
Multimedia Systems (1997) 5:310–323 Multimedia Systems
c© Springer-Verlag 1997

Scheduling and data layout policies
for a near-line multimedia storage architecture
Siu-Wah Lau, John C.S. Lui

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

Abstract. Recent advances in computer technologies have
made it feasible to provide multimedia services, such as
news distribution and entertainment, via high-bandwidth net-
works. The storage and retrieval of large multimedia objects
(e.g., video) becomes a major design issue of the multimedia
information system. While most other works on multimedia
storage servers assume an on-line disk storage system, we
consider a two-tier storage architecture with a robotic tape li-
brary as the vast near-line storage and an on-line disk system
as the front-line storage. Magnetic tapes are cheaper, more
robust, and have a larger capacity; hence, they are more
cost effective for large scale storage systems (e.g., video-
on-demand (VOD) systems may store tens of thousands of
videos). We study in detail the design issues of the tape sub-
system and propose some novel tape-scheduling algorithms
which give faster response and require less disk buffer space.
We also study the disk-striping policy and the data layout
on the tape cartridge in order to fully utilize the throughput
of the robotic tape system and to minimize the on-line disk
storage space.

Key words: Multimedia storage – Scheduling – Data layout

1 Introduction

In the past few years, we have witnessed tremendous ad-
vances in computer technologies, such as storage architec-
tures (e.g. fault-tolerant disk arrays and parallel I/O archi-
tectures), high-speed networking systems (e.g., ATM switch-
ing technology), compression and coding algorithms. These
advances have made it feasible to provide multimedia ser-
vices, such as multimedia mail, news distribution, advertise-
ment, and entertainment [10], via high bandwidth networks.
Consequently, research in multimedia storage system has re-
ceived a lot of attention in recent years. Most of the recent
research works have emphasized the investigation of the de-
sign of multimedia storage server systems with magnetic

Correspondence to: J.C.S. Lui
e-mail: cslui@cse.cuhk.edu.hk

disks as the primary storage. In [2, 7], issues such as real-
time playback of multiple audio channels have been studied.
In [17], the author presented a technique for storing video
and audio streams individually on magnetic disk. The same
author proposed in [16] techniques for merging storage pat-
terns of multiple video or audio streams to optimize the disk
space utilization and to maximize the number of simultane-
ous streams. In [9], a performance study was carried out on
a robotic storage system. In [4, 5], a novel storage structure
known as the staggered striping technique was proposed as
an efficient way for the delivery of multiple video or audio
objects with different bandwidth demands to multiple display
stations. In [8], a hierarchical storage server was proposed
to support a continuous display of audio and video objects
for a personal computer. In [11], the authors proposed a
cost model for data placement on storage devices. Finally,
a prototype of a continuous media disk storage server was
described in [12].

It is a challenging task to implement a cost-effective
continuous multimedia storage system that can store many
large multimedia objects (e.g., video), and at the same time,
can allow the retrieval of these objects at their playback
bandwidths. For example, a 100-min HDTV video requires
at least 2 MB/s display bandwidth and 12 GB of storage
[3]. A moderate size video library with 1000 videos would
then require 12 TB storage. It would not be cost-effective to
implement and manage such a huge amount of data all on
the magnetic disk subsystem. A cost-effective alternative is
to store these multimedia objects permanently in a robotic
tape library and use a pool of magnetic disks, such as disk
arrays [15], forbuffering and distribution. In other words,
the multimedia objects reside permanently on tapes, and are
loaded onto the disks for delivery when requested by the disk
server. To reduce the tape access delays, the most actively
accessed videos would also be stored in the disks on a long-
term basis. The disk array functions as acachefor the objects
residing in the tape library, as well as a buffer for handling
the bandwidth mismatch of the tape drive and the multimedia
objects.

Given the above architecture, this paper aims at the de-
sign of a high-performance storage server with the following
requirements:

311

Fig. 1. Cost-effective multimedia
storage server

– Minimal disk buffer space between the robotic tape li-
brary and the parallel disk array. Disk space is required
for handling the bandwidth mismatch of large multime-
dia objects, such as video or HDTV, and the tape sub-
system.

– Minimal response time for the request to the multimedia
storage system. The response time of a request to a large
multimedia object can be greatly reduced by organizing
the display unit, the network device, the parallel disk
and the robotic tape library as a pipeline such that data
flows at the continuous rate of the display bandwidth of
the multimedia object along the pipeline. Since multi-
media objects reside in the tape subsystem, to minimize
the system response time, we have to minimize the tape
subsystem response time. Throughout this paper, the tape
subsystem response time is defined as the arrival time of
the first byte of data of a request to the disk array minus
the arrival time of the request to the multimedia storage
system.

– Maximal bandwidth utilization of the tape drives. The
current tape library architectures usually have few tape
drives. Hence, the bandwidth utilization of tape drives is
a major factor of the average response time and through-
put of the storage server. A better utilization of the band-
width of tape drives means a higher throughput of the
tape subsystem.

The contribution of this paper is twofold. First, we pro-
pose a novel scheduling approach for the tape subsystem,
and we show that the approach can reduce the system re-
sponse time, increase the system throughput and lower the
disk buffer requirement. Secondly, we study the disk block
organization of the disk subsystem and show how it can be
incorporated with the tape subsystem to support concurrent
upload and playback of large multimedia objects.

The organization of the paper is as follows. We de-
scribe the architecture of our multimedia storage system and
present the tape subsystem scheduling algorithms in Sects. 2
and 3, respectively. Then, we discuss the disk buffer re-
quirement for supporting various tape subsystem scheduling
algorithms in Sect. 4. In Sect. 5, we describe the disk block
organization and the data layout on the tape cartridge for
supporting concurrent upload and playback of large multi-

media objects. In Sect. 6, we discuss the performance study,
and lastly the conclusion is given in Sect. 7.

2 Multimedia storage system architecture

Our multimedia storage system consists of a robotic tape li-
brary and a parallel disk array. The robotic tape library has
a robotic arm, multiple tape drives, tape cartridges on which
multimedia objects reside, and tape cartridge storage cells
for placing tape cartridges. Figure 1 illustrates the archi-
tectural view of the multimedia storage server. The robotic
arm, under computer control, can load and unload tape car-
tridges. To load a tape cartridge into a tape drive, the system
performs the following steps.

1. Wait for a tape drive to become available.
2. If a tape drive is available but occupied by another tape

(e.g. this is the tape that was uploaded for a previous
request), eject the tape in the drive and unload this tape
to its storage cell in the library. We call these operations
the drive ejectoperation and therobot unloadoperation,
respectively.

3. Fetch the newly requested tape from its storage cell and
load it into the ready tape drive. We call these operations
the robot load operation and thedrive load operation,
respectively.

When a multimedia object is requested, the multimedia
object is first read from the tape and stored in the disk drives
via the memory buffer and the CPU. Then the multimedia
object is played back by retrieving the data blocks of the
multimedia object from the disk drives, at a continuous rate
of the object bandwidth, into the main memory, while the
storage server sends the data blocks in the main memory
to the playback unit via the network interface. Frequently
accessed multimedia objects can becachedin the disk drives
to reduce tape access and improve system response time as
well as throughput.

We define the notations for the robotic tape library in
Table 1. These notations are useful for the performance study
in later sections.

