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Abstract While vacation processes are considered to be ordinary behavior for
servers, the study of queueing networks with server vacations is limited, interesting,
and challenging. In this paper, we provide a unified and effective method of func-
tional analysis for the study of a supermarket model with server multiple vacations.
Firstly, we analyze a supermarket model of N identical servers with server multiple
vacations, and set up an infinite-dimensional system of differential (or mean-field)
equations, which is satisfied by the expected fraction vector, in terms of a technique
of tailed equations. Secondly, as N → ∞ we use the operator semigroup to provide
a mean-field limit for the sequence of Markov processes, which asymptotically
approaches a single trajectory identified by the unique and global solution to the
infinite-dimensional system of limiting differential equations. Thirdly, we provide
an effective algorithm for computing the fixed point of the infinite-dimensional
system of limiting differential equations, and use the fixed point to give performance
analysis of this supermarket model, including the mean of stationary queue length in
any server and the expected sojourn time that any arriving customer spends in this
system. Finally, we use some numerical examples to analyze how the performance
measures depend on some crucial factors of this supermarket model. Note that
the method of this paper will be useful and effective for performance analysis of
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complicated supermarket models with respect to resource management in practical
areas such as computer networks, manufacturing systems and transportation net-
works.

Keywords Supermarket model · Randomized load balancing · Server vacation ·
Join the shortest queue · Expected fraction vector · Operator semigroup ·
Mean-field limit · Fixed point · Performance analysis

1 Introduction

During the last three decades considerable attention has been paid to studying
queueing systems with server vacations. Queues with server vacations are always
useful in modeling many real life situations such as digital communication, com-
puter networks, production/inventory systems, transportation networks and business
systems. Various queueing models with server vacations have been extensively
reported by a number of authors, for example, basic vacation policies include server
multiple vacations, server single vacations, server working vacations, N-policy, D-
policy and T-policy. Reader may refer to Takagi (1991), Dshalalow (1995, 1997)
and Tian and Zhang (2006) for more details. In the study of queueing systems
with server vacations, an important result is stochastic decompositions of stationary
queue length and of stationary waiting time. For single-server queues, the stochastic
decompositions in the M/G/1 queue with server vacations were first established
by Fuhrmann and Cooper (1985); while in multiple-server queues, the conditional
stochastic decompositions for the M/M/c queues with server vacations were first
analyzed in Tian et al. (1999). Up to now, extensive research on the single-server (or
multiple-server) queueing systems with server vacations has been well-documented,
such as, by three survey papers of Doshi (1986, 1990) and Alfa (2003), and by two
books of Takagi (1991) and Tian and Zhang (2006).

Until now, the available results of queueing networks with server vacations has
been very limited. Note that the supermarket models are an important class of
queueing networks and play a key role in the area of networking resource manage-
ment, thus the supermarket model with server vacations is very interesting in the
study of queueing networks with server vacations, and it can also provide some new
understanding and valuable highlight for the ordinary queues with server vacations
which are described in Takagi (1991) and Tian and Zhang (2006). For queueing
networks with server vacations, Vvedenskaya and Suhov (2005) first discussed a
supermarket model with server On/Off vacations, and analyzed the stationary queue
length distribution by means of the fixed point. However, the On/Off vacation
discipline is not accurate for understanding the vacation processes, because it is not
clear why to begin a vacation and how to end this vacation. This motivates us in this
paper to further consider a supermarket model with server multiple vacations, while
for other cases such as server single vacations and server working vacations, we can
similarly give performance analysis. Note that the results given in Vvedenskaya and
Suhov (2005) is very interesting, it also inspires us to further provide an effective
algorithm to compute the fixed point with respect to the choice number d ≥ 3, which
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have not been given a complete solution in the literature up to now. Note that
the choice constant d ≤ N, where N is the number of servers in the supermarket
model.

Dynamic randomized load balancing is often referred to as the supermarket
model. Recently, some supermarket models have been analyzed by means of queue-
ing methods as well as Markov processes. For the simplest supermarket model
(that is, Poisson arrivals and exponential service times), Vvedenskaya et al. (1996)
applied the operator semigroups of Markov processes to analyze the stationary
distribution and obtained an important result: Super-exponential decay tail. The
super-exponential solution is a substantial improvement of system performance over
that in the ordinary M/M/1 queue. At nearly the same time, Mitzenmacher (1996)
also analyzed the same supermarket model in terms of the density-dependent jump
Markov processes, e.g., see Kurtz (1981). Later, Turner (1998) provided a martingale
approach to further discuss this supermarket model. The path space evolution of
the supermarket model was studied by Graham (2000a, b, 2004) who showed that
starting from independent initial states, as N → ∞ the queues of the limiting process
evolve independently. Luczak and Norris (2005) provided a strong approximation
for the supermarket model, and Luczak and McDiarmid (2006, 2007) showed that
the length of the longest queue scales as (log log N)/ log d + O(1). The positive
Harris recurrence of the Markov processes underlying some supermarket models
was discussed in Foss and Chernova (1998) and Bramson (2008, 2011). Certain
generalization of the supermarket model has been explored in studying various
variations, for example, modeling more crucial factors by Mitzenmacher (1999),
Jacquet and Vvedenskaya (1998), Jacquet et al. (1999) and Vvedenskaya and Suhov
(2005); analyzing non-exponential server times or non-Poisson input by Bramson et
al. (2010, 2012, 2011), Vvedenskaya and Suhov (1997), Mitzenmacher et al. (2001), Li
et al. (2011, 2012), Li and Lui (2010) and Li (2011); fast Jackson networks by Martin
and Suhov (1999), Martin (2001) and Suhov and Vvedenskaya (2002). Up to now,
there have been three excellent survey papers by Turner (1996), Vvedenskaya and
Suhov (1997) and Mitzenmacher et al. (2001), and one book by Mitzenmacher and
Upfal (2005).

The mean-field equations and mean-field limits play an important role in the
study of supermarket models. Readers may refer to recent publications for the mean-
field models, among which are Sznitman (1989), Vvedenskaya and Suhov (1997), Le
Boudec et al. (2007), Benaim and Le Boudec (2008), Bordenave et al. (2009), Gast
and Gaujal (2009, 2012), Gast et al. (2011) and Tsitsiklis and Xu (2012). This paper
provides a clear picture for illustrating how to use mean-field models to numerically
analyze performance measures of complicated supermarket models, and is organized
into three key parts: (Part one) setting up system of differential equations, see
Section 2. (Part two) theoretical support, see Sections 3 and 4. In Section 3, we
use the operator semigroup to give some strict proofs for the mean-field limit (or
propagation of chaos), which shows the asymptotic independence of queues in the
supermarket model with server vacations. Section 4 is a necessary supplementary
part of the mean-field limit, in which the Lipschitzian condition is established for
guaranteeing the existence and uniqueness of solution to the system of limiting
differential equations. (Part three) performance analysis, Sections 5 and 6 provide
a novel mean-field method for being able to numerically analyze performance
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measures of this supermarket model after the basic preparation given in Sections 3
and 4. Although analysis of the supermarket model with a finitely big N is very
difficult, we use the mean-field limit to be able to numerically analyze performance
measures of one queue, the information of which will help us to understand the
total behavior of this supermarket model as N → ∞. It is worthwhile to note that
some simulations in Bramson et al. (2010, 2012, 2011) indicated that the asymptotic
independence of queues can be formed well when N ≥ 100. Therefore, the method of
this paper is effective for performance analysis of complicated supermarket models.

The main contributions of this paper are threefold. The first one is to provide
a unified and effective method for setting up an infinite-dimensional system of
differential (or mean-field) equations, which is satisfied by the expected fraction
vector in terms of a technique of tailed equations. Specifically, we derive an im-
portant relation: the invariance of environment factor. Note that the invariance of
environment factor plays a key role in our later study with respect to this supermar-
ket model. The second contribution is the development of a useful technique for
establishing the Lipschitzian condition for the infinite-dimensional fraction vector
function f : R∞

+ → C1(R∞
+ ) for the general choice number d ≥ 1. Note that the

choice number d = 2 was always assumed in several important references, e.g., see
Vvedenskaya and Suhov (1997, 2005) and Mitzenmacher et al. (2001). As seen in
this paper, the case with d = 2 has a special structure in the system of nonlinear
equations satisfied by the fixed point, which is easily dealt with from some simple
computation; while for the case with d ≥ 3, this paper gives some new and interesting
results when establishing the the Lipschitzian condition, which leads to the strict
proofs for the mean-field limit. The third contribution of this paper is to provide an
effective algorithm for computing the fixed point, and also to provide performance
analysis of this supermarket model. Note that our algorithm has a key which has the
ability to determine the boundary probabilities in the system of nonlinear equations
satisfied by the fixed point.

The remainder of this paper is organized as follows. In Section 2, we describe
a supermarket model of N identical servers with server multiple vacations, intro-
duce the sequence of fraction vectors which express the supermarket model as
infinite-dimensional Markov processes, and set up an infinite-dimensional system
of differential equations satisfied by the expected fraction vector in terms of a
technique of tailed equations. In Section 3, we use the operator semigroup to provide
a mean-field limit for the sequence of Markov processes, which asymptotically
approaches a single trajectory identified by the unique and global solution to
the infinite-dimensional system of limiting differential equations. In Section 4, we
provide a unified and effective method for organizing the Lipschitzian condition for
the infinite-dimensional fraction vector function f : R∞

+ → C1(R∞
+ ). Then we apply

the Lipschitzian condition and the Picard approximation to show that the limiting
expected fraction vector is the unique and global solution to the system of limiting
differential equations. In Section 5, we provide an effective algorithm to compute
the fixed point of the infinite-dimensional system of limiting differential equations.
In Section 6, we use the fixed point to give performance analysis of this supermarket
model, including the mean of the stationary queue length in any server and the
expected sojourn time that any arriving customer spends in this system. Furthermore,
we use some numerical examples to analyze how the performance measures depend
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on some crucial factors of this supermarket model. Some concluding remarks are
given in the final section.

2 A supermarket model with server multiple vacations

In this section, we first describe a supermarket model of N ≥ 1 identical servers
with server multiple vacations. Then we introduce the sequence of fraction vectors,
which are used to express the supermarket model as infinite-dimensional Markov
processes. Finally, we provide a unified and effective method to set up an infinite-
dimensional system of differential equations satisfied by the expected fraction vector
of the supermarket model in terms of a technique of tailed equations.

The supermarket model consists of N identical servers, where each server has
an infinite buffer. The service times of each server are i.i.d. with an exponential
distribution of service rate µ = 1. The vacation process of each server is based on the
multiple vacation policy: When there is not any customer at one server and its buffer,
it immediately takes a vacation and keeps taking vacations until it finds at least one
customer waiting in the server or its buffer at the vacation completion instant. The
vacation time distribution of each server is exponential with vacation rate θ > 0. The
common input flow is Poisson with arrival rate Nλ for λ > 0. Upon arrival, each
customer chooses d ≥ 1 servers from the N servers independently and uniformly at
random, and joins the one whose queue length is the shortest. If there is a tie, servers
with the shortest queue length are chosen randomly. All customers in any server
will be served in the first-come-first-served (FCFS) manner, and the arrival, service
and vacation processes are independent of each other. Figure 1 provides a physical
illustration for the supermarket model of N identical servers with server multiple
vacations.

Lemma 1 The supermarket model of N identical servers with server multiple vacations
is stable if 0 < λ < 1.

Fig. 1 A supermarket model
with each customer choosing
the loading of d servers
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Proof If d = 1, then this supermarket model of N identical servers with server
multiple vacations is equivalent to a system of N independent M/M/1 queues with
server multiple vacations. From Chapter 1 of Tian and Zhang (2006), it is seen that
the M/M/1 queue with server multiple vacations is stable if ρ = λ/µ = λ < 1. Using a
coupling method, as given in Theorems 4 and 5 of Martin and Suhov (1999), it is easy
to see that for a fixed number N = 1, 2, 3, . . ., this supermarket model of N identical
servers is stable if ρ = λ < 1. This completes the proof. ⊓&

2.1 An infinite-dimensional Markov process

For this supermarket model, let L(N)
k (t) be the number of working servers with at

least k ≥ 1 customers (the serving customer is also taken into account) at time t, and
M(N)

l (t) the number of vacation servers with at least l ≥ 0 customers at time t. We
write

U (N)
k (t) = L(N)

k (t)
N

, k ≥ 1,

and

V(N)
l (t) = M(N)

l (t)
N

, l ≥ 0.

Clearly, U (N)
k (t) for k ≥ 1 and V(N)

l (t) for l ≥ 0 are the fractions of these working
servers with at least k customers at time t and the fractions of these vacation servers
with at least l customers at time t, respectively. Set

U(N)(t) = (U (N)
1 (t), U (N)

2 (t), U (N)
3 (t), . . .)

and

V(N)(t) = (V(N)
0 (t), V(N)

1 (t), V(N)
2 (t), . . .).

It is easy to see that for any given N ≥ 1, U(N)(t) and V(N)(t) are all random
vectors. Based on the exponential or Poisson assumptions of the arrival, service
and vacation processes,

{(
U(N)(t), V(N)(t)

)
, t ≥ 0

}
is an infinite-dimensional Markov

process whose state space EN is given by

EN =
{(

u(N)
1 , u(N)

2 , u(N)
3 , . . . ; v

(N)
0 , v

(N)
1 , v

(N)
2 , . . .

