100 (d) G(N, p), β1 = β2 = 200
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(e) P (N,α, d), (f) P (N,α, d), (g) P (N,α, d),
β1 = β2 = 100 β1 = β2 = 150 β1 = β2 = 200

Figure 3: The dynamics of fractions x0, x1 and x2 of
states over time where N = 10, 000 and γ = 1. For
the cases (ii) and (iii), p = 0.05, α = 3 and d = 500.

equilibrium, then (x0, x1, x2) converges to (1, 0, 0) for large
t. However, if there is a stationary equilibrium, then there is
a possibility that (x1, x2) converges to another point. In Fig-
ure 3(b), the dotted lines represent a stationary non-trivial
equilibrium (x1, x2) = (0.05, 0.897). In this case, (x1, x2)
converges to either (0, 0) or (0.05, 0.897). Figure 3(c) and
3(d) show that the analysis holds for β1/p and β2/p where
Np is not too small.

It is interesting to note that for the case (iii), our method
still succeeds to predict the equilibrium condition withNβ1/d
and Nβ2/d, as shown in Figures 3(e), 3(f), and 3(g). This
is because the mean-field approach gives a good approxi-
mation for locally tree-like networks. Our current work is
to extend our analysis to determine the condition of phase
transition for general graphs with any k ≥ 2.
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