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Abstract— Capacity planning and sales projection are essential
tasks for network operators. This work aims to help network
providers to carry out network capacity planning and sales pro-
jection by answering: Given topology and capacity, whether the
network can serve current flow demands with high probabilities?
We name such probability as the “flow availability”, and present
the flow availability estimation (FAVE) problem with generalizing
the classical network connectivity based and maximum flow based
reliability estimations. To quickly estimate flow availabilities, we
utilize correlations among link and flow failures to figure out the
importance of roles played by different links in flow failures (i.e.,
flow demands could not be satisfied). And we design three sequen-
tial importance sampling (SIS) estimation methods, which are: (1)
Accurate and efficient: They achieve a bounded or even vanishing
relative error with linear computational complexities. Hence they
can provide more accurate estimations in less simulation time. (2)
Robust and scalable: They maintain such estimation efficiencies
even if only a partial SEED set information is available, or
when the FAVE problem is extended to the multiple flows case.
When applying to a realistic backbone network, our method can
reduce the flow availability estimation cost by 900 and 130 times
compared with MC and baseline IS methods; and also facilitate
capacity planning and sales projection by providing better flow
availability guarantees, compared with traditional methods.

Index Terms— Flow availability estimation, sequential impor-
tance sampling (SIS), capacity planning.

I. INTRODUCTION

NETWORK capacity planning is the process of ensur-
ing sufficient bandwidth is provisioned so that service-

level agreement (SLA) objectives like delay, jitter, loss, and
routing availability can be satisfied [1]. To provide a better
end-user experience and at the same time, keeping the oper-
ating cost at an affordable level, effective capacity planning
tools are attracting network providers’ attentions. Various
systems have been built around this problem, such as Cisco’s
MATE [2], Facebook’s Prophet [3], Juniper’s WANDL [4],
and Google’s backbone network capacity planning tool [5].

SLA objectives mentioned above are called the demand of
traffic flow, and the demand satisfaction probability is defined
as the flow availability. One key concern for capacity planning
is in analyzing the effect of network changes or the arising of
new flows on the flow demand satisfaction [2]. To illustrate,
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consider the example in Fig. 1 where a network provider needs
to serve two flows. In the network, each link i is associated
with a failure probability p=0.001 and a capacity ci; also,
flow routing follows the max-min fairness and shortest path
policies. Each flow has a bandwidth demand and an availability
target specifying the lower bound probability that its requested
bandwidth needs to be satisfied. The network provider may
want to perform:

• Flow availability testing: Whether the flow availability
targets can be achieved? For example, flow 1’s availability
target is achieved if flow 1 obtains 10 units of bandwidth
with a probability of no less than 0.9999.

• Capacity planning: To improve the network, should the
provider add more links between node A and B, or add
a new node D so to increase the path diversity?

• Sales projection: To increase the profit, can the provider
admit a new flow or upgrade flow 1’s bandwidth quota by
20 units, while maintaining flow availability guarantees?

All the above cases need flow availabilities, in order to check
whether the network is able to serve the flow demands propo-
sed by sales projection, with the given flow availability targets.
We name this flow availability estimation problem as FAVE,
and we give a formal definition later.

Realistic networks are often large and with intricate failure
patterns, making flow availabilities unable to be evaluated
analytically, especially when also taking the traffic scheduling
into account. Hence, simulation (or sampling) is often used.
Among various sampling methods for FAVE, the Monte Carlo
(MC) method [6], which simulates link failures with their
nature probabilities, is the most widely used. Yet, it is costly
for MC to achieve the desired accuracy: The variance results in
Table I implies that, in the example of Fig. 1, to estimate flow
2’s availability with guaranteeing the 95% confidence interval
(CI) width below 10−3, MC takes at least 3,840 simulation
steps. To simulate a large realistic network with many flows,
where even a single step is expensive and can take hours, it
is important to find ways to reduce the simulation steps.

The flow availability estimation can be more efficient if
flow failures (i.e., flow demands could not be satisfied) hap-
pen more frequently by taking a proper distribution to simulate
link failures, which is the central idea of importance sampling
(IS) [7]. In general, designing an efficient IS distribution is
highly challenging and problem-dependent. In the case of
FAVE, we first introduce a baseline IS solution, where we use
“the correlation between link failures and flow failures” to
decide important links whose failures are more likely to result
in flow failures. Specifically, consider the links that frequently
fail at the same time when flow fails (e.g., link 1, 4 and 5),
we simulate their failures more often to speed up simulating
flow failures.
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TABLE I

ACCURACY, EFFICIENCY, AND COMPUTATIONAL COST (I.E., SIMULATION STEPS) COMPARISON

Fig. 1. An example of the FAVE problem.