)
: 1 ≥ u(N)

1 ≥ u(N)
2

≥ u(N)
3 ≥ · · · ≥ 0, 1 ≥ v

(N)
0 ≥ v

(N)
1 ≥ v

(N)
2 ≥ v

(N)
3 ≥ · · · ≥ 0,

Nu(N)
k and Nv

(N)
l are nonnegative integers for k ≥ 1 and l ≥ 0

}
.

Note that M(N)
l (t) ≥ M(N)

l+1 (t) ≥ 0 for l ≥ 0 and t ≥ 0, it is obvious that 1 ≥
V(N)

0 (t) ≥ V(N)
1 (t) ≥ V(N)

2 (t) ≥ · · · ≥ 0. Similarly, the fact that L(N)
k (t) ≥ L(N)

k+1(t) ≥ 0
for k ≥ 1 and t ≥ 0 can yield that 1 ≥ U (N)

1 (t) ≥ U (N)
2 (t) ≥ U (N)

2 (t) ≥ · · · ≥ 0. Further-
more, since the two random variables U (N)

k (t) and V(N)
l (t) take values in the set

{0, 1/N, 2/N, . . . , (N − 1) /N, 1} for k ≥ 1, l ≥ 0 and t ≥ 0, this gives that for t ≥ 0,
there exist two positive integers K and L such that

1 ≥ U (N)
1 (t) ≥ U (N)

2 (t) ≥ · · · ≥ U (N)
K (t) > 0, U (N)

k (t) = 0 for k ≥ K + 1;
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and

1 ≥ V(N)
0 (t) ≥ V(N)

1 (t) ≥ · · · ≥ V(N)
L (t) > 0, V(N)

l (t) = 0 for l ≥ L + 1.

To analyze the infinite-dimensional Markov process
{(

U(N)(t), V(N)(t)
)
, t ≥ 0

}
on

state space EN , we write

u(N)
k (t) = E

[
U (N)

k (t)
]
, k ≥ 1,

and

v
(N)
l (t) = E

[
V(N)

l (t)
]
, l ≥ 0.

Let

u(N)(t) =
(

u(N)
1 (t), u(N)

2 (t), u(N)
3 (t), . . .

)

and

v(N)(t) =
(
v

(N)
0 (t), v(N)

1 (t), v(N)
2 (t), . . .

)
.

It is easy to see that

1 ≥ u(N)
1 (t) ≥ u(N)

2 (t) ≥ u(N)
3 (t) ≥ · · · ≥ 0

and

1 ≥ v
(N)
0 (t) ≥ v

(N)
1 (t) ≥ v

(N)
2 (t) ≥ · · · ≥ 0

with

v
(N)
0 (t) + u(N)

1 (t) = 1.

In the remainder of this section, we set up an infinite-dimensional system of
differential equations whose purpose is to be able to determine the expected fraction
vector (u(N)(t), v(N)(t)).

2.2 The system of differential equations

To determine the expected fraction vector
(
u(N)(t), v(N)(t)

)
, this subsection provides

a unified and effective method to set up an infinite-dimensional system of differential
equations satisfied by the expected fraction vector in terms of a technique of tailed
equations. To that end, we first provide an example with k ≥ 2 to indicate how to
derive these differential equations.

In the supermarket model of N identical servers, we need to determine the
expected change in the number of servers with at least k customers over a small time
period

[
0, dt), that is, we shall compute the rate that any arriving customer selects d

servers from the N servers independently and uniformly at random and joins the one
whose queue length is the shortest. From Figs. 2 and 3, it is seen that any arriving
customer joins either server works or server vacations among the selected d servers,
thus we need to consider the following two cases:

Case one: Entering one working server. In this case, the rate that any arriving
customer joins a working server with the queue length k − 1 and the
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Fig. 2 The state transition relation in the M/M/1 queue with server vacations
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Fig. 3 Two different cases when joining a working server or a vacation server
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queue lengths of the other selected d − 1 servers are not shorter than
k − 1 is given by

Nλ
[
u(N)

k−1 (t) − u(N)
k (t)

]
Wk (uk−1, uk; vk−1, vk; t) dt, (1)

where

W(N)
k (uk−1, uk; vk−1, vk; t) =

d∑

m=1

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t)

]m−1 [
u(N)

k (t)
]d−m

+
d−1∑

m=1

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t)

]m−1

×
d−m∑

j=1

C j
d−m

[
u(N)

k (t)
]d−m− j [

v
(N)
k (t)

] j

+
d∑

m=2

Cm
d

m−1∑

m1=1

m1

m
Cm1

m

[
u(N)

k−1 (t)−u(N)
k (t)

]m1−1

×
[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−m1

×
d−m∑

r=0

Cr
d−m

[
u(N)

k (t)
]r [

v
(N)
k (t)

]d−m−r
.

It is necessary to provide a detailed interpretation for how to derive
Eq. 1. From the joining process expressed by (a) in Fig. 3 and from
the set decomposition of all possible events indicated in Fig. 4, it is seen
that the probability W(N)

k (uk−1, uk; vk−1, vk; t) given in Eq. 1 contain the
following three parts.

Part I: Neither of the selected d servers is taking a vacation, that
is, each of the selected d servers is working for service. In
this case, the probability that any arriving customer joins a
working server with the queue length k − 1 and the queue

Fig. 4 Set decomposition of
all possible events when
joining a working server

Each of the d selected servers is working for service, and there is at 
least one working server with the shortest queue length k-1.

(Part I)

In the d selected servers, there is at 
least one working server with the
shortest queue length k-1, and there 
exists at least one vacation server 
while the queue length of each 
vacation server is more than k
customers.

(Part II)

In the d selected servers, there
are at least one working server
wi th  the shortest queue length 
k-1 and at least one vacation
server with  the shortest queue 
length k-1.

(Part III)
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lengths of the other selected d − 1 working servers are not
shorter than k − 1 is given by

d∑

m=1

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t)

]m [
u(N)

k (t)
]d−m

=
[
u(N)

k−1 (t) − u(N)
k (t)

]

×
d∑

m=1

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t)

]m−1 [
u(N)

k (t)
]d−m

,

where Cm
d = d!/

[
m! (d − m)!

]
is a binomial coefficient, and[

u(N)
k−1 (t) − u(N)

k (t)
]m

is the probability that any arriving cus-
tomer who can only choose one queue makes m independent
selections during the m selected working servers with the
queue length k − 1 at time t.

Part II: For the selected d servers, there is at least one working server
with k − 1 customers, and there exist at least one vacation
server while the queue length of each vacation server is more
than k customers. In this case, the probability that any arriving
customer joins a working server with the shortest queue length
k − 1; and for the other selected d − 1 servers, the queue
lengths of the selected working servers are not shorter than
k − 1, and there exist at least one vacation server while the
queue length of each vacation server is more than k customers,
is given by

d−1∑

m=1

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t)

]m

×
d−m∑

j=1

C j
d−m

[
u(N)

k (t)
]d−m− j [

v
(N)
k (t)

] j

=
[
u(N)

k−1 (t) − u(N)
k (t)

] d−1∑

m=1

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t)

]m−1

×
d−m∑

j=1

C j
d−m

[
u(N)

k (t)
]d−m− j [

v
(N)
k (t)

] j
.

Part III: For the selected d servers, there are at least one working
server with k − 1 customers and at least one vacation server
with k − 1 customers. In this case, if there are the selected m
servers with the shortest queue length k − 1 where there are
m1 ≥ 1 working servers and m − m1 vacation servers, then the
probability that any arriving customer joins a working server
is equal to m1/m. Therefore, the probability that any arriving
customer joins a working server with the queue length k − 1,
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the queue lengths of the other selected d − 1 servers are not
shorter than k − 1, and there are at least one working server
with k − 1 customers and at least one vacation server with
k − 1 customers, is given by

d∑

m=2

Cm
d

m−1∑

m1=1

m1

m
Cm1

m

[
u(N)

k−1 (t)−u(N)
k (t)

]m1
[
v

(N)
k−1 (t)−v

(N)
k (t)

]m−m1

×
d−m∑

r=0

Cr
d−m

[
u(N)

k (t)
]r [

v
(N)
k (t)

]d−m−r

=
[
u(N)

k−1 (t) − u(N)
k (t)

] d∑

m=2

Cm
d

×
m−1∑

m1=1

m1

m
Cm1

m

[
u(N)

k−1 (t) − u(N)
k (t)

]m1−1

×
[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−m1

×
d−m∑

r=0

Cr
d−m

[
u(N)

k (t)
]r [

v
(N)
k (t)

]d−m−r
.

Using the above three parts, Eq. 1 can be obtained immediately.
Besides the above analysis for the arrival process, in what follows we
consider the service and vacation processes. The rate that a customer
leaves a server queued by k customers is given by

N
[
u(N)

k (t) − u(N)
k+1(t)

]
dt. (2)

The rate that a server queued by at least k customers completes its
vacation is given by

Nθv
(N)
k (t)dt. (3)

Using Eqs. 1, 2 and 3, we obtain

dE
[

L(N)
k (t)

]
= Nλ

[
u(N)

k−1 (t) − u(N)
k (t)

]
W(N)

k (uk−1, uk; vk−1, vk; t) dt

−N
[
u(N)

k (t) − u(N)
k+1(t)

]
dt + Nθv

(N)
k (t)dt,

this gives

d
dt

u(N)
k (t) = λ

[
u(N)

k−1 (t) − u(N)
k (t)

]
W(N)

k (uk−1, uk; vk−1, vk; t)

−
[
u(N)

k (t) − u(N)
k+1(t)

]
+ θv

(N)
k (t) (4)

by means of u(N)
k (t) = E

[
L(N)

k (t)/N
]
.
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Case two: Entering one vacation server. In this case, the rate that any arriving
customer joins a vacation server with the queue length k − 1 and the
queue lengths of the other selected d − 1 servers are not shorter than
k − 1 is given by

Nλ
[
v

(N)
k−1 (t) − v

(N)
k (t)

]
V(N)

k (uk−1, uk; vk−1, vk; t) dt, (5)

where

V(N)
k (uk−1, uk; vk−1, vk; t) =

d∑

m=1

Cm
d

[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−1 [
v

(N)
k (t)

]d−m

+
d−1∑

m=1

Cm
d

[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−1

×
d−m∑

j=1

C j
d−m

[
v

(N)
k (t)

]d−m− j [
u(N)

k (t)
] j

+
d∑

m=2

Cm
d

m−1∑

m1=1

m1

m
Cm1

m

[
v

(N)
k−1 (t)−v

(N)
k (t)

]m1−1

×
[
u(N)

k−1 (t) − u(N)
k (t)

]m−m1

×
d−m∑

r=0

Cr
d−m

[
v

(N)
k (t)

]r [
u(N)

k (t)
]d−m−r

.

Note that Eq. 5 can be derived similarly to that in Case one by means of
(b) in Figs. 3 and 5. Using a similar analysis to Eq. 4, it follows from Eq. 5
that

d
dt

v
(N)
k (t) = λ

[
v

(N)
k−1 (t) − v

(N)
k (t)

]
V(N)

k (uk−1, uk; vk−1, vk; t) − θv
(N)
k (t).

(6)
The following theorem simplifies expressions for V(N)

1 (u1; v0, v1; t),
V(N)

k (uk−1, uk; vk−1, vk; t) and W(N)
k (uk−1, uk; vk−1, vk; t) for k ≥ 2. Note

that the simplified expressions will be a key in our later study.

Fig. 5 Set decomposition of
all possible events when
joining a vacation server

Each of the d selected servers is at vacation, and there is at least one 
vacation server with the shortest queue length k-1.

(Part I)

In the d selected servers, there is at 
least one vacation server with the
shortest queue length k-1, and there 
exists at least one working server 
while the queue length of each 
working server is more than k
customers.

(Part II)

In the d selected servers, there
are at least one vacation server
wi th  the shortest queue length 
k-1 and at least one working
server with  the shortest queue 
length k-1.

(Part III)
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Theorem 1

V(N)
1 (u1; v0, v1; t) =

d∑

m=1

Cm
d

[
v

(N)
0 (t) − v

(N)
1 (t)

]m−1 [
v

(N)
1 (t) + u(N)

1 (t)
]d−m

,

for k ≥ 2

W(N)
k (uk−1, uk; vk−1, vk; t) =

d∑

m=1

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t) + v

(N)
k−1 (t) − v

(N)
k (t)

]m−1

×
[
u(N)

k (t) + v
(N)
k (t)

]d−m

and

V(N)
k (uk−1, uk; vk−1, vk; t) =

d∑

m=1

Cm
d

[
v

(N)
k−1 (t) − v

(N)
k (t) + u(N)

k−1 (t) − u(N)
k (t)

]m−1

×
[
u(N)

k (t) + v
(N)
k (t)

]d−m
.

Hence, for k ≥ 2 we have

W(N)
k (uk−1, uk; vk−1, vk; t) = V(N)

k (uk−1, uk; vk−1, vk; t) .