It is important to point out that the parameter values
of a robotic tape library can vary greatly from system to

312

Fig. 2. the conventional tape scheduling algorithm

Fig. 3. The time-slice tape scheduling algorithm

Table 1. Notations used for the robotic tape library

Nr number of robotic arms
Nt number of tape drives
Tl drive load time
Te drive eject time
Tr tape rewind time
Tu robot load or unload time
Bt tape drive transfer rate
Bd(O) display bandwidth of objectO
S(O) size of objectO

Table 2. Typical parameter values of two commercial storage libraries

Parameter Exabyte120 Ampex DST800
Nr 1 1
Nt 1 to 4 1 to 4
averageTl 35.4 5
averageTe 16.5 s 4 s
Tr (1/2 tape) 75 s 12-13 s
averageTs 45 s 15 s
Tu 22 s < 10 s
Bt 0.47 MB/s 14.5 MB/s
Number of tapes 116 256
Tape capacity 5 GB 25 GB

system. For instance, Table 2 shows the typical numbers for
two commercial storage libraries.

3 Tape subsystem and scheduling algorithms

In this section, we describe several tape drive scheduling
algorithms for our multimedia storage system. A typical
robotic tape library has one robot arm and a small num-
ber of tape drives. A request to the tape library demands
reading (uploading) a multimedia object from a tape car-
tridge. The straight-forward algorithm or the conventional
algorithm to schedule a tape drive is to serve requests one
by one, i.e., the tape drive reads the whole multimedia object
of the current request to the disk array before reading the
multimedia object of the next request in the queue. Since
the number of tape drives is small and the reading time of
a multimedia object is quite long1, a new request will often
have to wait for an available tape drive. The conventional

1 It takes 1200 s to upload a 1-h HDTV video object by a tape drive
with 6 MB/s bandwidth

algorithm performs reasonably well when the tape drive has
a bandwidth lower than the display bandwidth of the mul-
timedia objects being requested. However, the conventional
algorithm would not result in the good request response time
when the tape drive bandwidth is the total display bandwidth
of two or more objects. To illustrate this, suppose the tape
library is an Ampex DST8002 with one tape drive. Consider
the situation in which two requests for 100 min of different
HDTV video objects, each with a display bandwidth of 2
MB/s. These two requests arrive at the same time when the
tape drive is idle. The video object size is equal to the dis-
play duration times the display bandwidth, which is equal
to 100× 60× 2 MB = 12000 MB. With the conventional
algorithm, the transfer of the first request starts after a robot
load operation and a drive load operation. The response time
of the first request is:Tu + Tl = 15 s . However, the second
request will have to wait for the complete transfer of the first
multimedia object request, rewinding that tape (Tr), ejecting
that tape from the drive (Te), and unloading that tape from
the tape drive to its cell by the robot (Tu). Then the robot
can load the newly requested tape (Tu) and load it into the
tape drive (Tl). The response time of the second request is:

Tu + Tl + 12000/14.5 +Tr + Te + 2∗ Tu + Tl = 885 s.

Hence, the average response time of the two requests is 450
s. This scenario is illustrated in Fig. 2.

The major problem about the conventional algorithm is
that multiple requests can arrive within a short period of
time and the average request response time is significantly
increased due to the large service time of individual requests.
Since the tape drive of the Ampex system is several times
the display bandwidth of the multimedia objects, the tape
drive can serve the two requests in a time slice manner such
that each request receives about half the bandwidth of the
tape drive.

Suppose the tape drive serves the two requests in a time-
slice manner with a transfer period of 300 s as illustrated in
Fig. 3. The two objects are being uploaded into the disk array
at an average rate of 6.5 MB/s3. From Fig. 3, the response

2 The parameter values are in Table 2
3 The overhead of tape switch is approximately 10% of the transfer time.

Hence, the effective bandwidth of the tape drive is 13.05 MB/s or 6.5 MB/s
for each object

313

time of the first and second request areTu + Tl = 15 s and
Tu + Tl + 300 +Te + Tu + Tu + Tl = 344 s respectively.
Hence, the average response time is (15 + 344) / 2 s =
179.5 s or an improvement of 60%. We argue that the time
slice scheduling algorithm can be implemented with small
overheads. In some tape systems, for instance, the D2 tapes
used in the Ampex robot system, have the concept ofzones
[1]. Zones are the places on the tape where the tape candrift
to when we stop reading from the tape. The function of the
zone is that the tape drive can start reading from the zone
rather than rewinding to the beginning of the tape when the
tape drive reads the tape again.

The time slice algorithm has the following advantages.

– The average response time is greatly improved in light
load conditions.

– In the case that the request of a multimedia object can be
canceled after uploading some or all parts of the object
into the disks (e.g., customers may want to cancel the
movie due to emergency or the poor entertainment value
of the movie), the waste of tape drive bandwidth for
uploading unused parts of multimedia objects is reduced.

– The time slice algorithm requires less disk buffer space
than the conventional algorithm. The discussion of disk
buffer space requirement is given in Sect. 4.

However, the time slice algorithm requires more tape
switches and therefore has a higher tape switch overhead
and a higher chance of robot arm contention. Our goal is to
study several versions of the time slice scheduling algorithm
which can minimize the average response time of requests
to the multimedia storage system and, also, find the point
of switch from the time slice algorithm to the conventional
tape- scheduling algorithm. In the rest of this section, we
will describe each scheduling algorithm in detail.

3.1 Conventional algorithms

The conventional algorithm is any non-preemptive schedul-
ing algorithm, such as the first-come-first-served (FCFS) al-
gorithm. As each request arrives, the request joins the re-
quest queue. A request in the request queue is said to be
readyif the tape cartridge of the request is not being used to
serve another request. The simplest scheduling algorithm is
the FCFS algorithm. The FCFS algorithm selects the oldest
ready request in the queue for reading when a tape drive is
available. A disadvantage of the FCFS algorithm is that the
response time of a short request can be greatly increased by
any preceding long requests [18].

Another possible conventional algorithm is the shortest-
job-first (SJF) algorithm. The SJF algorithm improves the
average response time by serving the ready request with the
shortest service time, where the service time of a request is
the time required to complete the tape switch, the data trans-
fer, and the tape rewind operation of the request. However,
a risk of using the SJF algorithm is the possibility of star-
vation for longer requests as long as there is steady supply
of shorter requests.

The implementations of the FCFS and SJF algorithms
are similar. We have to separate the implementation into two
cases: (1) where there is only a single tape drive available

for the tape subsystem and, (2) where there are multiple tape
drives in the tape subsystem.

Single tape drive.The implementation of the conventional
algorithms is straight-forward:

procedure conventional();
begin

while true do
begin

if (there is no ready request)then
wait for a ready request;

get a ready request from the request queue;
serve the request;

end;
end;

Multiple tape drives. The implementation of the conven-
tional algorithms consists of several procedures. The proce-
durerobot is instantiated once and proceduretape is in-
stantiatedNt times, where each instance of proceduretape
corresponds to a physical tape drive and each instance has
an unique ID.

procedure conventional()
begin

run robot() as a process;
for i := 0 to NUM TAPE -1 do

run tape(i) as a process;
end;

procedure robot();
begin

while true do
begin

/* accept new request */
if (a request is readyand

a tape drive is available)then
begin

get a request from the request queue;
send the request to an idle tape drive;

end
else

if (an available drive is occupied)then
perform the drive unload operation

and the robot unload operation;
else

wait for a ready request
or an occupied available drive;

end;
end;

procedure tape(integer id);
begin

while true do
begin

wait for a request from robot arm;
serve the request;

end;
end;

3.2 Time slice algorithms

The time slice algorithms classify requests into two types: (1)
non-active requests and (2) active requests. Newly arrived
requests are first classified as non-active requests and put into

314

the request queue. A non-active request is said to be ready
when the tape cartridge is not being used for serving another
request. Active requests are those requests being served by
the tape drive in a time slice manner.