To further improve upon the baseline IS, we show that some
link sets fail more often and play a role of root causes of flow
failures. We name such a link set as SEED, and introduce our
SEED based sequential importance sampling (SIS) solution,
where we use “the correlation among link failures” captured
by SEEDs to decide important link sets whose failures are
more likely to result in flow failures. Specifically, consider the
link sets that appear more frequently in observed failures of
SEEDs are important. We propose three SEED algorithms, in
which the SEED-VRE algorithm has vanishing relative error
(VRE) and linear computational complexity. Table I illustrates
the computational reduction of our method: With only 10
simulation steps, SEED-VRE achieves much smaller empirical
variance and estimation error than MC with 10,000 simulation
steps. For a large and complex network, where each simulation
step can take hours, this implies the network operator can
either significantly speed up simulations, or get more accurate
flow availability estimations without incurring additional costs.

We emphasize that the flow availability estimation is crucial
to both capacity planning and sales projection: In capac-
ity planning, for flows with unachievable availability tar-
gets, we show that allocating more capacities for the important
links determined by our method would bring a better flow
availability improvement, compared with the classical methods
to allocate more capacities for links with high bandwidth uti-
lizations; In sales projection, for flows with flow availabilities
far exceeding the availability targets, we allow such flows to
request more bandwidth, which results in higher total sales.
Contributions: Our key contribution is in providing efficient
and accurate solutions for FAVE. Contributions include:

• We generalize the classical network reliability estimation
problem [8]–[14], and formally define the network Flow
AVailability Estimation (FAVE) problem.

• For the single flow case, we introduce a novel concept
of SEED and propose three advanced SIS algorithms that
have attractive properties of bounded relative error (BRE)
or VRE with only linear computational complexities.

• For the multiple flow case, we offer a mixture SIS method
which maintains BRE property and linear computational
complexity when estimating availabilities for all flows.

• For the partial SEED set information case, we maintain
BRE and VRE properties of flow availability estimations.

• Extensive results show that our methods greatly speed up
the flow availability estimation. Compared with the MC
and baseline IS, our SEED-VRE can: 1) Reduce variances
by 360,000 and 7,000 times in the single flow case, and
200,000 and 7 times for 80% flows in the multiple flow
case, if given an illustrative network and full SEED sets
or partial SEED sets with good coverage; 2) Reduce
simulation cost by 900 and 130 times for 80% flows in
the multiple flow case, if given a realistic network and
partial SEED sets with poor coverage.

• We demonstrate our methods facilitate capacity planning
by giving more accurate network reliability evaluations
compared with classical methods, and higher flow avail-
ability improvements compared with solely using the link
capacity utilization information. Also, our methods can
facilitate sales projection by providing flow availability
guarantees even if flows demand more bandwidth, and
this results in higher total sales.

Organizations: Section II introduces related work. Section III
formally defines the FAVE problem. In Section IV, we offer a
baseline IS solution for FAVE and show its error bounds, then
we introduce SEED and present SEED based SIS solutions
with better error bounds and linear computational complexi-
ties. Section V considers more practical issues, e.g., the multi-
ple flow case and partial SEED set information case. In Section
VI, we evaluate our methods on both an illustrative network
and a realistic network, i.e., the Abilene network [15]. Section
VII shows the utility of our methods in capacity planning and
sales projection. Finally, Section VIII concludes.

II. RELATED WORK & PRELIMINARIES

We note that our work is a generalisation of previous work
in estimating the network reliability [8]–[14]. Here, we briefly
review previous relevant studies on the network reliability esti-
mation (NRE) and compare them with our work.