Proof It is easy to see that

V(N)
1 (u1; v0, v1; t) =

d∑

m=1

Cm
d

[
v

(N)
0 (t) − v

(N)
1 (t)

]m−1 d−m∑

r=0

Cr
d−m

[
v

(N)
1 (t)

]d−m− j [
u(N)

1 (t)
] j

=
d∑

m=1

Cm
d

[
v

(N)
0 (t) − v

(N)
1 (t)

]m−1 [
v

(N)
1 (t) + u(N)

1 (t)
]d−m

.

For k ≥ 2, we obtain

W(N)
k (uk−1, uk; vk−1, vk; t) = Cd

d

[
u(N)

k−1 (t) − u(N)
k (t)

]d−1

+
d−1∑

m=1

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t)

]m−1 [
u(N)

k (t)
]d−m

+
d−1∑

m=1

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t)

]m−1
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×
d−m∑

j=1

C j
d−m

[
u(N)

k (t)
]d−m− j [

v
(N)
k (t)

] j

+
d∑

m=2

Cm
d

m−1∑

m1=1

m1

m
Cm1

m

[
u(N)

k−1 (t) − u(N)
k (t)

]m1−1

×
[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−m1

×
d−m∑

r=0

Cr
d−m

[
u(N)

k (t)
]r [

v
(N)
k (t)

]d−m−r

= Cd
d

[
u(N)

k−1 (t) − u(N)
k (t)

]d−1

+
d−1∑

m=1

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t)

]m−1

×
d−m∑

j=0

C j
d−m

[
u(N)

k (t)
]d−m− j [

v
(N)
k (t)

] j

+
d∑

m=2

Cm
d

m−1∑

m1=1

m1

m
Cm1

m

[
u(N)

k−1 (t) − u(N)
k (t)

]m1−1

×
[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−m1
d−m∑

r=0

Cr
d−m

[
u(N)

k (t)
]r [

v
(N)
k (t)

]

= C1
d

d−1∑

j=0

C j
d−1

[
u(N)

k (t)
]d−1− j [

v
(N)
k (t)

] j

+
d∑

m=2

Cm
d

[
u(N)

k−1 (t) − u(N)
k (t)

]m−1

×
d−m∑

j=0

C j
d−m

[
u(N)

k (t)
]d−m− j [

v
(N)
k (t)

] j

+
d∑

m=2

Cm
d

m−1∑

m1=1

m1

m
Cm1

m

[
u(N)

k−1 (t) − u(N)
k (t)

]m1−1

×
[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−m1
d−m∑

r=0

Cr
d−m

[
u(N)

k (t)
]r [

v
(N)
k (t)

]

= C1
d

d−1∑

j=0

C j
d−1

[
u(N)

k (t)
]d−1− j [

v
(N)
k (t)

] j



Discrete Event Dyn Syst

+
d∑

m=2

Cm
d

m∑

m1=1

m1

m
Cm1

m

[
u(N)

k−1 (t) − u(N)
k (t)

]m1−1

×
[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−m1
d−m∑

r=0

Cr
d−m

[
u(N)

k (t)
]r [

v
(N)
k (t)

]

=
d∑

m=1

Cm
d

m∑

m1=1

m1

m
Cm1

m

[
u(N)

k−1 (t) − u(N)
k (t)

]m1−1

×
[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−m1
d−m∑

r=0

Cr
d−m

[
u(N)

k (t)
]r [

v
(N)
k (t)

]

=
d∑

m=1

Cm
d

m∑

m1=1

m1

m
Cm1

m

[
u(N)

k−1 (t) − u(N)
k (t)

]m1−1

×
[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−m1
[
u(N)

k (t) + v
(N)
k (t)

]d−m

=
d∑

m=1

Cm
d

[
u(N)

k (t) + v
(N)
k (t)

]d−m m∑

m1=1

Cm1−1
m−1

[
u(N)

k−1 (t) − u(N)
k (t)

]m1−1

×
[
v

(N)
k−1 (t) − v

(N)
k (t)

]m−m1

=
d∑

m=1

Cm
d

[
u(N)

k (t) + v
(N)
k (t)

]d−m [
u(N)

k−1 (t) − u(N)
k (t) + v

(N)
k−1 (t) − v

(N)
k (t)

]m−1
,

similarly, we have

V(N)
k (uk−1, uk; vk−1, vk; t) =

d∑

m=1

Cm
d

[
v

(N)
k−1 (t) − v

(N)
k (t) + u(N)

k−1 (t) − u(N)
k (t)

]m−1

×
[
u(N)

k (t) + v
(N)
k (t)

]d−m
.

This completes the proof. ⊓&

Set

L(N)
1 (u1; v0, v1; t) = V(N)

1 (u1; v0, v1; t)

and for k ≥ 2

L(N)
k (uk−1, uk; vk−1, vk; t) = W(N)

k (uk−1, uk; vk−1, vk; t) = V(N)
k (uk−1, uk; vk−1, vk; t) .

The sequence: L(N)
1 (u1; v0, v1; t) and L(N)

k (uk−1, uk; vk−1, vk; t) for k ≥ 2, is called the
invariance of environment factor, which will play a key role in our later study with
respect to how to set up the system of differential equations.
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Using some similar analysis to Eqs. 4 and 6, we obtain an infinite-dimensional sys-
tem of differential equations satisfied by the expected fraction vector

(
u(N)(t), v(N)(t)

)

as follows:
d
dt

v
(N)
0 (t) =

[
u(N)

1 (t) − u(N)
2 (t)

]
− θv

(N)
1 (t), (7)

d
dt

v
(N)
1 (t) = λ

[
v

(N)
0 (t) − v

(N)
1 (t)

]
L(N)

1 (u1; v0, v1; t) − θv
(N)
1 (t), (8)

for k ≥ 2

d
dt

v
(N)
k (t) = λ

[
v

(N)
k−1 (t) − v

(N)
k (t)

]
L(N)

k (uk−1, uk; vk−1, vk; t) − θv
(N)
k (t) (9)

and
d
dt

u(N)
k (t)=λ

[
u(N)

k−1 (t)−u(N)
k (t)

]
L(N)

k (uk−1, uk; vk−1, vk; t)−
[
u(N)

k (t)−u(N)
k+1(t)

]
+θv

(N)
k (t)

(10)
with the boundary condition

v
(N)
0 (t) + u(N)

1 (t) = 1, t ≥ 0, (11)

and with the initial conditions
{

u(N)
k (0) = gk, k ≥ 1,

v
(N)
l (0) = hl, l ≥ 0.

(12)

where
⎧
⎪⎪⎨

⎪⎪⎩

1 ≥ g1 ≥ g2 ≥ g3 ≥ · · · ≥ 0,

1 ≥ h0 ≥ h1 ≥ h2 ≥ · · · ≥ 0,

h0 + g1 = 1.

Remark 1 If d = 2, then W(N)
k (uk−1, uk; vk−1, vk; t) = u(N)

k−1 (t) + u(N)
k (t) + v

(N)
k−1 (t) +

v
(N)
k (t) for k ≥ 2 and V(N)

l (ul−1, ul; vl−1, vl; t) = u(N)
l−1 (t) + u(N)

l (t) + v
(N)
l−1 (t) + v

(N)
l (t)

for l ≥ 1. In this case, we have

d
dt

v
(N)
k (t) = λ

[
v

(N)
k−1 (t) − v

(N)
k (t)

] [
u(N)

k−1 (t) + u(N)
k (t) + v

(N)
k−1 (t) + v

(N)
k (t)

]
− θv

(N)
k (t)

= λ

{[
v

(N)
k−1 (t)

]2
−

[
v

(N)
k (t)

]2
}

+ λ
[
v

(N)
k−1 (t) − v

(N)
k (t)

] [
u(N)

k−1 (t) + u(N)
k (t)

]

−θv
(N)
k (t).

Therefore, the system of differential equations (7) to (12) is the same as those in
Vvedenskaya and Suhov (2005).

2.3 A useful probabilistic interpretation

In this subsection, we provide a useful probabilistic interpretation for the invariance
of environment factor L(N)

1 (u1; v0, v1; t) and L(N)
k (uk−1, uk; vk−1, vk; t) for k ≥ 2, this

will help us to further understand the system of differential equations (7) to (12).
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Using Theorem 1, it is easy to check that
[
v

(N)
0 (t) − v

(N)
1 (t)

]
V(N)

1 (u1; v0, v1; t) =
[
v

(N)
0 (t) + u(N)

1 (t)
]d

−
[
v

(N)
1 (t) + u(N)

1 (t)
]d

,

for k ≥ 2

[
v

(N)
k−1 (t) − v

(N)
k (t)

]
L(N)

k (uk−1, uk; vk−1, vk; t) = v
(N)
k−1 (t) − v

(N)
k (t)

v
(N)
k−1 (t) − v

(N)
k (t) + u(N)

k−1 (t)−u(N)
k (t)

×
{[

u(N)
k−1 (t) + v

(N)
k−1 (t)

]d
−

[
u(N)

k (t) + v
(N)
k (t)

]d
}

and

[
u(N)

k−1 (t) − u(N)
k (t)

]
L(N)

k (uk−1, uk; vk−1, vk; t) = u(N)
k−1 (t)−u(N)

k (t)

v
(N)
k−1 (t) − v

(N)
k (t)+u(N)

k−1 (t)−u(N)
k (t)

×
{[

u(N)
k−1 (t) + v

(N)
k−1 (t)

]d
−

[
u(N)

k (t) + v
(N)
k (t)

]d
}

.

To give the probabilistic interpretation for
[
v

(N)
0 (t) − v

(N)
1 (t)

]
V(N)

1 (u1; v0, v1; t),
[
v

(N)
k−1 (t) − v

(N)
k (t)

]
L(N)

k (uk−1, uk; vk−1, vk; t) and
[
u(N)

k−1 (t) − u(N)
k (t)

]
L(N)

k (uk−1, uk;
vk − 1, vk; t) for k ≥ 2, we introduce some notation

• Wk−1 and Vk−1 are the events in which any arriving customer is redirected to a
working server or a vacation server with the queue length k − 1, respectively.

• Xk−1 denotes the number of times in the randomized load balancing policy we
choose a server with the exactly queue length k − 1, where we do not distinguish
working and vacation servers.

• Yk−1 denotes the number of times in the randomized load balancing policy we
choose a server with whose queue length is not shorter than k − 1.

Now, we compute the two probabilities P {Wk−1} and P {Vk−1} for k ≥ 2. Using
the law of total probability, we obtain

P {Wk−1} =
d∑

m=1

P {Wk−1|Xk−1 = m, Yk−1 = d − m} P {Xk−1 = m, Yk−1 = d − m} .

We can compute the conditional probability

P {Wk−1|Xk−1 = m, Yk−1 = d − m} = u(N)
k−1 (t) − u(N)

k (t)

v
(N)
k−1 (t) − v

(N)
k (t) + u(N)

k−1 (t) − u(N)
k (t)

, (13)

which is independent of the number m. In fact, the conditional probability is easy to
compute, e.g., by thinking in terms of an urn model with black and white balls, from
which one draws m balls, black ones with probability

q = u(N)
k−1 (t) − u(N)

k (t)

v
(N)
k−1 (t) − v

(N)
k (t) + u(N)

k−1 (t) − u(N)
k (t)
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and white ones with probability 1 − q. Then, once m balls are extraced, one draws at
random one ball from the m ones. The probability of having chosen a black ball is
equal to q.

By means of Mitzenmacher (1996), we obtain

d∑

m=1

P {Xk−1 = m, Yk−1 = d − m} =
[
u(N)

k−1 (t) + v
(N)
k−1 (t)

]d
−

[
u(N)

k (t) + v
(N)
k (t)

]d
.

(14)
Based on Eqs. 13 and 14, we have the following probabilistic setting

[
u(N)

k−1 (t) − u(N)
k (t)

]
L(N)

k (uk−1, uk; vk−1, vk; t) = P {Wk−1} .

Similarly, we have
[
v

(N)
k−1 (t) − v

(N)
k (t)

]
L(N)

k (uk−1, uk; vk−1, vk; t) = P {Vk−1} .

Thus we obtain

P {Wk−1} = P {Wk−1|Xk−1 = m, Yk−1 = d − m} ·
d∑

m=1

P {Xk−1 = m, Yk−1 = d − m}

and

P {Vk−1} = P {Vk−1|Xk−1 = m, Yk−1 = d − m} ·
d∑

m=1

P {Xk−1 = m, Yk−1 = d − m} .

3 A mean-field limit

In this section, we use the operator semigroup to provide a mean-field limit for
the sequence

{(
U(N)(t), V(N)(t)

)
, t ≥ 0

}
of infinite-dimensional Markov processes for

N = 1, 2, 3, . . ., and show that this sequence of Markov processes asymptotically
approaches a single trajectory identified by the unique and global solution to the
infinite-dimensional system of limiting differential equations.

For the two vectors u(N) =
(

u(N)
1 , u(N)

2 , u(N)
3 , . . .

)
and v(N) =

(
v

(N)
0 , v

(N)
1 , v

(N)
2 , . . .