Since the time slice algorithms are viable only if the tape
switch overhead is small, we restrict that the tape rewind op-
eration to be performed when a request has been completely
served and the tape search operation is performed only at
the beginning of the service of a request. This implies that
two requests of the same tape cannot be served concurrently.
Note that the chance of having two requests of the same tape
in the system is very small, because (1) the access distribu-
tion of objects is highly skewed, since video rental statistics
suggest some highly skewed access distributions, such as the
80/20 rule, in which 80% of accesses go to the most popular
20% of the data [6] and, (2) frequently accessed objects are
kept in the disk drives.

The tape switch time is equal to the total time to complete
a tape drive eject operation, a robot unload operation, a robot
load operation, a tape drive load operation and a tape search
operation. In the remainder of the paper, we letH to be the
maximum tape switch time. The time slice algorithms break
a request into many tasks, each with a unique task number.
Each task of the same request is served separately in the
order of increasing task number. Each request is assigned
a time slice,s, which is the maximum service time of a
task of the request. The service time of a task includes the
time required for the tape switch and the data transfer of
the task. For the last task of a request, the service time
also includes the time required for a tape rewind operation.
There are many possible ways to serve several requests in
a time slice manner. We concentrate on two representative
time slice algorithms: theround-robin (RR) algorithm and
the least slack(LS) algorithm.

3.2.1 Round-robin algorithm

In this section, we formally describe the RR algorithm.
Let R1, . . . , Rn be the active requests andRn+1, ..., Rm

be the ready non-active requests, wherem ≥ n. Let Oi

be the video object requested byRi for i = 1, ...,m. Let
s1, . . . , sn be the time slices assigned toR1, . . . , Rn, re-
spectively.

With the RR algorithm, the active requests are served
in an RR manner. In each round of service, one task of
each active request will be served. The active requests are
served in the same order in each round of service. In order to
satisfy the bandwidth requirement of active requestRi, the
average transfer bandwidth allocated forRi must be geater
than or equal to the bandwidth ofRi. Formally speaking,
the bandwidth requirement ofRi is satisfied if

(si −H)Bt∑n
k=1 sk

≥ Bd(Oi).

The RR algorithm maintains the following condition:

(si −H)Bt∑n
k=1 sk

≥ Bd(Oi) for 1 ≤ i ≤ n

The condition guarantees that the bandwidth require-
ments of the active requests are satisfied. The efficiency of

the algorithm is defined as:

E = 1 − nH∑n
i=1 si

(1)

When the system is lightly loaded, the tape drive can
serve at least one more request in addition to the currently
active requests, the average response time is reduced for a
smaller time slice, because a new arrival is less likely to
have to wait for a long period. However, a smaller time
slice means that a smaller number of active requests can be
served simultaneously, thereby increasing the chance that a
newly arrived request has to wait for the completion of an
active request. Therefore, different time slices or different
efficiencies of the time slice algorithm are required to opti-
mize the average response time at different load conditions.
To simplify our discussion, we assume each request has the
same time slice in the rest of the paper, unless we state
otherwise.

The specification of the RR algorithm is:

Simple RR Algorithm. The algorithm assigns each active
request a time slice period ofs > H s which has to satisfy
the following conditions.

Condition 1. The tape drive serves requestsR1, ..., Rn in a
round-robin manner with a time slice period of
s s.

Condition 2. In each time slice period, the available time for
data transfer iss−H if the task being served is
not the last task of an active request, otherwise,
the available time for data transfer iss−H−
the rewind time of the tape.

Condition 3. RequestRn+1 which is the oldest ready non-
active request becomes active if

(s−H) ∗Bt

(n + 1)s
≥ max

i=1,...,n+1
{Bd(Oi)}

The straight-forward implementation of the simple RR
algorithm is to consider whether more active requests can
be served concurrently at the end of a service round, i.e.,
the algorithm evaluates Condition 3 at the end of each ser-
vice round. We call this implementation the RR-1 algorithm.
Again, we separate the implementation into two cases: (1)
where there is only a single tape drive in the tape subsys-
tem, and (2) where there are multiple tape drives in the tape
subsystem.

Single Tape Drive

procedure RR-1();
begin

while true do
begin

if (there is no active request
and ready non-active request)then

wait for a ready non-active request;
if (the last active request is served

and Condition 3 of the
Simple Round-robin Algorithm is satisfied)then

accept a ready non-active request;
get a task from the active task queue;
serve the task;

end;
end;

315

With the RR-1 algorithm, a newly arrived request has to
wait for one half of the duration of a service round when
the tape subsystem can serve at least one more request in
addition to the currently active requests. Since the duration
of a service round grows linearly with the number of active
requests, the average waiting time of a request is high when
there are several active requests. To improve the above situ-
ation, we can check whether one more request can be served
by the tape subsystem after every completion of an active
task. We call this improved implementation of the RR algo-
rithm the RR-2 algorithm.

Multiple tape drives. For the case of multiple tape drives,
we have to consider the robot arm contention, because the
tape drives need to wait for the robot arm to load or unload.
In the worst case, each tape switch requires a robot load
operation and a robot unload operation. Therefore, the worst
case robot waiting time is 2×Tu×(Nt−1). Hence, Condition
3 can be revised to become:

(si −H − 2(Nt − 1)Tu)Bt∑n
k=1 sk

≥ Bd(Oi) for 1 ≤ i ≤ n ,

3.2.2 The least-slack (LS) algorithm

Let us study another version of time slice algorithm which
can improve on the response time of the multimedia request.
In order to maintain the playback continuity of an object,
taski of the request of the object must start to transfer data
before finishing the playback of the data of the previous task
i − 1. We define the latest start time of transfer (LSTT) of
a task of an active request as the latest time that the task
has to start to transfer data in order to maintain the playback
continuity of the requested object. Formally, the LSTT of
taskJi is defined as:

LSTT (Ji)

=

request arrival time + request response time

if Ji is the first task

LSTT (Ji−1) + playback time of the data of taskJi−1
otherwise

The slack time of a task is defined asmax(LSTT of task−
current time, 0). Let transfer(Ji) be the time required to
complete the data transfer ofJi and the tape rewind opera-
tion of Ji (if Ji is the last task of a request). The deadline
of a taskJi is defined as

deadline(Ji) = LSTT (Ji) + transfer(Ji) . (2)

A ready non-active requestR can become active when the
tasks ofR can be served immediately such that each task of
an active request can be served at or before its LSTT.

LS Algorithm The algorithm serves requests with the fol-
lowing conditions:

Condition 1. Each active task can be served in one time slice
of s s.

Condition 2. Active tasks are served in ascending order of
slack time.