A. Network Reliability Estimation

The most relevant literatures to our work focus on evaluating
network reliability. To design reliable networks, it is nec-
essary to measure the impact of network failures (e.g., link
failures) on network performances [16]. It is known that the
exact computation of network reliability is #P-complete, and
computational complexities of all known algorithms are expo-
nentially increasing with the graph scale [17]. This makes the
problem intractable even for medium-sized networks. Hence,
most work on NRE considers sampling methods to provide
reliability estimations, and they can be classified into “network
connectivity” based and “maximum flow” based.
Network connectivity reliability (NCR): This metric is a clas-
sical reliability measure adopted by most work [8]–[11]. The
network is modeled as a graph where links are either failed or
operational, and NCR is measured by the probability that a
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given set of nodes are connected when links fail with given
probabilities. Authors in [8] take network repair policies (i.e.,
immediate repair and delay repair) into consideration to model
link failures, and estimate NCR with the classical MC. Authors
in [9] combine MC with the particle swarm optimization to
handle the NCR problem. To improve the efficiency of MC,
authors in [10] apply the IS method and use pre-computed
“graph minimal cuts” to approximate the optimal IS estima-
tor. Authors in [11] extend the NCR problem to the multi-
layer networks, and address it by generalizing the traditional
minimal cut to the “cross layer minimal cut”.
Maximum flow reliability (MFR): Another line of work
[12]–[14] generalizes the NCR problem by considering link
capacities: link capacities are determined by link statuses, i.e.,
operational, failed or partially failed, which follow certain pro-
bability distributions. Given one source and one sink, MFR is
defined as the probability that the maximum flow, i.e., the
maximum achievable bandwidth from the source to the sink,
is above a given threshold. Authors in [12] assume link
capacities are continuous and apply the MC splitting method
for the MFR estimation. Authors in [13] follow the idea of
permutating MC and assume all links fail at the beginning and
each one of them gets repaired after a random time according
to the link failure distributions. Authors in [14] assume that
all graph minimal cut sets are pre-computed and they consider
estimating MFR with the order minimal cut sets.
Other reliabilities: Other metrics used include the connection
availability [18] and service availability [19] considering the
probability that a connection or service is available. Authors in
[18] evaluate the connection availability by computing the con-
nection probability of a small subset of nodes exactly. In [19],
the service availability is evaluated by using IS to estimate
path availabilities. However, works in [18], [19] are essentially
the same with the NCR related work: the problems studied in
[18], [19] can be transformed to a problem of determining the
connectivity of certain nodes, given the network topology.

Next, we analyse how our work differs from the above clas-
sical works.

B. Comparisons With Classical Reliability Estimation Work

We consider the “flow availability” as our reliability mea-
sure. We first give the definition of the flow demand.

Definition 1: The “demand” of flow f is the quality of ser-
vice(QoS) requirements decided by the SLA objective of f .

The flow demand can be, for instance, bandwidth demand,
latency demand or packet loss demand, which specifies f ’s
QoS requirement on bandwidth, transmission latency or packet
loss when considering different SLA objectives. To be concrete
and so easier to understand, we take the bandwidth demand
as an example, and the following analysis works the same for
other demands. We define the flow availability as:

Definition 2: Given topology information, flow information,
routing policy and resource allocation policy, the “flow avail-
ability” of f is the probability that f ’s demand is satisfied.

Our methods have the following advantages compared with
the state-of-the-art methods:

• The flow availability can be applied to evaluate
both NCR, given all links have unlimited capacities, and
MFR, given the network contains only one flow. Yet,
neither NCR nor MFR can address FAVE. To illustrate,
consider the example in Fig 1.If link 1 fails, the network
is still connected but neither flow 1 nor 2’s demands can
be satisfied. Also, the maximum flow from A to B still

achieves 10 units, but it does not imply flow 1 succeeds:
The success of flow 1 depends both on resource allocation
and routing policies and other competing flows.

• Flow availability can be applied to evaluate not
only the reliability of network designs, including topology
design and capacity planning, but also the feasibility of
sales projection. In contrast, NCR only applies to the
topology design evaluation and MFR only applies to
the capacity planning evaluation, for they utilize solely
the (partial) topology information. We demonstrate this
with detailed examples in Section VII.

To summarize, FAVE generalizes the NCR and MFR estima-
tions and considers a more realistic problem setting. Moreover,
it can be applied to evaluate impacts of more factors, e.g., the
network topology, capacity and flow information on network
performances, and provides more accurate evaluation results.
The detailed comparisons can be found in Table II. In the next
section, we briefly describe how to address NRE problem with
sampling methods and formally define the FAVE problem.

III. PROBLEM DEFINITION

We first introduce the classical NRE problem and discuss
how to address it with sampling methods. Then we extend the
classical NRE problem and formally define the FAVE problem.
We summarize important notations in Table III.