)
,

we write

$̃N =
{(

u(N), v(N)
)

: 1 ≥ u(N)
1 ≥ u(N)

2 ≥ u(N)
3 ≥ · · · ≥ 0,

1 ≥ v
(N)
0 ≥ v

(N)
1 ≥ v

(N)
2 ≥ · · · ≥ 0,

Nu(N)
k and Nv

(N)
l are nonnegative integers for k ≥ 1 and l ≥ 0

}

and

$N =
{(

u(N), v(N)
)

:
(
u(N), v(N)

)
∈ $̃N and u(N)e + v(N)e < +∞

}
,

where e is a column vector of ones with a suitable dimension in the context.
For the two vectors u = (u1, u2, u3, . . .) and v = (v0, v1, v2, v3, . . .), set

$̃ = {(u, v) : 1 ≥ u1 ≥ u2 ≥ u3 ≥ · · · ≥ 0, 1 ≥ v0 ≥ v1 ≥ v2 ≥ v3 ≥ · · · ≥ 0}
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and

$ =
{
(u, v) : (u, v) ∈ $̃ and ue + ve < +∞

}
.

Obviously, $N ! $ ! $̃ and $N ! $̃N ! $̃.
In the vector space $̃, we take a metric

ρ
(
(u, v), (u′, v′)

)
= sup

k≥1

{
max

{ |uk − u′
k|

k
,
|vk−1 − v′

k−1|
k

}}
(15)

for (u, v), (u′, v′) ∈ $̃. Note that under the metric ρ
(
(u, v), (u′, v′)

)
, the vector space

$̃ is separable and compact.
For (g, h) ∈ $N , we write

L1 (g1; h0, h1) =
d∑

m=1

Cm
d (h0 − h1)

m−1 (h1 + g1)
d−m ,

for k ≥ 2

Lk (gk−1, gk; hk−1, hk) =
d∑

m=1

Cm
d (gk−1 − gk + hk−1 − hk)

m−1 (gk + hk)
d−m .

Now, we consider the infinite-dimensional Markov process {
(
U(N)(t), V(N)(t)

)
, t ≥

0} on state space $N (or $̃N in a similar analysis) for N = 1, 2, 3, . . ..
Note that the stochastic evolution of this supermarket model of N identical servers

is described as the Markov process
{(

U(N)(t), V(N)(t)
)
, t ≥ 0

}
, where

d
dt

(
U(N)(t), V(N)(t)

)
= AN f

(
U(N)(t), V(N)(t)

)
,

where AN acting on functions f : $N → R is the generating operator of the Markov
process

{(
U(N)(t), V(N)(t)

)
, t ≥ 0

}
,

AN = AIn
N + AOut

N , (16)

for (g, h) ∈ $N

AIn
N f (g, h) = λN

∞∑

k=2

[
(gk−1 − gk) Lk (gk−1, gk; hk−1, hk)

] [
f (g + ek

N
, h) − f (g, h)

]

+λN
[
(h0 − h1) L1 (g1; h0, h1)

] [
f (g, h + e1

N
) − f (g, h)

]

+λN
∞∑

k=2

[
(hk−1 − hk) Lk (gk−1, gk; hk−1, hk)

] [
f (g, h + ek

N
) − f (g, h)

]

(17)
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and

AOut
N = N

∞∑

k=1

(gk − gk+1)
[

f (g − ek

N
, h) − f (g, h)

]

+θ N
∞∑

k=1

hk

[
f (g + ek

N
, h − ek

N
) − f (g, h)

]
, (18)

where ek stands for a row vector with the kth entry 1 and all others 0.
For (g, h) ∈ $N , it follows from Eqs. 16 to 18 that

AN f (g, h) = λN
∞∑

k=2

[
(gk−1 − gk) Lk (gk−1, gk; hk−1, hk)

] [
f (g + ek

N
, h) − f (g, h)

]

+λN
[
(h0 − h1) L1 (g1; h0, h1)

] [
f (g, h + e1

N
) − f (g, h)

]

+λN
∞∑

k=2

[
(hk−1 − hk) Lk (gk−1, gk; hk−1, hk)

] [
f (g, h + ek

N
) − f (g, h)

]

+N
∞∑

k=1

(gk − gk+1)
[

f (g − ek

N
, h) − f (g, h)

]

+θ N
∞∑

k=1

hk

[
f (g + ek

N
, h − ek

N
) − f (g, h)

]
(19)

The operator semigroup of the Markov process
{(

U(N)(t), V(N)(t)
)
, t ≥ 0

}
is

defined as TN(t), where if f : $N → C1, then for
(
g, h

)
∈ $N and t ≥ 0

TN(t) f (g, h) = E
[

f (UN(t), VN(t))|UN(0) = g, VN(0) = h
]
. (20)

Note that AN is the generating operator of the operator semigroup TN(t), it is easy
to see that TN(t) = exp {ANt} for t ≥ 0.

Definition 1 A operator semigroup {S (t) : t ≥ 0} on the Banach space L = C($̃) is
said to be strongly continuous if limt→0 S (t) f = f for every f ∈ L; it is said to be a
contractive semigroup if ∥S (t)∥ ≤ 1 for t ≥ 0.

Let L = C($̃) be the Banach space of continuous functions f : $̃ → R with
uniform metric ∥ f∥ = max

u∈$̃
| f (u)|, and similarly, let LN = C($N). The inclusion

$N ⊂ $̃ induces a contraction mapping %N : L → LN,%N f (u) = f (u) for f ∈ L
and u ∈ $N .

Now, we consider the limiting behavior of the sequence {(U(N)(t), V(N)(t)), t ≥ 0}
of Markov processes for N = 1, 2, 3, . . .. Two formal limits for the sequence {AN}
of generating operators and for the sequence {TN(t)} of semigroups are expressed
as A = limN→∞ AN and T (t) = limN→∞ TN(t) for t ≥ 0, respectively. It follows from
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Eq. 19 that as N → ∞

A f (g, h) = λ

∞∑

k=2

[
(gk−1 − gk) Lk (gk−1, gk; hk−1, hk)

] ∂

∂gk
f (g, h)

+λ
[
(h0 − h1) L1 (g1; h0, h1)

] ∂

∂h1
f (g, h)

+λN
∞∑

k=2

[
(hk−1 − hk) Lk (gk−1, gk; hk−1, hk)

] ∂

∂hk
f (g, h)

−
∞∑

k=1

(gk − gk+1)
∂

∂gk
f (g, h) + θ

∞∑

k=1

hk

[
∂ f (g, h)

∂gk
− ∂ f (g, h)

∂hk

]
. (21)

We write

L1 (u1; v0, v1; t) =
d∑

m=1

Cm
d [v0 (t) − v1 (t)]m−1 [v1 (t) + u1 (t)]d−m ,

for k ≥ 2

Lk (uk−1, uk; vk−1, vk; t) =
d∑

m=1

Cm
d

[
uk−1 (t) − uk (t) + vk−1 (t) − vk (t)

]m−1

× [uk (t) + vk (t)]d−m .

Let u(t) = limN→∞ u(N)(t) and v(t) = limN→∞ v(N)(t) for t ≥ 0, where uk (t) =
limN→∞ u(N)

k (t) for k ≥ 1 and vl (t) = limN→∞ v
(N)
l (t) for l ≥ 0. Based on the limiting

generating operator A given in Eq. 21, as N → ∞ it follows from the system of
differential equations (7) to (12) that (u(t), v(t)) is a solution to the following system
of differential equations

d
dt

v0 (t) = u1 (t) − u2 (t) − θv1 (t) , (22)

d
dt

v1 (t) = λ [v0 (t) − v1 (t)] L1 (u1; v0, v1; t) − θv1 (t) , (23)

for k ≥ 2

d
dt

vk (t) = λ
[
vk−1 (t) − vk (t)

]
Lk (uk−1, uk; vk−1, vk; t) − θvk (t) , (24)

d
dt

uk (t) = λ
[
uk−1 (t) − uk (t)

]
Lk (uk−1, uk; vk−1, vk; t) −

[
uk (t) − uk+1 (t)

]
+ θvk (t) ,

(25)
with the boundary condition

v0 (t) + u1 (t) = 1, t ≥ 0, (26)
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and with the initial conditions
{

uk (0) = gk, k ≥ 1,

vl (0) = hl, l ≥ 0.
(27)

Remark 2 In the next section, we shall prove that the vector (u(t, g, h), v(t, g, h)) is
the unique and global solution to the system of differential equations (22) to (27) for
t ≥ 0, where u(0, g, h) = g and v(0, g, h) = h.

We define a mapping:
(
g, h

)
→ (u(t, g, h), v(t, g, h)), where

(
u(t, g, h), v(t, g, h)

)

is a solution to the system of differential equations (22) to (27). For the operator
semigroup T(t) acts in the space L. If f ∈ L and (g, h) ∈ $̃, then

T(t) f (g, h) = f (u(t, g, h), v(t, g, h)). (28)

From Eqs. 19 and 21, it is easy to see that the operator semigroups TN(t)
and T(t) are strongly continuous and contractive, see, for example, Section 1.1 in
Chapter one of Ethier and Kurtz (1986). We denote by D(A) the domain of the
generating operator A. It follows from Eq. 28 that if f is a function from L and
has the partial derivatives ∂

∂gi
f (g, h) for i ≥ 1 and ∂

∂h j
f (g, h) ∈ L for j ≥ 0, and

sup
i≥1, j≥0

{∣∣∣ ∂
∂gi

f (g, h)
∣∣∣ ,

∣∣∣ ∂
∂h j

f (g, h)
∣∣∣
}

< ∞, then f ∈ D(A).

Let D be the set of all functions f ∈ L that have the partial derivatives ∂
∂gi

f (g, h),
∂

∂h j
f (g, h), ∂2

∂gi∂g j
f (g, h), ∂2

∂gi∂h j
f (g, h) and ∂2

∂hi∂h j
f (g, h), and there exists C = C( f ) <

+∞ such that

sup
i≥1, j≥0

{∣∣∣∣
∂

∂gi
f (g, h)

∣∣∣∣ ,
∣∣∣∣

∂

∂h j
f (g, h)

∣∣∣∣

}
< C (29)

and

sup
i,i′≥1
j, j′≥0

(g,h)∈$̃

{∣∣∣∣
∂2

∂gi∂gi′
f (g, h)

∣∣∣∣ ,
∣∣∣∣

∂2

∂gi∂h j
f (g, h)

∣∣∣∣ ,
∣∣∣∣

∂2

∂h j∂h j′
f (g, h)

∣∣∣∣

}
< C. (30)

We call that f ∈ L depends only on the first K two dimensional variables if for
(g(1), h(1)), (g(2), h(2)) ∈ $̃, it follows from g(1)

i = g(2)
i for 1 ≤ i ≤ K and h(1)

j = h(2)
j

for 0 ≤ j ≤ K that f (g(1), h(1)) = f (g(2), h(2)). A similar and simple proof to that in
Proposition 2 in Vvedenskaya et al. (1996) can show that the set of functions from L
that depends on the first finite two dimensional variables is dense in L.

The following lemma comes from Proposition 1 in Vvedenskaya et al. (1996). We
restated it here for convenience of description.

Lemma 2 Consider an inf inite-dimensional system of dif ferential equations: For
k ≥ 0,

zk (0) = ck

and

dzk(t)
dt

=
∞∑

i=0

zi(t)ai,k(t) + b k(t),
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and let
∞∑

i=0

∣∣ai,k(t)
∣∣ ≤ a, |b k(t)| ≤ b 0 exp {bt} , |ck| ≤ ϱ, b 0 ≥ 0 and a < b. Then

zk(t) ≤ ϱ exp {at} + b 0

b − a
[
exp {bt} − exp {at}

]
.

Definition 2 Let A be a closed linear operator on the Banach space L = C($̃). A
subspace D of D (A) is said to be a core for A if the closure of the restriction of A to
D is equal to A, i.e., A|D = A.

We introduce some notations

M1 =
d∑

m=1

Cm
d 2m−12d−m = 2d−1 (

2d − 1
)
,

M2 =
d∑

m=1

Cm
d (d − m) 2m−12d−m +

d∑

m=1

Cm
d (m − 1) 2m−12d−m

= (d − 1) 2d−1 (
2d − 1

)
,

M3 = 4
d∑

m=1

Cm
d (d−m) (d−m−1) 2m−12d−m−2+16

d∑

m=1

Cm
d (m − 1) (m − 2) 2m−32d−m

+16
d∑

m=1

Cm
d (d − m) (m − 1) 2m−22d−m−1

= 2d+1
d∑

m=1

Cm
d (m − 1) (d − 2) + 2d−1

d∑

m=1

Cm
d (d − m) (d − m − 1) ,

a = 2M1 + θ + 2 + 2M2

and

a′ = 2M1 + θ + 2M2.

The following lemma is a key to prove that the set D is a core for the generating
operator A.