Condition 3. In each time slice, the available time for data
transfer iss−H if the task being served is not
the last task of an active request, otherwise, the
available time for data transfer iss−H− the
rewind time of the tape.

Condition 4. The data transfer of each active task can start
at or before the LSTT of the active task.

Condition 5. A ready non-active request can become active
if Condition 4 is not violated after the request
has become active.

We choose the LS algorithm for tape scheduling because
it is optimal for a single tape system [14]4 in the sense that,
if scheduling can be achieved by any algorithm, it can be
achieved by the optimal algorithm.

For the case that the tape subsystem has only one robot
arm and one tape drive, Condition 4 of the LS Algorithm
can be rewritten as follows.

Lemma 1. Given a robotic tape library with a single tape
drive, let J1, . . . , Jn be the active tasks listed in ascending
order of slack time. If no active task is in service, then Condi-
tion 4 of the LS algorithm is equivalent to the condition that
each active task can be completed at or before its deadline.
In other words, Condition 4 of the LS algorithm is equivalent
to the following condition:

∀k, 1 ≤ k ≤ n,

k∑
i=1

(transfer(Ji) + switch(Ji))

≤ deadline(Jk) − current time

whereswitch(Ji) is the tape switch time ofJi.

Proof. Assume there is no active task in service. By Eq. 2,
an active task can start data transfer at or before its LSTT if
and only if it can be completed at or before its deadline. A
taskJk can be completed at or before its deadline if and only
if the time between the current time and the deadline ofJk
is enough to completeJk and its preceding tasks. Therefore,
Condition 4 of the LS algorithm is equivalent to

∀k, 1 ≤ k ≤ n,

k∑
i=1

(transfer(Ji) + switch(Ji))

≤ deadline(Jk) − current time

Again, we separate the implementation into two cases,
(1) where there is only a single tape drive in the tape sub-
system and, (2) where there are multiple tape drives in the
tape subsystem. The implementation of the LS algorithm for
the single tape case is as follows:

Single Tape Drive

procedure LS();
begin

while true do
begin

if (there is no request)then
wait for a new request;

if (there is a ready request is non-empty

4 The paper discussed scheduling in single and multiple processors. The
case of a single tape drive robot library is equivalent to the case of a single
processor described in the paper

316

and acceptnew())then
begin

get the oldest ready request;
put the tasks of the request

into the active task queue;
end;
get the active task with the least slack time;
serve the task;

end
end

function acceptnew() :boolean;
begin

float work;
pointer x;
if (the active task queue is empty)then

return (true);
work := 0.0;
save the active task queue;
put the tasks of the oldest ready request into the active task queue;
while task queue is not emptydo
begin

x := next active task;
work := work + x->deadline - x->LSTT + tape switch time;
if (work > x->deadline - current time)then
begin

restore the active task queue;
return (false)

end;
end;
restore the active task queue;
return (true);

end

Multiple tape drives. This implementation consists of two
procedures:robot and tape drive . Procedurerobot
performs the following steps repeatedly: accept a ready re-
quest if the request can be accepted to become active im-
mediately; if there are active tasks and an idle tape, then
send the active task with the least slack time to an idle
tape, else wait for an idle tape or an active task. Procedure
tape repeatedly waits for an active task and performs the
sequence of a drive eject operation, a drive load operation,
a data transfer, and a tape rewind operation (for the last
task of a request). Procedurerobot is instantiated once
and proceduretape is instantiatedNt times. Each instance
of proceduretape has a unique ID.

4 Disk buffer space requirement

In this section, we study the disk buffer requirement for the
various scheduling algorithms we have described. First, we
show that the conventional algorithm (the FCFS or the SJF
algorithm) requires a huge amount of buffer space to achieve
the maximum throughput. The following theorem states the
buffer space requirement for the conventional algorithm.

Theorem 1. If each object of a request is of the same size
S and same display bandwidthBd(O), then the conventional
algorithm requiresO(B∗

t S
2Bd(O)) disk buffer space in order to

achieve its maximum throughput, where the sustained tape
throughput isB∗

t and is equal to SBt

S+Bt(H+Tr) .

Proof. The tape subsystem achieves its maximum through-
put when (1) there is an infinite number of ready requests
and (2) each request does not have a search time, i.e., the
requested object resides at the beginning of the tape car-
tridge and the tape drive can start to read the object right
after the drive load operation has been done. The sustained
bandwidth of tape subsystem is:

B∗
t = Bt

S/Bt

S/Bt +H + Tr
=

SBt

S +Bt(H + Tr)
.

At time t = 0, the tape subsystem is idle and starts to serve
requests one by one. In time interval (0,SB∗

t
), data are con-

sumed at the rate ofBd(O) and uploaded at the rate ofB∗
t .

Hence, at timet = S
B∗
t

, (B∗
t−Bd(O))S

B∗
t

buffer space is required

to hold the accumulated data. In time interval [S
B∗
t
, 2S
B∗
t

), data
are consumed at the rate of 2Bd(O) and uploaded at the rate
of B∗

t . Therefore, at timet = 2S
B∗
t

, (B∗
t−Bd(O))S

B∗
t

+(B∗
t−2Bd(O))S

B∗
t

buffer space is required to hold the accumulated data. This
argument continues until the total object display throughput
matches with the tape sustained throughput. To obtain the
upper bound buffer requirement, assume we have a tape sys-
tem whose sustained throughputBu

t = k1Bd(O), wherek1
satisfies the following criterion

k1 = dB∗
t /Bd(O)e ,

then the upper bound buffer requirement is:

k1∑
n=1

(
Bu
t − nBd(O)

Bu
t

)
S =

k1∑
n=1

(
k1Bd(O) − nBd(O)

k1Bd(O)

)
S

= k1S − k1(k1 + 1)
2k1

S =
(k1 − 1)S

2

To obtain the lower bound buffer requirement, assume we
have a tape system whose sustained throughputBl

t = k2Bd(O)
satisfies the following criterion

k2 = bB∗
t /Bd(O)c ,

then the lower bound buffer requirement is:

k2∑
n=1

(
Bl
t − nBd(O)

Bl
t

)
S =

k2∑
n=1

(
k2Bd(O) − nBd(O)

k2Bd(O)

)
S

= k2S − k2(k2 + 1)
2k2

S =
(k2 − 1)S

2

Therefore, the buffer space requirement isO(B∗
t S

2Bd(O)).

For example, ifBt = 15 MB/s,Bd(O) = 2 MB/s,H =
30 s, Tr = 13 s,S = 10800 MB5, the disk buffer size =
38.22 GB.

Corollary 1. If there areNt tape drives in the tape library
system. The buffer disk buffer requirement isO(NtB

∗
t S

2Bd(O)).

In the following theorem, we state the disk buffer re-
quirement for the RR time slice algorithm.

Theorem 2. If R1, ...,Rn are the active requests that satisfy
the condition

5 equivalent to 1.5 h of display time

317

(si −H)Bt∑n
k=1 sk

≥ Bd(Oi) for 1 ≤ i ≤ n ,

then the RR algorithm achieves the bandwidth requirements
of the requested objects,O1, ..., On iff the disk buffer size is∑n

i=1 2(si −H)Bt.

Proof. For Ri (1 ≤ i ≤ n), at least two disk buffers of size
(si−H)Bt are required for concurrent uploading and display
of objectOi. Hence, the necessary condition is proved.