A. Sampling Methods for Network Reliability Estimations
We briefly describe how to apply sampling methods to esti-

mate network reliabilities.
Network reliability estimation problem: Let the network be
modelled as a directional multigraph G!(V,E) with Nv

nodes in the node set V and Nl links in the link set E.
Each link ei∈E is associated with a tuple (pi, ci, xi) with
a small probability pi to represent ei’s failure probability,
a capacity ci, and a status xi, where xi=1 (xi=0) means
ei fails (succeeds). Let ppp={p1,..., pNl}, ccc={c1,..., cNl} and
xxx={x1,..., xNl} be the failure probability, capacity and status
across all links, respectively.Note that different links’ statuses
are statistically independent. We consider that ppp and ccc are
known, and the generation of xxx follows the distribution p(xxx)
induced by ppp. There are 2Nl possible realisations of xxx, which
is huge for a large realistic network.

Let R be the indicator function of some interested event A.
According to the reliability definition, A can refer to the event
that a subset of nodes are unconnected, or the maximum flow is
below the required threshold, or as the example scenario con-
sidered in this work, the flow demand is unsatisfied. Given link
statuses described by xxx, R(xxx)=1 if A is observed and R(xxx)=0
vice versa. The network unreliability, i.e., the occurrence prob-
ability of A, can be computed via the following integral in the
discrete measure space:

µ=Ep [R(xxx)] =
∫
R(xxx)p(xxx)dxxx, (1)

where Ep[·] means taking the expectation over distribution
p(xxx). Then, the network reliability can be obtained by 1−µ.
Monte Carlo (MC) simulation: The MC simulation draws the
link statuses xxx independently from p(xxx) and estimate µ with
the following MC estimator:

µ̂MC=
1
N

∑N
k=1 R(xxx(k)), (2)

where N is the number of simulation steps and xxx(k) is the kth
generated link statuses. As MC generates link statuses by true
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TABLE II

A COMPARISON BETWEEN CLASSICAL NETWORK RELIABILITIES AND FLOW AVAILABILITY

TABLE III

IMPORTANT NOTATIONS

link failure probabilities p(xxx) (which can be small), it is rare to
observe link failures, and even rarer to observe A. This implies
that we need a large N to gain the desired accuracy, which is
expensive for an extensive network where even simulating R
on a single sample xxx can take hours.
Importance sampling (IS): To improve the efficiency of MC,
IS changes the sampling distribution p(xxx) to increase the occur-
rence of event A, and assigns each sample xxx a weight to
recover the unbiasedness. Specifically, it replaces Eq. (1) by:

µ=Ep[R(xxx)] =
∫
R(xxx)

p(xxx)
q(xxx)

q(xxx)dxxx=Eq

[
R(xxx)

p(xxx)
q(xxx)

]
, (3)

where q(xxx) is the “importance distribution”. For convenience,
denote ω(xxx)=p(xxx)/q(xxx) as the weight. Therefore, the above
expectation is estimated by the IS estimator:

µ̂IS= 1
N

N∑
k=1

R(xxx(k))p(xxx(k))
q(xxx(k))

= 1
N

N∑
k=1

R(xxx(k))ω(xxx(k)). (4)

Estimator efficiency evaluation: The efficiency of an estima-
tor is often measured by its “variance”. Take the MC estimator
as an example, its variance is given by:

Vp [µ̂MC] =
1
N

Vp [R(xxx)] =
1
N

(µ−µ2), (5)

where Vp[·] means taking the variance over distribution p(xxx).
The IS estimator’s variance can be expressed as:

Vq [µ̂IS] =
1
N

Vq [R(xxx)ω(xxx)] =
1
N

(
Ep [R(xxx)ω(xxx)]−µ2

)
. (6)

Note that the MC estimator is a special case of the IS estimator,
given p(xxx)=q(xxx), ∀xxx. Define σ2

q=Vq[R(xxx)ω(xxx)] as the “one-
run variance” of the IS estimator. To achieve a desired estima-
tion accuracy, the CI width should be bounded by a threshold
δ, i.e., 2ασq/

√
N≤δ, and the simulation cost is N≥ (2ασq/δ)2,

where α is a constant decided by the required confidence level.
Thus, a small and bounded σ2

q implies an efficient estimator.
Zero-variance (ZV) importance distribution: The following
theorem gives an optimal importance distribution q∗(xxx):

Theorem 1 (Zero-variance importance sampling): The
IS estimator in Eq. (4) can achieve zero-variance, i.e, σ2

q=0,
if the importance distribution q(xxx)=q∗(xxx) where:

q∗(xxx)=P [xxx|R(xxx)=1] . (7)

Proof: One can verify this by plugging q(xxx)=q∗(xxx) into the
integral form of σ2

q . The detailed proof is in Appendix A.
Remark: Although the ZV property implies a minimum sim-

ulation cost, a procedure to construct such a q∗(xxx) with
the ZV property often has a high computational requirement.
Hence, the key of designing an efficient IS estimator lies in
closely approximating q∗(xxx) with a manageable computational
cost. As for different applications and problem definitions,
the auxiliary information we can utilize and the way to approx-
imate q∗(xxx) are different, designing efficient IS estimators are
highly challenging and problem-dependent.