Lemma 3 Let (u(t), v(t)) be a solution to the system of dif ferential equations (22) to
(27). Then

sup
k≥1

i≥1, j≥0

{∣∣∣∣
∂uk(t, g, h)

∂gi

∣∣∣∣ ,
∣∣∣∣
∂uk(t, g, h)

∂h j

∣∣∣∣

}
≤ exp {(2M1 + θ + 2 + 2M2)t} , (31)

sup
k≥1

i≥1, j≥0

{∣∣∣∣
∂vk(t, g, h)

∂gi

∣∣∣∣ ,
∣∣∣∣
∂vk(t, g, h)

∂h j

∣∣∣∣

}
≤ exp {(2M1 + θ + 2M2)t} , (32)
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sup
k≥1

i,i′≥1
j, j′≥0

{∣∣∣∣
∂2uk(t, g, h)

∂gi∂gi′

∣∣∣∣ ,
∣∣∣∣
∂2uk(t, g, h)

∂gi∂h j

∣∣∣∣ ,
∣∣∣∣
∂2uk(t, g, h)

∂h j∂h j′

∣∣∣∣

}

≤ 2M2 + 2M3

2M1 + θ + 2 + 2M2

[
exp {2at} − exp {at}

]
(33)

and

sup
k≥1

i,i′≥1
j, j′≥0

{∣∣∣∣
∂2vk(t, g, h)

∂gi∂gi′

∣∣∣∣ ,
∣∣∣∣
∂2vk(t, g, h)

∂gi∂h j

∣∣∣∣ ,
∣∣∣∣
∂2vk(t, g, h)

∂h j∂h j′

∣∣∣∣

}

≤ 2M2 + 2M3

2M1 + θ + 2M2

[
exp

{
2a′t

}
− exp

{
a′t

}]
. (34)

Proof We only prove (31), while (32) to (34) can be proved similarly.
It is easy to verify that the solution (u(t), v(t)) to the system of differential

equations (22) to (27) possesses the partial derivatives

∂uk(t, g, h)

∂g j
,
∂uk(t, g, h)

∂h j
,
∂vk(t, g, h)

∂g j
,
∂vk(t, g, h)

∂h j
,

∂2uk(t, g, h)

∂gi∂g j
,
∂2uk(t, g, h)

∂gi∂h j
,
∂2uk(t, g, h)

∂hi∂h j
,

and

∂2vk(t, g, h)

∂gi∂g j
,
∂2vk(t, g, h)

∂gi∂h j
,
∂2vk(t, g, h)

∂hi∂h j
.

In what follows we only compute the two derivatives ∂uk(t,g,h)

∂g j
and ∂vk(t,g,h)

∂h j
, while

the other derivatives can be computed similarly.
For simplicity of description, we write that uk = uk(t, g, h), u′

k, j = ∂uk(t,g,h)

∂g j
or v′

k, j =
∂vk(t,g,h)

∂h j
. It follows from Eqs. 22, 25 and 26 that

d
dt

u′
1, j (t) = u′

2, j (t) − u′
1, j (t) + θv′

1, j (t)

and for all k, j ≥ 2,

du′
k, j

dt
= λ

(
u′

k−1, j − u′
k, j

)
Lk (uk−1, uk; vk−1, vk) −

(
u′

k, j − u′
k+1, j

)
+ θv′

k, j

+λ (uk−1 − uk) L′
k, j (uk−1, uk; vk−1, vk) ,
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and

L′
k, j (uk−1, uk; vk−1, vk; t) =

d∑

m=1

Cm
d (d − m) (uk−1 − uk + vk−1 − vk)

m−1

× (vk + uk)
d−m−1

(
v′

k, j + u′
k, j

)

+
d∑

m=1

Cm
d (m − 1) (uk−1 − uk + vk−1 − vk)

m−2

× (vk + uk)
d−m

(
u′

k−1, j − u′
k, j + v′

k−1, j − v′
k, j

)
.

Using Lemma 2, we obtain Inequalities (31) with

a = 2M1 + θ + 2 + 2M2, a′ = 2M1 + θ + 2M2, b = 1, b 0 = 0, ϱ = 1.

This completes the proof. ⊓&

Lemma 4 The set D is a core for the generating operator A.

Proof It is obvious that D is dense in L and D ∈ D(A). Let D0 be the set of functions
from D, which depend only on the first finite two dimensional variables. It is easy to
see that D0 is dense in L. Using Proposition 3.3 in Chapter 1 of Ethier and Kurtz
(1986), it can show that for any t ≥ 0, the operator semigroup T(t) does not bring D0

out of D. Select an arbitrary function ϕ ∈ D0 and let f (g, h) = ϕ(u(t, g, h), v(t, g, h))

for (g, h) ∈ $̃. It follows from Lemma 3 that f has the partial derivatives

∂uk(t, g, h)

∂g j
,
∂uk(t, g, h)

∂h j
,
∂vk(t, g, h)

∂g j
,
∂vk(t, g, h)

∂h j
,

∂2uk(t, g, h)

∂gi∂g j
,
∂2uk(t, g, h)

∂gi∂h j
,
∂2uk(t, g, h)

∂hi∂h j
,

and

∂2vk(t, g, h)

∂gi∂g j
,
∂2vk(t, g, h)

∂gi∂h j
,
∂2vk(t, g, h)

∂hi∂h j
.

and they satisfy the inequalities (31) to (34). Therefore f ∈ D. This completes the
proof. ⊓&

The following theorem applies the operator semigroup to provide an mean-field
limit, which shows that the sequence

{(
U(N)(t), V(N)(t)

)
, t ≥ 0

}
of Markov processes

asymptotically approaches a single trajectory identified by the unique and global
solution to the infinite-dimensional system of differential equations (22) to (27).

Theorem 2 For any continuous function f : $̃ → R and t > 0,

lim
N→∞

sup
(g,h)∈$N

∣∣TN(t) f (g, h) − f (u(t, g, h), v(t; g, h))
∣∣ = 0,

and the convergence is uniform in t within any bounded interval.
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Proof This proof is to use the convergence of the operator semigroups as well as the
convergence of their corresponding generating generators, e.g., see Theorem 6.1 in
Chapter 1 of Ethier and Kurtz (1986). Lemma 4 shows that the set D is a core for the
generating operator A. For any function f ∈ D, we have

N
[

f (g − ek

N
, h) − f (g, h)

]
+ ∂ f (g, h)

∂gk
= −γ1,k (g)

N
∂2 f (g − γ2,k (g) ek

N , h)

∂g2
k

,

N
[

f (g, h − ek

N
) − f (g, h)

]
+ ∂ f (g, h)

∂hk
= −γ1,k (h)

N
∂2 f (g, h−γ2,k (h) ek

N )

∂g2
k

,

where 0 < γi,k (g) , γi,k (h) < 1 for i = 1, 2. Since
∣∣∣∣∣
γ1,k (g)

N
∂2 f (g − γ2,k (g) ek

N , h)

∂g2
k

∣∣∣∣∣ ≤ C
N

and
∣∣∣∣∣
γ1,k (h)

N
∂2 f (g, h−γ2,k (h) ek

N )

∂g2
k

∣∣∣∣∣ ≤ C
N

,

we obtain

|AN f (g, h) − f (g, h)| ≤ C
N

[ ∞∑

k=2

(gk−1 − gk) Lk (gk−1, gk; hk−1, hk)

+
∞∑

k=1

(hk−1 − hk) Lk (gk−1, gk; hk−1, hk)

+ (h0 − h1) L1 (g1; h0, h1) +
∞∑

k=1

(gk − gk+1) + 2θ

∞∑

k=1

hk

]

≤ C
N

{

M1

[ ∞∑

l=2

(gl−1 − gl) +
∞∑

k=1

(hk−1 − hk)

]

+ g1 + 2θ

∞∑

k=1

hk

}

≤ C
N

[

M1(g1 + h0) + g1 + 2θ

∞∑

k=1

hk

]

.

Note that C, M1 and
∞∑

k=1
hk are all finite, it is clear that as N → ∞,

lim
N→∞

sup
(g,h)∈$N

|AN f (g, h) − A f (g, h)| = 0.

This completes the proof. ⊓&

Remark 3

(1) As discussed in Ethier and Kurtz (1986), there have been at least three basic
techniques: operator semigroup, martingale and density dependent population
process, for analyzing the weak approximation of the sequences of Markov
processes. In fact, the three techniques have been applied to the mean-field limit
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of supermarket models up to now, e.g., see the operator semigroup by Vveden-
skaya et al. (1996), the density dependent population process by Mitzenmacher
(1996) and the martingale by Turner (1996, 1998). In this section, we use the
operator semigroup to provide a mean-field limit for the supermarket model
with server multiple vacations, and show that the sequence of corresponding
Markov processes asymptotically approaches a single trajectory identified by
the unique and global solution to the infinite-dimensional system of mean-field
limit equations.

(2) The mean-field limit over the finite time intervals has been generalized in the
PhD thesis of Mitzenmacher (1996) to the infinite-dimensional case when the
right-hand side of the system of differential equations is Lipschitz. Therefore,
using the generalized results by Mitzenmacher (1996), we may significantly
simplify some results in this section, and also we can possibly obtain a stronger
form of convergence and some error bounds. Furthermore, readers may refer
to Graham (2000a, b, 2004) and Luczak and McDiarmid (2006, 2007) for the
longest queue length, the asymptotic independence and chaoticity on path
space.

4 Existence and uniqueness

In this section, we first provide an effective technique to organize the Lipschitzian
condition of the infinite-dimensional fraction vector function F : R∞

+ → C1(R∞
+ ).

Note that the Lipschitzian condition for d ≥ 3 is always difficult in the literature.
Then we apply the Lipschitzian condition, together with the Picard approximation,
to show that the limiting expected fraction vector is the unique and global solution
to the system of differential equations.

For convenience of description, we write that uk = uk(t, g, h) for k ≥ 1 and
vl = vl(t, g, h) for l ≥ 0. Using v0(t, g, h) + u1(t, g, h) = 1, the system of differential
equations (22) to (27) can be simplified as an initial value problem as follows

d
dt

v0 = u1 − u2 − θv1, (35)

d
dt

v1 = λ (v0 − v1) L1 (u1; v0, v1; t) − θv1, (36)

for k ≥ 2,

d
dt

vk = λ (vk−1 − vk) Lk (uk−1, uk; vk−1, vk; t) − θvk (37)

and
d
dt

uk = λ (uk−1 − uk) Lk (uk−1, uk; vk−1, vk; t) + (uk+1 − uk) + θvk, (38)

with the boundary condition

v0 + u1 = 1 (39)

and with the initial condition
{

uk(0) = gk, k ≥ 1,

vl(0) = hl, l ≥ 0.
(40)
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4.1 A Lipschitzian condition

To establish the Lipschitzian condition, we need to use the derivative of the infinite-
dimensional function G : R∞

+ → C1(R∞
+ ). Thus it is necessary to provide some useful

notation and definitions of derivatives as follows.
For the infinite-dimensional function G : R∞

+ → C1(R∞
+ ), we write x = (x1, x2,

x3, . . .) and G(x) = (G1(x), G2(x), G3(x), . . .), where xk and Gk(x) are scalar for
k ≥ 1. Then the matrix of partial derivatives of the infinite-dimensional function G(x)

is defined as

DG(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1(x)

∂x1

∂G2(x)

∂x1

∂G3(x)

∂x1
· · ·

∂G1(x)

∂x2

∂G2(x)

∂x2

∂G3(x)

∂x2
· · ·

∂G1(x)

∂x3

∂G2(x)

∂x3

∂G3(x)

∂x3
· · ·

...
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

Now, we define two classes of derivatives for the infinite-dimensional function
G(x). In fact, they are a direct and minor generalization from the derivatives of finite-
dimensional functions, e.g., see Chapter 1 of Taylor (1996) and Chapter 3 of Fleming
(1977) for more details.

Definition 3 Let the infinite-dimensional function G : R∞
+ → C1(R∞

+ ).

(1) If there exists a linear operator A : R∞
+ → R∞

+ such that for any vector h ∈ R∞

and a scalar t ∈ R

lim
t→0

||G (x + ht) − G (x) − hAt||
t

= 0,

then the function G (x) is called to be Gateaux differentiable at x ∈ R∞
+ . In this

case, we write the Gateaux derivative G′
G(x) = A.

(2) If there exists a linear operator B : R∞
+ → R∞

+ such that for any vector h ∈ R∞

lim
||h||→0

||G (x + h) − G (x) − hB||
||h|| = 0,

then the function G (x) is called to be Frechet differentiable at x ∈ R∞
+ . In this

case, we write the Frechet derivative G′
F(x) = B.

It is easy to check that if the infinite-dimensional function G (x) is Frechet
differentiable, then it is also Gateaux differentiable. At the same time, we have

G′
G(x) = G′

F(x) = DG(x). (42)
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Let t = (t1, t2, t3, . . .) with 0 ≤ tk ≤ 1 for k ≥ 1. Then we write

DG(x + t⊘ (y − x))

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1(x + t1 (y − x))

∂x1

∂G2(x + t2 (y − x))

∂x1

∂G3(x + t3 (y − x))

∂x1
· · ·

∂G1(x + t1 (y − x))

∂x2

∂G2(x + t2 (y − x))

∂x2

∂G3(x + t3 (y − x))

∂x2
· · ·

∂G1(x + t1 (y − x))

∂x3

∂G2(x + t2 (y − x))

∂x3

∂G3(x + t3 (y − x))

∂x3
· · ·

...
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The following lemma provides two useful properties for the Gateaux derivatives
of the infinite-dimensional functions. Obviously, the two useful properties also hold
for the Frechet derivatives.

Lemma 5 If the inf inite-dimensional function G : R∞
+ → C1(R∞

+ ) is Gateaux differ-
entiable, then there exists a vector t = (t1, t2, t3, . . .) with 0 ≤ tk ≤ 1 for k ≥ 1 such that

G (y) − G (x) = (y − x) DG(x + t⊘ (y − x)). (43)

Furthermore, we have

||G (y) − G (x) || ≤ sup
0≤t≤1

||DG(x + t (y − x))||||y − x||. (44)

Proof For the function Gk(x), it is easy to check that there exists a number tk ∈ [0, 1]
such that

Gk(y) − Gk(x) =
∞∑

i=1

(yi − xi)
∂Gk(x + tk (y − x))

∂xi

= (y − x)

(
∂Gk(x + tk (y − x))

∂x1
,
∂Gk(x + tk (y − x))

∂x2
, . . .