Suppose, for each requestOi, there are two disk buffers
bi1 and bi2, each with size (si − H)Bt. While one buffer
is used for uploading the multimedia object from the tape
library, the other buffer is used for displaying objectOi.
At steady state, the maximum period between an available
buffer and the time of uploading from tape is

∑n
i=1 si. When

bi1 has just been available, the system starts to output data
from the other bufferbi2 for display. By the condition of
the theorem,bi2 will not be emptied before the tape drive
starts to upload data tobi1. Hence, the bandwidth ofOi is
satisfied.

With the same arguments, we have the following corol-
lary for the disk buffer requirement for the LS algorithm.

Corollary 2. If R1, ...,Rn are the active requests that satisfy
the condition
(si −H)Bt∑n

k=1 sk
≥ Bd(Oi) for 1 ≤ i ≤ n ,

then the LS algorithm achieves the bandwidth requirements
of the requested objects,O1, . . ., On iff the disk buffer size
is
∑n

i=1 2(si −H)Bt.

By Theorem 2 and Corollary 2, the LS and RR algo-
rithms require less buffer than the conventional algorithm
for the same throughput because the transfer time of each
time slice,si −H, can be chosen to be much smaller than
the total upload period of the object,SB∗

t
.

5 The disk subsystem

Since the tape drive bandwidth or the object bandwidth can
be higher than the bandwidth of a single disk drive, we have
to use striping techniques to achieve the required bandwidth
of the tape drive or the object. In [4], a novel architecture
known as the staggered striping technique was proposed for
high-bandwidth objects, such as HTDV video objects. It has
been shown that staggered striping has a better throughput
than the simple striping and virtual data replication tech-
niques for various system loads [4]. In this section, we show
how to organize the disk blocks in staggered striping together
with the robotic tape subsystem so that (1) the bandwidths of
the disks and the tape drives arematched, and (2) concurrent
upload and display of multimedia objects is supported.

5.1 Staggered striping

We first give a brief review of the staggered striping archi-
tecture. With this technique, an objectO is divided into sub-
objects,Ui, which are further divided intoMO fragments. A

fragment is the unit of data transferred to and from a single
disk drive. The disk drives are clustered into logical groups.
The disk drives in the same logical group are accessed con-
currently to retrieve a subobject (Ui) at a rate equivalent to
Bd(O). The stride,k, is the distance6 between the first frag-
ment ofUi and the first fragment ofUi+1. The relationships
of the above parameters are shown below.

– MO = dBd(O)
Bdisk

e, whereBdisk is the bandwidth of a single
disk drive.

– The size of a subobject =MO× the size of a fragment.
– A unit of time = the time required for reading a fragment

from a single disk drive.

Note that a subobject can be loaded from the disk drives
into the main memory in one time unit. To reduce the seek
and rotational overheads, the fragment size is chosen to be
a multiple of the size of a cylinder. A typical 1.2 GB disk
drive consists of 1635 cylinders of size 756000 bytes each
and has a peak transfer rate of 24 Mbit/second, a minimum
disk seek time of 4 ms, a maximum disk seek time of 35 ms,
and a maximum latency of 16.83 ms. For a fragment size
of 2 cylinders, the maximum seek and latency delay times
of the first cylinder and the second cylinder are 16.83+35
= 51.83 ms and 4+16.83 = 20.83 ms respectively. The trans-
fer time of two cylinders is 481 ms. The total service time
(including disk seek, latency delay, and disk transfer time)
of a fragment is 553.66 ms. Hence, the seek and rotational
overheads is about 13% of the disk bandwidth7. To simplify
our discussion, we assume the fragment size is two cylin-
ders and one unit of time is 0.55 s. To illustrate the idea of
staggered striping, we consider the following example.

Example 1.Figure 4 shows the retrieval pattern of a 5.0 MB/s
object in five 2.5-MB/s disk drives. The stride is 1 andMO

is 2. When the object is read for display, subobjectU0 is
read from disk drives 0 and 1, and so on.

5.2 Layout of storage on the tape

In the following discussion, we assume that (1) staggered
striping is used for the storage and retrieval of objects in
the disk drives and, (2) the memory buffer between the tape
drives and the disk drives is much smaller in size than a
fragment.

Let the effective bandwidth for the time slice algorithm
beB∗

t , which is equal tos−Hs Bt. We show that the storage
layout of an object on the tape must match the storage layout
on the disk drives so as to achieve maximum throughput of
the tape drive. When the object is displayed, each fragment
requires a bandwidth ofBd(O)

MO
. Therefore, the tape drive

producesNO fragments, whereNO = bB∗
tMO

Bd(O) c in a unit
of time. The blocks ofNO fragments are stored in an RR
manner such that theNO fragments are produced asNO

continuous streams of data at the same time. Consider the
case described in Example 1. SupposeB∗

t = 7.5 MB/s, then

6 which is measured in number of disks
7 A further increase in number of cylinders does not result in much

reduction of the overhead. Hence, a fragment of 2 cylinders is a reasonable
assumption

318

Fig. 4. Retrieval pattern of an object

Fig. 5. Upload pattern of an object

Fig. 6. An example of storage pattern

NO = 3. If the subobjects are stored in the following order:
{U0.0, U0.1, U1.0}, {U1.1, U2.0, U2.1}, . . . 8. In the first time
unit, U0.0, U0.1, U1.0 are read from the tape drive. At the
same time,U0.0 andU0.1 are stored in disk drive 0 and disk
drive 1. FragmentU1.0 has to be discarded and re-read in the
next time unit, because disk drive 1 can only store eitherU0.1
or U1.0. Since the output rate of the tape drive must match
the input rate of the disk drives, the effective bandwidth of
the tape drive is 5 MB/s and the tape drive bandwidth cannot
be fully utilized.

On the other hand, if the storage layout of the object is
as follows:
{U0.0, U0.1, U1.1}, {U1.0, U2.0, U2.1}, {U6.1, U3.0, U3.1},
In each time unit, the output fragments from the tape drive
can be stored in three consecutive disk drives. Hence, the
bandwidth of the tape drive is fully utilized. Figure 5 shows
the timing diagram for the upload of the object from the
tape drive. From time 2, subobjectU0 can be read from disk
drives 0 and 1. Hence, the object can be displayed at time 2,
while the remaining subobjects are being uploaded into the
disk drives from the tape drive. Both the bandwidth of the
disk drives and the tape drive are fully utilized.

Now we should derive the conditions of matching the
way that the fragments are retrieved from the disk and the
way that the fragments are uploaded from the tape. LetD
and k be the number of disk drives of the disk array and
the stride, respectively. In the rest of the section, we assume
that the bandwidth of tape drive is at least (MO +1)× Bd(O)

MO
,

i.e.,NO > MO.

Definition 1. Given an objectO which has been uploaded
from a tape drive into the disk array, the retrieval pattern

8 {X Y Z} is a representation which shows that the blocks of X, Y, and
Z are stored in an RR manner

RO ofO is anL×D matrix, whereL is the number of time
units required for the retrieval ofO from the disk drives and
RO (i, j) is equal to “Ua.b” if fragment Ua.b of O is read at
time i from disk drivej. RO (i, j) contains a blank entry if
no fragment is read from disk drivej at timei.

Definition 2. Given an objectO, the upload patternPO of
O is anL ×D matrix, whereL is the number of time units
required for uploadingO andPO (i, j) from a tape drive into
the disk array is equal to “Ua.b” if fragment Ua.b is read at
time i and stored in disk drivej. RO (i, j) contains a blank
entry if no fragment is stored in disk drivej at timei.

Definition 3. The storage patternLP of a retrieval or up-
load pattern P is an L × D matrix whereL is an in-
teger andLP (i, j) the i-th non-blank entry of columnj
of P , i.e., LP is obtained by replacing all the blank en-
tries ofP by lower non-blanking entries of the same column
with the preservation of the row-order of the entries, i.e.,
∀LP (a, b) and LP (c, b), a /= c, P (i, b) = LP (a, b) and
P (j, b) = LP (c, b), a > c iff i > j.

Examples of retrieval and upload patterns are shown in
Figs. 4 and 5, respectively. The retrieval and upload pat-
terns of Figs. 4 and 5 have the same storage pattern which
is shown in Fig. 6.

Lemma 2. With staggered striping, when an objectO is up-
loaded from a tape drive into the disk array, the tape drive
bandwidth can be fully utilized if

– the tape drive readsNO fragments ofO intoNO different
disk drives in each unit of time; and

– the storage patterns of the retrieval pattern and upload
pattern ofO are the same, i.e.,LPO = LRO .

319

Proof. Assume that the retrieval pattern and the upload pat-
tern ofO have the same storage pattern and the tape drive
readsNO fragments intoNO different disk drives. Since the
retrieval pattern and the upload pattern has the same stor-
age pattern, each uploaded fragment (from the tape drive)
can be retrieved from its storage disk for display. Since the
tape drive readsNO fragments in each unit of time and all
uploaded fragments (from the tape drive) can be retrieved
from the storage disks, the bandwidth of the tape drive is
fully utilized.

Definition 4. An object is said to be uniformly distributed
over a set of disk drives if each disk drive contains the same
number of fragments of the object.

Theorem 3. With staggered striping, when an objectO is
uploaded from a tape drive to the disk array, the tape drive
bandwidth can be fully utilized if

1. k andD do not have a common factor greater than 1,
i.e., the greatest common divisor (GCD) ofk andD is 1,
and

2. the data transfer period,s−H, is a multiple of
LCM (D,MO,NO)

NO
time units, whereLCM (x, y, z) is the

least common multiple of integersx, y, z.

Proof. Suppose the GCD ofk andD is 1 ands − H is a
multiple of LCM (D,MO,NO)

NO
time units.

Consider the case that the object starts to be uploaded
at time 0. At timei, NO fragments have been stored and
uniformly distributed into disk drives (i × k) mod D, (i ×
k + 1) mod D, ..., (i× k +NO − 1) mod D. Since the GCD
of k andD is 1, {0, ..., D − 1}2 : f (i) = (i × k) mod D
is a one-one mapping. If we extend the domain off to the
set of natural numbersN , then∀i, j ∈ N , f (i+ j×D) =
f (i). This implies thatLCM (D,MO, NO) fragments can
be uniformly distributed over the disk drives. Hence, at time
LCM (D,MO,NO)

NO
− 1, LCM (D,MO, NO) have been stored

and uniformly distributed over the disk drives of the disk
buffer.

Consider the case that the object is played back at time
0. At time i, MO fragments are retrieved from disk drives
(i×k) mod D, (i×k+1)mod D, ..., (i×k+MO−1)mod D.
At time LCM (D,MO,NO)

MO
−1, LCM (D,MO, NO) have been

retrieved andLCM (D,MO,NO)
D fragments have been retrieved

from each disk drive. LetO′ be the object consisting of
theLCM (D,MO, NO) fragments. The following procedure
finds the upload patternPO ′ which has the same storage
pattern of the retrieval patternRO ′ :

procedure upload(var upattern : upload pattern; rpattern : retrieval pattern);
var

spattern : storage pattern;
i, j, c: integer;
count[D] : integer;

begin
initialize all the entries in count to 0;
initialize all the entries in upattern to blank;
spattern := storage pattern of rpattern;
for i := 0 to LCM (D,MO,NO)

NO
− 1 do

for j := 0 to NO − 1 do
begin

c := (i*k+j) mod D;

upattern[i,c] := spattern[count[c],c];
count[c] := count[c]+1;

end
end

With upload patternPO ′ , the tape readsNO different
fragments intoNO different disk drives in each time unit
and the storage pattern of the retrieval pattern and the up-
load pattern ofO′ are the same. By Lemma 2,O′ can be
retrieved with the maximum throughput of the tape drive.
Hence, an object of a multiple of the size ofO′, i.e.,
LCM (D,MO, NO), can be uploaded with the maximum
throughput of the tape drive. Thus, if the data transfer period
is a multiple of LCM (D,MO,NO)

NO
, the tape drive bandwidth

can be fully utilized.

For the case of Example 1, the data transfer period is a
multiple of LCM (5,2,3)

3 = 10 time units or 5.5 s. For the case
that H = 30 s, a reasonable time slice period is from 200
to 300 s9. A video-on-demand system with a capacity of
1000 100-min HDTV videos of 2 MB/s bandwidth requires
a storage space of 1000× 12 MB = 12 TBytes. If 10% of
the videos reside on disks, 1.2 TBytes disk space is required.
The number of 1.2-GB disk drives of the disk array is 1200,
and the data transfer period is a multiple ofLCM (1200,2,3)

3 =
400 time units = 400× 0.55 s = 220 s or the time slice is
250 s. Hence, the disk array of 1200 disk drives can be used
as a disk buffer as well as a disk cache.

To maximize the tape drive throughput, the maximum
output rate of the disk buffer must be at least the maximum
utilized bandwidth of the tape drive. The maximum utilized
bandwidth of the tape drive is given byNOBd(O)

MO
. To have

an output rate of at least the maximum utilized bandwidth
of the tape drive, the disk buffer must support concurrent
retrieval of at leastdNO

MO
e subobjects. For each tape drive,

the minimum number of required disk drives for buffering
is NO + dNO

MO
e ×MO.

Video uploading from the tape drive is first stored in the
disk array. The playback of the video object can start when
the cluster of disk drives for uploading does not overlap
with the cluster of disk drives of the first subobject. Hence,
the minimum delay,d, of the disk buffer is defined as the
smallest integern such that∀0 ≤ i < MO, (nk + i) mod ≥
MO. The stridek should be carefully chosen to minimize
the disk buffer delay and improve the overall response time
of the storage server.

6 Performance evaluation

We evaluate the the performance of the scheduling algo-
rithms for two values of the tape drive bandwidth, 6 MB/s
and 15 MB/s, by computer simulation. We assume that (1)
each tape contains only one object, and hence the search
time of each request is 0 s and (2) a request never waits
for a tape. Since frequently accessed objects are kept in disk
drives, the probability that a request has to wait for a tape
which is being used to serve another request is very low

9 For this time slice, the tape switch overhead is about 10–15% of the
tape drive bandwidth

320

Table 3. Simulation parameters

Parameter Case 1 Case 2
Tl 5 s 5 s
Te 5 s 5 s
Tr 12 s 12 s
Ts 0 s 0 s
Tu 10 s 10 s
Bt 6 MB/s 15 MB/s
Bd(O) 2 MB/s 2 MB/s

10. Hence, the second assumption causes negligible errors in
the simulation results. We assume that the disk contention
between disk reads (generated by the playback of objects)
and disk writes (generated by the upload of objects) is re-
solved by delaying disk writes [13] as follows. A fragment
uploaded from the tape is first stored in the memory buffer
and written into its storage disk in an idle period of the disk.
This technique smoothes out the bursty data traffic from the
disk subsystem, and hence improves request response time.
In practice, the additional memory buffer space required by
this technique is small, because the aggregate transfer rate
of the tape subsystem is much lower than that of the disk
subsystem [13]. The storage size of each object is uniformly
distributed between 7200 and 14 400 MB. Table 3 shows the
major simulation parameters. The results are presented with
95% confidence intervals, where the length of each confi-
dence interval is bounded by 1%.