)T

.

Note that

G (y) − G (x) = (G1(y) − G1(x), G2(y) − G2(x), G3(y) − G3(x), . . .),

we obtain

G (y) − G (x) = (y − x) DG(x + t⊘ (y − x)).

Since

||DG(x + t⊘ (y − x))|| ≤ sup
0≤t≤1

||DG(x + t (y − x))||,

it follows

||G (y) − G (x) || ≤ sup
0≤t≤1

||DG(x + t (y − x))||||y − x||.

This completes the proof. ⊓&
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Note that v0 + u1 = 1, we set that x = (u1, v1; u2, v2; u3, v3; u4, v4; . . .) and F(x) =
(F1(x), F2(x), F3(x), . . .), where

F1 (x) = (u2 − u1 + θv1, λ(v0 − v1)L1 (u1; v0, v1; t) − θv1) (45)

and k ≥ 2

Fk(x) = (λ(uk−1 − uk)Lk (uk−1, uk; vk−1, vk; t) + (uk+1 − uk) + θvk,

λ(vk−1 − vk)Lk (uk−1, uk; vk−1, vk; t) − θvk) . (46)

Then F (x) is in C2
(
R∞

+
)
, and the system of differential vector equations (35) to (40)

is rewritten as
d
dt

x = F (x) (47)

with initial condition

x (0) = (g1, h1; g2, h2; g3, h3; g4, h4; . . .) . (48)

In what follows we show that the infinite-dimensional function F(x) is Lipschitzian
for t ≥ 0. From (1) of Definition 3 and Eq. 42, the matrix of partial derivatives of the
function F(x) is given by

DF(x) =

⎛

⎜⎜⎜⎝

A1(x) B2(x)

C1(x) A2(x) B3(x)

C2(x) A3(x) B4(x)

. . .
. . .

. . .

⎞

⎟⎟⎟⎠
, (49)

where Ak(x) is a matrix of size 2 for k ≥ 1, and the sizes of all the others can be
determined accordingly. Let

L1 (t) = L1 (u1; v0, v1; t) = V1 (u1; v0, v1; t)

and for k ≥ 2

Lk (t) = Wk (uk−1, uk; vk−1, vk; t) = Vk (uk−1, uk; vk−1, vk; t) .

Then

A1(x) =

⎛

⎜⎝
−1 λ (v0 − v1)

∂L1 (t)
∂u1

θ −λL1 (t) + λ (v0 − v1)
∂L1 (t)

∂v1
− θ

⎞

⎟⎠ ,

for k ≥ 2

Ak(x)=

⎛

⎜⎝
−λLk (t)+λ (uk−1−uk)

∂Lk (t)
∂uk

−1 λ (vk−1 − vk)
∂Lk (t)

∂uk

λ (uk−1 − uk)
∂Lk (t)

∂vk
+ θ −λVk (t) + λ (vk−1 − vk)

∂Lk (t)
∂vk

− θ

⎞

⎟⎠ ,

Bk(x) =

⎛

⎜⎝
λLk (t) + λ (uk−1 − uk)

∂Lk (t)
∂uk−1

λ (vk−1 − vk)
∂Lk (t)
∂uk−1

λ (uk−1 − uk)
∂Lk (t)
∂vk−1

λVk (t) + λ (vk−1 − vk)
∂Lk (t)
∂vk−1

⎞

⎟⎠ ,
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C j(x) =
(

1 0
0 0

)
, j ≥ 1,

where

∂L1 (t)
∂u1

=
d∑

m=1

Cm
d (d − m) [v0 (t) − v1 (t)]m−1 [v1 (t) + u1 (t)]d−m−1 ,

∂L1 (t)
∂v1

=
d∑

m=1

Cm
d (1 − m) [v0 (t) − v1 (t)]m−2 [v1 (t) + u1 (t)]d−m

+
d∑

m=1

Cm
d (d − m) [v0 (t) − v1 (t)]m−1 [v1 (t) + u1 (t)]d−m−1 ,

and for k ≥ 2

∂Lk (t)
∂uk

=
d∑

m=1

Cm
d (1 − m)

[
uk−1 (t) − uk (t) + vk−1 (t) − vk (t)

]m−2 [uk (t) + vk (t)]d−m

+
d∑

m=1

Cm
d (d−m)

[
uk−1 (t)−uk (t)+vk−1 (t)−vk (t)

]m−1 [uk (t)+vk (t)]d−m−1 ,

∂Lk (t)
∂vk

=
d∑

m=1

Cm
d (1 − m)

[
uk−1 (t) − uk (t) + vk−1 (t) − vk (t)

]m−2 [uk (t) + vk (t)]d−m

+
d∑

m=1

Cm
d (d−m)

[
uk−1 (t)−uk (t) + vk−1 (t)−vk (t)

]m−1 [uk (t) +vk (t)]d−m−1,

∂Lk (t)
∂uk−1

=
d∑

m=1

Cm
d (m − 1)

[
uk−1 (t) − uk (t) + vk−1 (t) − vk (t)

]m−2 [uk (t) + vk (t)]d−m ,

∂Lk (t)
∂vk−1

=
d∑

m=1

Cm
d (m − 1)

[
uk−1 (t) − uk (t) + vk−1 (t) − vk (t)

]m−2 [uk (t) + vk (t)]d−m .

Hence it follows from Eq. 49 that

∥DF(x)∥ = max

{
∥∥eT [

A1(x) + B2(x)
]∥∥ , sup

k≥2

∥∥eT [
Ck−1(x) + Ak(x) + Bk+1(x)

]∥∥
}

.

(50)
Let

M5 =
d∑

m=1

Cm
d (d − m) .
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Based on the expression L1 (u1; v0, v1; t) and Lk (uk−1, uk; vk−1, vk; t) for k ≥ 2, it is
easy to check that

L1 (u1; v0, v1; t) ≤ M1

and for k ≥ 2

Lk (uk−1, uk; vk−1, vk; t) ≤ M1.

At the same time, we have
∣∣∣∣
∂L1 (t)

∂u1
+ ∂L1 (t)

∂v1

∣∣∣∣ ≤ M5,

and for k ≥ 2
∣∣∣∣
∂Lk (t)

∂uk
+ ∂Lk (t)

∂uk−1

∣∣∣∣ ≤ M5,

∣∣∣∣
∂Lk (t)

∂vk
+ ∂Lk (t)

∂vk−1

∣∣∣∣ ≤ M5.

Note that

eT [
A1(x) + C1(x)

]
=

(
θ,−λV1 (t) + λ (v0 − v1)

[
∂L1 (t)

∂u1
+ ∂L1 (t)

∂v1

]
− θ

)
,

we obtain
∥∥eT [

A1(x) + B2(x)
]∥∥ ≤ λM1 + 2λM5 + θ . (51)

Since for k ≥ 2

eT [
Ak (x) + Bk (x) + Ck (x)

]

=
(

λ (uk−1 − uk)

[
∂Lk (t)
∂uk−1

+ ∂Lk (t)
∂uk

+ ∂Lk (t)
∂vk−1

+ ∂Lk (t)
∂vk

]
+ θ,

λ (vk−1 − vk)

[
∂Lk (t)
∂uk−1

+ ∂Lk (t)
∂uk

+ ∂Lk (t)
∂vk−1

+ ∂Lk (t)
∂vk

]
− θ

)
,

we obtain
∥∥eT [

Ak (x) + Bk (x) + Ck (x)
]∥∥ ≤ 4λM5 + θ . (52)

Then it follows form Eqs. 50, 51 and 52 that

∥DF(x)∥ ≤ M,

where

M = max (λM1 + 2λM5 + θ, 4λM5 + θ) .
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Note that for (u, v) , (̃u, ṽ) ∈ $̃, it follows from Eq. 43 that

F(u, v) − F (̃u, ṽ) = [(u, v) − (̃u, ṽ)] DF((u, v) + t⊘ [(u, v) − (̃u, ṽ)])

and from Eq. 44 that

∥F(u, v) − F (̃u, ṽ)∥ ≤ sup
0≤t≤1

||DF((̃u, ṽ) + t [(u, v) − (̃u, ṽ)])|||| (u, v) − (̃u, ṽ)||

≤ M ∥(u, v) − (̃u, ṽ)∥ . (53)

Therefore, the function F(u, v) is Lipschitzian for (u, v) ∈ $̃.

Remark 4 Let G : Rm → Rn be continuously differentiable. Then Proposition 4.5
or Proposition 4.4 in Fleming (1977) proved that the function G (t) is locally
Lipschitzian for t ∈ *. Note that Eq. 53 extends the Lipschitzian condition to the
infinite-dimensional continuously differentiable function F : R∞ → R∞, and such a
generalization is always necessary in the study of supermarket models.

Remark 5 The Lipschitzian condition for d ≥ 3 is always difficult in the literature,
while few available results were organized in the supermarket models with d = 2, e.g.,
see Vvedenskaya and Suhov (1997, 2005) and Mitzenmacher et al. (2001). Therefore,
here we provide a unique and effective method to compute the Lipschitzian condition
for more complicated supermarket models with d ≥ 1.

4.2 The Picard approximation

In this subsection, we apply the Lipschitzian condition, together with the Picard
approximation, to show that the limiting expected fraction vector is the unique and
global solution to the system of differential equations.

Let v0 + u1 = 1 and x = (u1, v1; u2, v2; u3, v3; u4, v4; . . .). We write

$̃0 = {x : 1 ≥ u1 ≥ u2 ≥ · · · ≥ 0, 1 ≥ v1 ≥ v2 ≥ v3 ≥ · · · ≥ 0}
It follows from Eqs. 47 to 48 that for x ∈ $̃0

x (t) = x (0) +
∫ t

0
F(x (s))ds,

this gives

x (t) =
(̃
g, h

)
+

∫ t

0
F(x (s))ds, (54)

where
(̃
g, h

)
= (g1, h1; g2, h2; g3, h3; g4, h4; . . .) .

Based on the integral equation (54), the following theorem indicates that there
exists the unique and global solution to the system of differential equations (35) to
(40) for t ≥ 0.

Theorem 3 For
(̃
g, h

)
∈ $̃0, there exists the unique and global solution to the Eq. 54

for t ≥ 0.
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Proof We take the Picard sequence as follows

x⟨0⟩ (t) ≡ 0,

and for n ≥ 1

x⟨n⟩ (t) =
(̃
g, h

)
+

∫ t

0
F

(
x⟨n−1⟩ (s)

)
ds.

It follows from Eq. 53 that

∥∥x⟨n+1⟩ (t) − x⟨n⟩ (t)
∥∥ ≤

∫ t

0

∥∥F
(
x⟨n⟩ (s)

)
− F

(
x⟨n−1⟩ (s)

)∥∥ ds

≤ Mt
∥∥x⟨n⟩ (t) − x⟨n−1⟩ (t)

∥∥ ≤ · · ·

≤ (Mt)n−1

(n − 1)!
∥∥x⟨2⟩ (t) − x⟨1⟩ (t)

∥∥ .

From the boundary condition:
∥∥x⟨2⟩ (t) − x⟨1⟩ (t)

∥∥ ≤ 1, it is clear that if 0 ≤ t ≤
1/M, then limn→∞(Mt)n−1/(n − 1)! = 0, which leads to that as n → ∞, the Picard
sequence {x⟨n⟩ (t)} is uniformly convergent for t ∈ [0, 1/M].

Let x (t) = limn→∞ x⟨n⟩ (t) for t ∈ [0, 1/M]. Then x (t) is a solution to Eq. 54 for
t ∈ [0, 1/M].

Let y (t) is another solution to Eq. 54 for t ∈ [0, 1/M]. Then it is easy to check that

∥x (t) − y (t)∥ ≤ (Mt)n−1

(n − 1)! ,

this gives that for t ∈ [0, 1/M],
y (t) = lim

n→∞
x⟨n⟩ (t) = x (t) .

This shows that x (t) is the unique solution to Eq. 54 for t ∈ [0, 1/M].
We consider the following equation

x (t) = x(
1
M

) +
∫ t

1
M

F(x (s))ds.

Take the Picard sequence

x⟨0⟩ (t) ≡ 0,

and for n ≥ 1

x⟨n⟩ (t) = x(
1
M

) +
∫ t

1
M

F
(
x⟨n−1⟩ (s)

)
ds.

It is easy to show that x (t) = limn→∞ x⟨n⟩ (t) is the unique solution to Eq. 54 for t ∈
[1/M, 2/M].

We assume that for l = k, x (t) is the unique solution to Eq. 54 for t ∈ [k/M, (k +
1)/M]. Then for l = k + 1, we consider the following equation

x (t) = x
(

k + 1
M

)
+

∫ t

k+1
M

F(x (s))ds.
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Take the Picard sequence

x⟨0⟩ (t) ≡ 0

and for n ≥ 1

x⟨n⟩ (t) = x(
k + 1

M
) +

∫ t

k+1
M

F(x⟨n−1⟩ (s))ds.