6.1 Single tape drive

We first study the performance of the algorithms in a system
with one robot arm and one tape drive. Here, the request
arrival process is Poisson.

Case 1.Tape drive bandwidth = 6 MB/s.

The maximum throughput of the tape subsystem is 1.95
requests/hour. Table 4 presents the average response time
of the FCFS, SJF, RR, and LS algorithms. Blank entries
in the table show that the tape subsystem has reached the
maximum utilization and the system cannot sustain the input
requests. The efficiency of RR and LS algorithms is defined
as the percentage of time spent in data transfer. An efficiency
of 90% means that 10% of time is spent in tape switches.
We define the relative response time to be the ratio of the
scheduling algorithm response time divided by the FCFS
algorithm response time. The relative response times of the
SJF, RR, and LS algorithms are shown in Fig. 7.

Case 2.Tape drive bandwidth = 15 MB/s.

The maximum throughput of the tape subsystem is 4.72
requests/h. Here, we consider a tape subsystem with a higher
performance tape drive. The average response time of the
FCFS, SJF, RR, and LS algorithms are shown in Table 5.
Again, those blank entries in the table represent a case where
the tape subsystem has reached the maximum utilization and
the system cannot sustain the input requests. The relative
response time of RR and LS algorithms is shown in Fig. 8.

10 The probability is in the order of 0.001 for the parameters of the
simulation

Fig. 7. The relative response time of SJF, RR, and LS scheduling algorithms

Fig. 8. Relative response time of SJF, RR-1, RR-2, and LS algorithms

In both cases, the LS algorithm has the best performance
in a wide range of request arrival rates. The simulation re-
sult shows that the time slice algorithm (especially the LS
algorithm) performs better than the FCFS algorithm and the
SJF algorithm under a wide range of request arrival rates.
The SJF algorithm performs better than the FCFS algorithm
for all request arrival rates.

6.2 Multiple tape drives

Previous experiments have shown that LS and RR algorithms
outperform the FCFS and SJF algorithms in a wide range of
load conditions. We study the effect of robot arm contention
of the LS algorithm in this experiment.

The system contains four tape drives which have a band-
width of 15.0 MB/s. The maximum throughput of the tape
subsystem is 18.90 requests/h. The results are shown in Ta-
ble 6. A plot of the relative response time vs arrival rate is
shown in Fig. 9.

321

Table 4. Response time vs request arrival rate

Req. arr. FCFS SJF RR-1 RR-1 RR-1 LS LS LS
rate (E=0.9) (E=0.8) (E=0.7) (E=0.9) (E=0.8) (E=0.7)
(req./h) (s) (s) (s) (s) (s) (s) (s) (s)

0.05 40.23 40.14 19.62 18.06 17.75 18.88 17.28 17.14
0.10 67.43 66.85 26.94 24.29 24.71 23.50 21.04 22.45
0.20 126.02 123.64 48.25 45.36 50.07 36.25 33.90 42.41
0.40 264.74 254.32 125.44 131.82 164.58 79.43 89.10 134.73
0.60 441.67 420.36 264.15 306.79 425.61 172.18 217.71 355.05
0.80 680.54 638.91 488.36 644.61 996.54 344.34 500.21 878.12
1.00 1022.84 936.15 867.36 1323.80 2426.81 652.23 1059.95 2069.68
1.20 1512.06 1371.47 1666.01 2797.85 7412.91 1338.12 2391.70 6950.47
1.40 2397.93 2089.88 3257.67 7922.88 2991.30 6867.68
1.60 4376.38 3537.21 8725.85 7767.43

Table 5. Response time vs request arrival rate

Req. arr. FCFS SJF RR-1 RR-1 RR-1 RR-2 RR-2 RR-2 LS LS LS
rate (E=0.9) (E=0.8) (E=0.7) (E=0.9) (E=0.8) (E=0.7) (E=0.9) (E=0.8) (E=0.7)
(req./h) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)

0.5 61.55 60.68 32.12 24.43 21.67 30.84 23.38 20.83 30.73 23.31 20.77
1.0 119.66 115.90 55.14 38.15 33.56 48.91 33.07 29.16 48.77 32.84 27.89
1.5 196.54 186.81 89.35 60.98 64.17 71.21 46.10 50.80 70.73 46.10 43.39
2.0 298.70 280.84 145.82 110.13 163.25 104.66 75.62 132.80 106.30 73.92 102.24
2.5 447.42 410.77 250.22 226.21 500.59 162.93 171.68 466.91 169.01 170.92 380.94
3.0 669.852 604.58 470.40 695.71 2294.71 314.68 547.31 2290.34 340.19 531.41 1961.64
3.5 1111.92 937.85 1029.00 2554.95 817.91 2664.21 837.57 2595.05
4.0 2030.96 1664.11 3262.76 3049.79 3152.80

Fig. 9. Relative response time of the SJF and LS algorithms

Fig. 10. Maximum throughput of the FCFS, SJF, and LS algorithms

Fig. 11. Maximum throughput of the FCFS, SJF, and LS algorithms

322

Table 6. Multiple tape drives case: response time vs request arrival rate

Request arrival rate FCFS SJF LS (E=0.9)
(request/h) (s) (s) (s)
2.0 19.19 19.18 15.13
4.0 25.11 25.02 16.22
6.0 36.05 35.60 20.60
8.0 55.44 54.25 31.38
10.0 88.17 85.49 54.82
12.0 143.39 137.40 103.21
14.0 241.68 227.33 205.39
16.0 444.21 409.57 605.13

In this simulation experiment, we found that, for the large
range of request arrival rates, the utilization of the robot arm
is very small. For example, the robot arm utilization is only
0.215 when the request arrival rate is 14.0 requests/h. Hence,
the effect of robot arm contention is not a major factor in
determining the average response time.

6.3 Throughput under finite disk buffer

In this section, we study the maximum throughput of the
FCFS, SJF, and LS algorithms with finite disk buffer space.
The maximum throughput of the scheduling algorithm is
found by a close-queueing network in which there are 200
clients and each client initiates a new request immediately
after its previous request has been served. Hence, there are
always 200 requests in the system. The maximum throughput
of the LS, FCFS, and SJF algorithms are evaluated for Cases
1 and 2. In each case, the size of each disk buffer is chosen
to be large enough to store the data uploaded from a tape
drive in one time slice. The efficiency of the LS algorithm is
chosen to be 0.9, and therefore, the time slice is 300 s. The
disk buffer sizes of Case 1 and 2 are 1.582 GB and 3.955 GB,
respectively. The results for Case 1 and Case 2 are shown in
Figs. 10 and 11, respectively. From the figures, we observe
that the LS algorithm has much higher throughput (in some
cases, we have 50% improvement) than the FCFS and SJF
algorithms in a wide range of number of disk buffers. The
throughput of each algorithm grows with the number of disk
buffers, but the LS algorithm reaches its maximum possible
throughput with about half of the buffer requirement that
the FCFS algorithm needs to achieve its maximum possible
throughput. The SJF algorithm performs slightly better than
the FCFS algorithm. The FCFS (or SJF) algorithm performs
better than the LS algorithm for about 10% when the disk
buffer space is large enough.