It is easy to indicate that x (t) = limn→∞ x⟨n⟩ (t) is the unique solution to Eq. 54 for
t ∈ [(k + 1) /M, (k + 2)/M].

By induction, it is easy to show that x (t) = limn→∞ x⟨n⟩ (t) is the unique solution to
Eq. 54 for t ∈ [l/M, (l + 1)/M] for l = 0, 1, 2, . . .. Note that

[0, +∞) =
[

0,
1
M

]
∪

[
1
M

,
2
M

]
∪

[
2
M

,
3
M

]
∪ · · · ,

thus, x (t) is the unique and global solution to Eq. 54 for t ≥ 0. This completes the
proof. ⊓&

Remark 6 Comparing with the finite-dimensional system of integral equations (e.g.,
see Chapter 1 of Hale (1980)), Theorem 3 makes some necessary generalization
of the Picard approximation in order to deal with existence and uniqueness of
solution to the infinite-dimensional system of integral equations. Note that such a
generalization is always necessary in the study of supermarket models.

Remark 7 Note that the infinite-dimensional system of differential equations for the
supermarket model with server multiple vacations is defined on a Banach space, the
existence and uniqueness of solution is immediately obtained due to the existing
results on Banach spaces given that the right-hand side of the infinite-dimensional
system of differential equations is Lipschitzian.

5 The fixed point

In this section, we analyze the fixed point of the infinite-dimensional system of
differential equations (22) to (27), and set up an infinite-dimensional system of
nonlinear equations satisfied by the fixed point. Based on this, we provide an
effective algorithm for computing the fixed point. Note that the fixed point is a key
in performance analysis of this supermarket model.

Let π = (π
(W)
1 , π

(W)
2 ,π

(W)
3 , . . . ; π

(V)
0 ,π

(V)
1 ,π

(V)
2 ,π

(V)
3 , . . .). The row vector π is

called a fixed point of the infinite-dimensional system of differential equations
(22) to (27) if π = limt→+∞ (u(t), v(t)), where π

(W)
k = limt→+∞ uk(t) for k ≥ 1 and

π
(V)
l = limt→+∞ vl(t) for l ≥ 0. It is well-known that if π is a fixed point of the limiting

expected fraction vector (u(t), v(t)), then

lim
t→+∞

[
d
dt

u(t)
]

= 0, lim
t→+∞

[
d
dt

v(t)
]

= 0. (55)
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For two sequences of positive numbers {xk : k ≥ 1} and {yl : l ≥ 0} with x1+
y0 = 1, we introduce two function notations

L1 (x1; y0, y1) =
d∑

m=1

Cm
d (y0 − y1)

m−1 (x1 + y1)
d−m ,

for k ≥ 2

Lk (xk−1, xk; yk−1, yk) =
d∑

m=1

Cm
d (xk−1 − xk + yk−1 − yk)

m−1 (xk + yk)
d−m .

Taking t → +∞ in both sides of the system of differential equations (22) to (27),
we obtain

π
(W)
2 − π

(W)
1 + θπ

(V)
1 = 0, (56)

λ
[
π

(V)
0 − π

(V)
1

]
L1

(
π

(W)
1 ; π

(V)
0 ,π

(V)
1

)
− θπ

(V)
1 = 0, (57)

for k ≥ 2,

λ
[
π

(W)
k−1 − π

(W)
k

]
Lk

(
π

(W)
k−1 , π

(W)
k ; π

(V)
k−1,π

(V)
k

)
+ π

(W)
k+1 − π

(W)
k + θπ

(V)
k = 0 (58)

and

λ
[
π

(V)
k−1 − π

(V)
k

]
Lk

(
π

(W)
k−1 , π

(W)
k ; π

(V)
k−1,π

(V)
k

)
− θπ

(V)
k = 0, (59)

with the boundary condition

π
(V)
0 + π

(W)
1 = 1. (60)

To solve the system of nonlinear equations, it is a key to first compute the
boundary probabilities π

(V)
0 and π

(W)
1 in the fixed point. The following theorem

provide an effective method to determine the boundary probabilities.

Theorem 4 If λ < 1, then the boundary probabilities π
(V)
0 and π

(W)
1 are given by

π
(V)
0 = 1 − λ

and

π
(W)
1 = λ.

Proof For d ≥ 1, we have

[
π

(V)
0 − π

(V)
1

]
L1

(
π

(W)
1 ; π

(V)
0 ,π

(V)
1

)
=

d∑

m=1

Cm
d

[
π

(V)
0 − π

(V)
1

]m [
π

(V)
1 + π

(W)
1

]d−m

=
[
π

(V)
0 + π

(W)
1

]d
−

[
π

(V)
1 + π

(W)
1

]d
,
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[
π

(V)
k−1 − π

(V)
k

]
Lk

(
π

(W)
k−1 , π

(W)
k ;π

(V)
k−1,π

(V)
k

)
=

[
π

(V)
k−1 − π

(V)
k

] d∑

m=1

Cm
d

[
π

(V)
k + π

(W)
k

]d−m

×
[
π

(V)
k−1 − π

(V)
k + π

(W)
k−1 − π

(W)
k

]m−1

= π
(V)
k−1 − π

(V)
k

π
(V)
k−1 − π

(V)
k + π

(W)
k−1 − π

(W)
k

×
{[

π
(V)
k−1 + π

(W)
k−1

]d
−

[
π

(V)
k + π

(W)
k

]d
}

and
[
π

(W)
k−1 − π

(W)
k

]
Lk

(
π

(W)
k−1 ,π

(W)
k ; π

(V)
k−1, π

(V)
k

)

= π
(W)
k−1 − π

(W)
k

π
(V)
k−1 − π

(V)
k + π

(W)
k−1 − π

(W)
k

{[
π

(V)
k−1 + π

(W)
k−1

]d
−

[
π

(V)
k + π

(W)
k

]d
}

,

this gives

[
π

(V)
0 − π

(V)
1

]
L1

(
π

(W)
1 ; π

(V)
0 ,π

(V)
1

)
+

∞∑

k=2

[
π

(V)
k−1 − π

(V)
k

]
Lk

(
π

(W)
k−1 ,π

(W)
k ; π

(V)
k−1,π

(V)
k

)

+
∞∑

k=2

[
π

(W)
k−1 − π

(W)
k

]
Lk

(
π

(W)
k−1 ,π

(W)
k ; π

(V)
k−1,π

(V)
k

)

=
[
π

(V)
0 + π

(W)
1

]d
−

[
π

(V)
1 + π

(W)
1

]d
+

∞∑

k=2

{[
π

(V)
k−1 + π

(W)
k−1

]d
−

[
π

(V)
k + π

(W)
k

]d
}

=
[
π

(V)
0 + π

(W)
1

]d
= 1,

Together with π
(V)
0 + π

(W)
1 = 1, it follows from Eqs. 56 to 60 that

π
(W)
1 = λ

{ ∞∑

k=2

[
π

(W)
k−1 − π

(W)
k

]
Lk

(
π

(W)
k−1 ,π

(W)
k ; π

(V)
k−1,π

(V)
k

)

+
[
π

(V)
0 − π

(V)
1

]
L1

(
π

(W)
1 ; π

(V)
0 , π

(V)
1

)

+
∞∑

k=2

[
π

(V)
k−1 − π

(V)
k

]
Lk

(
π

(W)
k−1 , π

(W)
k ;π

(V)
k−1,π

(V)
k

)}

= λ. (61)

Thus, using π
(V)
0 + π

(W)
1 = 1 we obtain

π
(V)
0 = 1 − λ.

This completes the proof. ⊓&
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Remark 8 Note that
∞∑

k=2

[
π

(W)
k−1 − π

(W)
k

]
Lk

(
π

(W)
k−1 , π

(W)
k ;π

(V)
k−1,π

(V)
k

)
+

[
π

(V)
0 − π

(V)
1

]
L1

(
π

(W)
1 ; π

(V)
0 , π

(V)
1

)

+
∞∑

k=2

[
π

(V)
k−1 − π

(V)
k

]
Lk

(
π

(W)
k−1 ,π

(W)
k ; π

(V)
k−1,π

(V)
k

)
= 1,

the sequence
{[

π
(W)
k−1 − π

(W)
k

]
Lk

(
π

(W)
k−1 ,π

(W)
k ; π

(V)
k−1,π

(V)
k

)
;
[
π

(V)
0 − π

(V)
1

]
L1

(
π

(W)
1 ;π

(V)
0 ,π

(V)
1

)
,

[
π

(V)
k−1 − π

(V)
k

]
Lk

(
π

(W)
k−1 ,π

(W)
k ; π

(V)
k−1, π

(V)
k

)
: k ≥ 2

}

is a probability vector.

Now, we provide an iterative algorithm for computing the fixed point of the
infinite-dimensional system of differential equations (56) to (60).

We define

Fk (x) = θx − λ (ξk−1 − x) Lk (δk−1, δk; ξk−1, x) , k ≥ 2. (62)

We assume that ξ0 = 1 − λ and δ1 = λ. Using Eq. 60, we take that π
(V)
0 = ξ0 and

π
(W)
1 = δ1. We denote by ξ1 a solution in (0, ξ0) to the nonlinear equation

F1 (x) = θx − λ (ξ0 − x) L1 (δ1; ξ0, x) = 0, (63)

and set

δ2 = δ1 − θξ1. (64)

Let ξ2 be a solution in (0, ξ1) to the nonlinear equation

F2 (x) = θx − λ (ξ1 − x) L2 (δ1, δ2; ξ1, x) = 0, (65)

and set

δ3 = δ2 − θξ2 − λ (δ1 − δ2) L2 (δ1, δ2; ξ1, ξ2) . (66)

We assume that the k pairs (ξ0, δ1) , (ξ1, δ2) , . . . , (ξk−1, δk) have been obtained it-
eratively. Then we denote by ξk a solution in (0, ξk−1) to the nonlinear equation
Fk (x) = 0, and set

δk+1 = δk − θξk − λ (δk−1 − δk) Lk (δk−1, δk; ξk−1, ξk) . (67)

It is clear that 0 < ξk < ξk−1 < · · · < ξ1 < ξ0 = 1 − λ and 0 < δk+1 < δk < · · · < δ2 <

δ1 = λ.
The following theorem expresses the fixed point of the infinite-dimensional

system of differential equations (56) to (60) by means of the iterative algorithm. Note
that it is a key in the proof that we need to indicate the uniqueness of the sequences
{(ξk−1, δk) : k ≥ 1}.
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Theorem 5 If λ < 1, then the fixed point π = (π
(W)
1 , π

(W)
2 , π

(W)
3 , . . . ;π

(V)
0 ,π

(V)
1 ,

π
(V)
2 , . . .) is uniquely given by

π
(V)
l = ξl, l ≥ 0,

and

π
(W)
k = δk, k ≥ 1.

Proof It is obvious that π
(V)
0 = ξ0 = 1 − λ and π

(W)
1 = δ1 = λ.

It follows from Eq. 57 that

λ
[
π

(V)
0 − π

(V)
1

]
L1

(
π

(W)
1 ; π

(V)
0 ,π

(V)
1

)
− θπ

(V)
1 = 0,

that is

λ

d∑

m=1

Cm
d

[
1 − λ − π

(V)
1

]m (
π

(V)
1 + λ

)d−m
− θπ

(V)
1 = 0.

Let

F1(x) = θx − λ

d∑

m=1

Cm
d [1 − λ − x]m (x + λ)d−m

= θx − λ + λ [x + λ]d .

Then F1(0) = −λ + λd+1 < 0, F1(ξ0) = θξ0 > 0 and for x ∈ (0, ξ0)

d
dx

F1(x) = θ + dλ [x + λ]d−1 > 0.

Note that F1(x) is a continuous function for x ∈ (0, ξ0), thus there exists a unique
positive solution x = ξ1 to the nonlinear equation F1(x) = 0 for x ∈ (0, ξ0). Hence,
π

(V)
1 = ξ1. It follows from Eq. 56 that

π
(W)
2 = π

(W)
1 − θπ

(V)
1 = δ1 − θξ1 = δ2.

It follows from Eq. 59 for k = 2 that

λ
[
π

(V)
1 − π

(V)
2

]
L2

(
π

(W)
1 ,π

(W)
2 ; π

(V)
1 , π

(V)
2

)
− θπ

(V)
2 = 0,

that is

λ
[
ξ1 − π

(V)
2

]
L2

(
δ1, δ2; ξ1,π

(V)
2

)
− θπ

(V)
2 = 0.

Let

F2 (x) = θx − λ [ξ1 − x] L2 (δ1, δ2; ξ1, x)

= θx − λ
ξ1 − x

ξ1 − x + δ1 − δ2

[
(ξ1 + δ1)

d − (x + δ2)
d] .
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Then F2 (0) = −λξ1 L2 (δ1, δ2; ξ1, 0) < 0, F2 (ξ1) = θξ1 > 0 and for x ∈ (0, ξ1)

d
dx

F2(x) = θ − d
dx

(

λ
(ξ1 − x) (ξ1 + δ1)

d

ξ1 − x + δ1 − δ2

)

+ d
dx

(

λ
(ξ1 − x) (x + δ2)

d

ξ1 − x + δ1 − δ2

)

= θ + λ
(ξ1 + δ1)

d (ξ1 − x + δ1 − δ2)

(ξ1 − x + δ1 − δ2)
2 + λ

(ξ1 − x) (ξ1 + δ1)
d

(ξ1 − x + δ1 − δ2)
2

−λ
(x + δ2)

d (ξ1 − x + δ1 − δ2)

(ξ1 − x + δ1 − δ2)
2 − λ

(ξ1 − x) (x + δ2)
d

(ξ1 − x + δ1 − δ2)
2

+λ
d (ξ1 − x) (x + δ2)

d−1 (ξ1 − x + δ1 − δ2)

(ξ1 − x + δ1 − δ2)
2 > 0.

Since F2(x) is a continuous function for x ∈ (0, ξ1), there exists a unique positive
solution x = ξ2 to the nonlinear equation F2(x) = 0 for x ∈ (0, ξ1). Hence, π

(V)
2 = ξ2.

It follows from Eqs. 58 and 67 that

π
(W)
3 = π

(W)
2 − θπ

(V)
2 − λ

[
π

(W)
1 − π

(W)
2

]
L2

(
π

(W)
1 ,π

(W)
2 ; π

(V)
1 , π

(V)
2

)

= δ2 − θξ2 − λ [δ1 − δ2] L2 (δ1, δ2; ξ1, ξ2) = δ3.

We assume that for l = k, π
(V)
k = ξk and π

(W)
k+1 = δk+1, where 0 < ξk < ξk−1 < · · · <

ξ1 < ξ0 = 1 − λ and 0 < δk+1 < δk < · · · < δ2 < δ1 = λ. Then for l = k + 1, it follows
from Eq. 59 that

λ
[
π

(V)
k − π

(V)
k+1

]
Lk+1

(
π

(W)
k ,π

(W)
k+1 ; π

(V)
k , π

(V)
k+1

)
− θπ

(V)
k+1 = 0,

that is

λ
[
ξk − π

(V)
k+1

]
Lk+1

(
δk, δk+1; ξk, π

(V)
k+1

)
− θπ

(V)
k+1 = 0.

Let

Fk+1 (x) = θx − λ [ξk − x] Lk+1 (δk, δk+1; ξk, x)

= θx − λ
ξk − x

ξk − x + δk − δk+1

[
(ξk + δk)

d − (x + δk+1)
d] .

Then Fk+1 (0) = −λξk Lk+1 (δk, δk+1; ξk, 0) < 0, Fk+1 (ξk) = θξk > 0 and for x ∈
(0, ξk)

d
dx

Fk+1(x) = θ − d
dx

(

λ
(ξk − x) (ξk + δk)

d

ξk − x + δk − δk+1

)

+ d
dx

(

λ
(ξk − x) (x + δk+1)

d

ξk − x + δk − δk+1

)

= θ + λ
(ξk + δk)

d (ξk − x + δk − δk+1)

(ξk − x + δk − δk+1)
2 + λ

(ξk − x) (ξk + δk)
d

(ξk − x + δk − δk+1)
2

−λ
(x + δk+1)

d (ξk − x + δk − δk+1)

(ξk − x + δk − δk+1)
2 − λ

(ξk − x) (x + δk+1)
d

(ξk − x + δk − δk+1)
2

+λ
d (ξk − x) (x + δk+1)

d−1 (ξk − x + δk − δk+1)

(ξk − x + δk − δk+1)
2 > 0.
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Note that Fk+1 (x) is a continuous function for x ∈ (0, ξk), there exists a unique
positive solution x = ξk+1 to the nonlinear equation Fk+1(x) = 0 for x ∈ (0, ξk).
Hence, π

(V)
k+1 = ξk+1. It follows from Eqs. 58 and 67 that

π
(W)
k+2 = π

(W)
k+1 − θπ

(V)
k+1 − λ

[
π

(W)
k − π

(W)
k+1

]
Lk+1

(
π

(W)
k , π

(W)
k+1 ;π

(V)
k ,π

(V)
k+1

)

= δk+1 − θξk+1 − λ
[
δk − δk+1

]
Lk+1(δk, δk+1; ξk, ξk+1) = δk+2.

By induction, this completes the proof. ⊓&

Under the condition λ < 1, the following theorem describes two important lim-
iting processes which are related to the fixed point. The two limiting processes
are interesting when the convergence of fraction vector sequence is understood as
N → ∞ and/or t → 0. Here, we omit its proof, while the proof can be completed by
a similar discussion to those of Theorem 1 (iii) and Theorem 4 in Martin and Suhov
(1999).

Theorem 6

(1) If λ < 1, then for any (g, h) ∈ $

lim
t→+∞

(
u(t, g, h), v(t, g, h)

)
= π.

Furthermore, there exists a unique probability measure ϕ on $, which is invariant
under the map (g, h) 1−→

(
u(t, g, h), v(t, g, h)

)
, that is, for any continuous func-

tion f : $ → R and t > 0
∫

$

f (g, h)dϕ(g, h) =
∫

$

f (u(t, g, h), v(t, g, h))dϕ(g, h).

Also, ϕ = δπ is the probability measure concentrated at the f ixed point π .
(2) If λ < 1, then for a f ixed number N = 1, 2, 3, . . ., the Markov process

{
(U(N)(t),

V(N)(t)), t ≥ 0
}

is positive recurrent, and hence it has a unique invariant distrib-
ution ϕN. Furthermore, {ϕN} weakly converges to δπ , that is, for any continuous
function f : $ → R

lim
N→∞

EϕN

[
f (g, h)

]
= f (π) .

Based on Theorems 6, we obtain a useful relation as follows

lim
t→+∞

lim
N→∞

(
u(N)(t, g, h), v(N)(t, g, h)

)
= lim

N→∞
lim

t→+∞

(
u(N)(t, g, h), v(N)(t, g, h)

)
= π.

Therefore, we have

lim
N→∞
t→+∞

(
u(N)(t, g, h), v(N)(t, g, h)

)
= π.

6 Performance analysis and numerical examples

In this section, we provide performance analysis of the supermarket model with
server multiple vacations, including the mean of the stationary queue length in any
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server and the expected sojourn time that any arriving customer spends in this
system. Furthermore, we use some numerical examples to analyze how the two
performance measures depend on some crucial factors of this supermarket model.

Let Q be the stationary queue length of any server. Then

E
[
Q

]
=

∞∑

k=1

P {Q ≥ k} =
∞∑

k=1

[
π

(W)
k + π

(V)
k

]
=

∞∑

k=1

(ξk + δk) . (68)

Note that

E
[
Q

]
= E

[
Q this server is at vacation

]
+ E

[
Q, this server is working

]
,

where

E
[
Q, this server is at vacation

]
=

∞∑

k=1

π
(V)
k =

∞∑

k=1

ξk

and

E
[
Q, this server is working

]
=

∞∑

k=1

π
(W)
k =

∞∑

k=1

δk.

If λ < 1, then this supermarket model with server multiple vacations is stable. In
this case, we denote by S the sojourn time that any arriving customer spends in this
system. It is easy to see that

E
[
S, this server is at vacation

]
=

(
1
θ

+ 1
)

(ξ0 − ξ1) L1 (δ1; ξ0; ξ1)

+
∞∑

k=2

(
1
θ

+ k
)

(ξk−1 − ξk) Lk (δk−1, δk; ξk−1; ξk)

and

E
[
S, this server is working

]
=

∞∑

k=2

k (δk−1 − δk) Lk (δk−1, δk; ξk−1; ξk) ,

thus we obtain

E
[
S

]
=E

[
S, this server is at vacation

]
+ E

[
S, this server is working

]

= (1 + θ)

θ
(ξ0 − ξ1) L1 (δ1; ξ0; ξ1)

+ 1
θ

∞∑

k=2

(1 + kθ) (ξk−1 − ξk) Lk (δk−1, δk; ξk−1; ξk)

+
∞∑

k=2

k (δk−1 − δk) Lk (δk−1, δk; ξk−1; ξk) . (69)

In the remainder of this section, using Eqs. 68 and 69 we provide some numerical
examples to analyze how the two performance measures E

[
Q

]
and E

[
S

]
depend

on some crucial parameters of this supermarket model under several different
values of d.
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Fig. 6 The stationary expected
queue length depends on
vacation or no vacation
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(1) The role of vacation processes

In this supermarket model, we assume that the exponential service rate µ = 1, the
exponential vacation rate θ = 1 and the Poisson arrival rate λ ∈ (0.05, 0.95).

Figures 6 and 7 indicate how the two performance measures of the supermarket
model depend on the role played by the vacation processes, where λ ∈ (0.05, 0.95).

Figure 6 shows that the vacation processes increase E
[
Q

]
under the two cases with

d = 1, 2. At the same time, the choice number d decreases E
[
Q

]
when the servers

have either vacations or no vacations.

Fig. 7 The expected sojourn
time depends on vacation or
no vacation
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Fig. 8 The mean of the
stationary queue length vs λ
for the different values of d
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Figure 7 illustrates that the vacation processes also increase E
[
S

]
under the two

cases with d = 1, 2. When the servers have either vacations or no vacations, E
[
S

]

decreases as the choice number d increases.

(2) The role of Poisson arrival rates

In this supermarket model, we assume that the exponential service rate µ = 1, the
exponential vacation rate θ = 0.4 and the Poisson arrival rate λ ∈ (0.05, 0.95).

Figures 8 and 9 indicate how the two performance measures of the supermarket
model depend on the Poisson arrival rate λ ∈ (0.05, 0.95).

Fig. 9 The expected sojourn
time vs λ for the different
values of d
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Fig. 10 The mean of the
stationary queue length vs θ
for the different values of d
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Figure 8 shows that E
[
Q

]
increases as λ increases under the three cases with d =

1, 2, 5. However, the role of choice number d is complicated; only when λ is big,
E

[
Q

]
decreases as d increases.

Figure 9 illustrates that E
[
S

]
increases as λ increases under the four cases with

d = 1, 2, 3, 4. At the same time, E
[
S

]
decreases as the choice number d increases,

this is different from that in E
[
Q

]
.

(3) The role of exponential vacation rates

In this supermarket model, we assume that the exponential service rate µ = 1, the
Poisson arrival rate λ = 0.5 and the exponential vacation rate θ ∈ (0.2, 2).

Fig. 11 The expected sojourn
time vs θ for the different
values of d
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Figures 10 and 11 indicate how the two performance measures of the supermarket
model depend on the exponential vacation rate θ ∈ (0.2, 2).

Figure 10 shows that E
[
Q

]
decreases as θ increases under the four cases with d =

1, 2, 3, 4. However, the role of choice number d is complicated, we can not describe
how E

[
Q

]
depends on d yet.

Figure 11 illustrates that E
[
S

]
decreases as θ increases under the four cases with

d = 1, 2, 3, 4. At the same time, E
[
S

]
decreases as the choice number d increases,

this is different from that in E
[
Q

]
.

7 Concluding remarks

In this paper, we first analyze a supermarket model of N identical servers with
server multiple vacations, and set up an infinite-dimensional system of differential
equations satisfied by the expected fraction vectors in terms of the technique of
tailed equations. Then, as N → ∞ we use the operator semigroup to provide a mean-
field limit for the sequence of Markov processes, which weakly converges to the
unique and global solution for the infinite-dimensional system of limiting differential
equations. Finally, we provide an effective algorithm for computing the fixed point
of the infinite-dimensional system of limiting differential equations. Using the fixed
point, we provide performance analysis of this supermarket model, and also give
some numerical examples to analyze how the two performance measures depend on
some crucial factors of this supermarket model.

This paper provides a clear picture for how to use the mean-field models to
numerically analyze performance measures of complicated supermarket models, and
this picture is organized into three key parts: (1) Setting up system of differential
equations, (2) strict proofs of the mean-field limit and (3) performance analysis of
system. Therefore, the method given in this paper can be applied to performance
analysis of complicated supermarket models with more random factors, such as cases
where each server is a retrial queue or a processor-sharing queue, each server may
be failure and repaired, the customers may be impatient or negative. Along these
lines, there are a number of interesting directions for potential future research, for
example:

1. We need to develop effective algorithms for computing the fixed point of
complicated supermarket models, and specifically, to analyze the influence of
crucial random factors on the design of algorithms. In fact, this paper indicates
that the nonlinear dynamics of the supermarket model with server multiple
vacations makes the system of limiting differential equations more complicated,
making the computation of the fixed points more difficult and challenging. On
the other hand, it is worthwhile to note that for a Markov process, the fixed
point with nonlinear structure is very different from the stationary probability
vectors with linear structure (e.g., see the RG-factorizations given in Li (2010)),
therefore there are many interesting topics for computing the fixed point with
the nonlinear dynamic structure.

2. How to apply the operator semigroup to provide the mean-field limit in the study
of supermarket models with either non-Poisson inputs or with non-exponential
service times is still an open and interesting problem. Reader may refer to, such
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as, Bramson et al. (2010, 2012, 2011), Li and Lui (2010) and Li (2011). Recently,
Li et al. (2012) made crucial advances in applying the operator semigroup and
the mean-field limit to analyzing the supermarket model with PH service times.
However, we believe that a large gap still exists for dealing with either renewal
inputs or general service times, because of the fact that a more complicated
nonlinear dynamic structure exists and needs to be given a detailed analysis in
order to set up the infinite-dimensional system of differential equations.
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