6.4 Discussion of results

The results show that the LS and RR algorithms outper-
form the conventional algorithms (FCFS and SJF) in a wide
range of request arrival rates. In all the cases, the LS algo-
rithm with 90% efficiency outperforms the FCFS algorithm
and the SJF algorithm when the request arrival rate is below
60% of the maximum throughput of the tape subsystem. The
conventional algorithms have a better response time when
the request arrival rate is quite high (above 70% of the max-
imum throughput of the conventional algorithms). For the

LS or RR algorithm, the algorithm performs better with a
lower efficiency factor at low request arrival rate and better
with a higher efficiency factor at high request arrival rate.
The results also show that the relative response time of the
LS and RR algorithms reach a minimum at certain request
arrival rates. This is because the response time is the sum
of the waiting timeW and the tape switch timeH. At low
request arrival rate,H is the major component of the re-
sponse time. As the request arrival rate increases from zero,
the waiting time of the conventional algorithms grows faster
than that of the LS and RR algorithms, because the LS and
RR algorithms can serve several requests at the same time,
and hence reduce the possibility of waiting for available tape
drive. Therefore, the relative response time of the LS and
RR algorithms decreases with the increase of request arrival
rate when the request arrival is low. When the request ar-
rival rate is high enough, the waiting time of LS and RR
algorithms becomes higher than that of the conventional al-
gorithms, because the conventional algorithms have a better
utilization of the tape drive bandwidth which covers the high
load conditions.

7 Concluding remarks

In this paper, we have proposed a cost-effective near-line
storage system for a large-scale multimedia storage server
using a robotic tape library. We have studied a class of
novel time slice scheduling algorithms for the tape subsys-
tem and have shown that under light-to-moderate workload,
this class of tape-scheduling algorithm has better response
time and requires less disk buffer space than the conven-
tional algorithm. Also, we have complemented our work to
the proposed Staggered Striping architecture [4], and showed
that, using our proposed scheduling algorithms, how we can
organize the data layout on disks and tape cartridges for
concurrent upload and display of large multimedia objects.

From the performance results, the selection of the time
slice value is often more important than the choice of the
time slice algorithm used. If the request arrival process is
known in advance (i.e., the average request arrival rate and
the inter-arrival time distribution are known), the time slice
value can be adjusted by using precomputed results (obtained
by either analytical methods or simulations). In practical sit-
uations, the request arrival process is usually not known in
advance. One simple method that can be used is to adjust
the time slice value according to the length of the queue of
waiting requests, i.e., a larger time slice value is required
if the length of the queue is longer. The function from the
queue length to the time slice value can be predetermined by
empirical studies. In general, the optimal time slice value de-
pends on the request arrival process, the number of requests
waiting for service, and the states of the currently active
requests. Further work is required to find the best way to
determine the optimal time slice value.

Acknowledgements.This research was supported by the UGC Earmarked
Grant.

323

References

1. The Ampex DST800 Robotic Tape Library Technical Marketing Doc-
ument (1994)

2. Anderson DP, Osawa Y (1992) A file system for continuous media.
ACM Trans Comput Syst 10(4): 311–337

3. Beakley GW (1991) Channel coding for digital HDTV terrestrial broad-
casting. IEEE Trans Broadcasting 37(4): 137–140

4. Berson S, Ghandeharizadeh S, Muntz RR, Ju X (1994) Staggered strip-
ing in multimedia information systems. In: Proceedings of ACM SIG-
MOD Conference, pp 79–90

5. Berson S, Golubchik L, Muntz RR (1995) A fault-tolerant design of
a multimedia server. In: Proceedings of ACM SIGMOD Conference,
pp 364–375

6. Chervenak AL (1994) Tertiary Storage: An evaluation of new applica-
tions. Ph.D. dissertation, Computer Science Department, University of
California at Berkeley

7. Gemmell DJ, Christodoulakis S (1994): Principles of delay-sensitive
multimedia data storage and retrieval. ACM Trans Inf Syst 10(1): 51–
90

8. Ghandeharizadeh S, Shahabi C (1994) On multimedia repositories, per-
sonal computers, and hierarchical storage systems. In: Proceedings of
2nd ACM Multimedia Conference, pp 407–416

9. Golubchik L, Muntz RR, Watson RW (1994) Analysis of striping
techniques in robotic storage libraries. UCLA Technical Report CSD-
940014

10. Hodge W et al (1993) Video on demand: architecture, systems, and
applications. SMPTE J, pp 791–803

11. Kienzle M et al (1995) Using tertiary storage in video-on-demand
servers. In: Proceedings of COMPCON ’95, pp 225–233

12. Lougher P, Shepherd D (1993) The design of a storage server for
continuous media. Computer J 36(1): 32–42

13. Lau SW, Lui JCS (1996) Scheduling and replacement policies for a
hierarchical multimedia storage server. In: Proceedings of the Interna-
tional Symposium on Multimedia Systems, pp 68–75

14. Mok AK, Dertouzous MLL (1978) Multiprocessor scheduling in a hard
real-time environment. In: Proceedings of the 7th Texas Conference on
Computing Systems

15. Patterson D, Gibson G, Katz R (1988) A case for redundant arrays
of inexpensive disks (RAID). In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp 109–116

16. Rangan PV, Vin HM (1993) Efficient storage techniques for digital
continuous multimedia. Trans Knowl Data Eng, pp 564–573

17. Rangan PV, Vin HM (1992) Designing an on-demand multimedia ser-
vice. IEEE Commun Mag 30(7): 56–65

18. Stallings W (1995) Operating Systems. Prentice-Hall, Englewood
Cliffs, N.J.

19. Vin HM, Rangan PV (1993) Designing a multi-user HDTV storage
server. IEEE J Select Areas Commun 11: 153–164

Siu-Wah Lau received his B.Sc. and
M.Phil. in Computer Science from The
University of Hong Kong in 1988 and
1991 respectively. He received his M.Sc.
in Computer Science from UCLA in
1993. Currently, he is a PhD candidate
in the Department of Computer Science
and Engineering, The Chinese Univer-
sity of Hong Kong. His research inter-
ests include distributed multimedia sys-
tems and computer networks.

Dr. John Chi-Shing Lui received his
Ph.D in Computer Science from UCLA
in 1991. He then joined a team in the
IBM Almaden/San Jose and participated
in a research and development of a paral-
lel I/O architecture project. He also par-
ticipated in the parallel database project
in IBM Yorktown Research Laboratory.
In the summer of 1993, he joined the
Department of Computer Science and
Engineering in the Chinese University
of Hong Kong. His current research in-
terests are distributed multimedia sys-
tems, distributed mobile computing sys-
tems, parallel and distributed database
systems, communication networks and

performance evaluation theory.