B. The Flow Availability Estimation (FAVE) Problem

Based on the network reliability estimation problem defined
in Section III-A, we now give a formal definition of the FAVE
problem. Consider the network G(V, E) with topology infor-
mation ppp, ccc and xxx. We consider a flow set F with Nf flows
where each flow fi∈F is associated with a tuple (si, ti, di, oi)
specifying fi’s source si, destination ti, demand di and avai-
lability target oi. We also define the following:

Definition 3: A flow fails (succeeds) if its demand is unsat-
isfied (satisfied), e.g., the allocated bandwidth cannot (can)
support its bandwidth demand.
We redefine the function R to indicate the interested flow fails
(R=1) or succeeds (R=0), i.e.,:

R(·) : (G, F, D, B) → {0, 1}, (8)

where G represents the topology information, including a tuple
(ci, xi) for every link ei∈E; F represents the flow infor-
mation, including a tuple (si, ti, di) for every flow fi∈F ;
D and B represent the underlying routing and resource
allocation policies, e.g., shortest path policy and max-min
fairness policy. We assume all information in (G, F, D, B) is
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known, except the link statuses described by xxx. To simplify
the expression, let:

R(·) : xxx → {0, 1}. (9)

Namely, given all the other information, R only depends on xxx,
which follows the link failure distribution p(xxx) induced by ppp.

Similar to Section III-A, for a specific flow, the unavailabil-
ity µ can be computed via Eq. (1), and the availability is 1−µ.
The goal is to evaluate availabilities for (all) flows in F . Yet,
the complexity of function R and the high dimensionality of
the topological space make it already expensive to compute
R(xxx) for a single xxx, let alone to evaluate µ analytically. One
alternative is to estimate µ via simulations. And we want to
reduce the simulation steps, i.e., the times to compute R(xxx).
We name the network flow availability estimation problem as
“FAVE". And we show it generalizes the classical network
reliability estimation problem [8]–[14] by the following:

Theorem 2: The FAVE problem generalizes both the net-
work connectivity based and the maximum flow based net-
work reliability estimation problems.

Proof: The network connectivity based case corresponds to
FAVE with ci=∞ for ∀i. And the maximum flow based case
corresponds to FAVE with Nf=1. Proofs are in Appendix B.

In Section II-C, we explain how the one-run variance σ2

reflects the simulation cost and estimation accuracy. In addi-
tion to measuring the estimation efficiency with σ2, we also
consider two attractive error bound properties: the bounded
relative error and vanishing relative error [10].

Definition 4 (Bounded Relative Error): An estimator with
expectation µ and variance σ2/N has the bounded relative
error (BRE) property if σ=O(µ), i.e., the coefficient of
variation (CV) εCV!σ/µ satisfies limµ→0 εCV<∞.

Definition 5 (Vanishing Relative Error): An estimator with
expectation µ and variance σ2/N has the vanishing relative
error (VRE) property if σ=o(µ), i.e., limµ→0 εCV=0.

Remark: Take the MC estimator in Eq. (2) as an example,
the variance of MC is σ2/N=(µ−µ2)/N , i.e., σ=O(√µ). This
implies that MC satisfies neither BRE nor VRE property. Also,
note that the VRE property is stronger than the BRE property.

In the following, we will discuss how to design estimation
methods which have above properties.

IV. ALGORITHM DESIGN

We first describe our design to address the FAVE problem
under “the single flow case”. We start with a baseline IS design
to gain insights for efficient sampling with good error bounds.
Then we propose our SEED methods.

A. A Baseline Importance Sampling Design
1) ZV importance distribution approximation: It seems easy
to design an IS estimator as long as we can well approximate
q∗(xxx) in Eq. (7). Yet, the following discussion reveals that this is
not an easy task. We take the KL divergence to measure the
similarity between q∗(xxx) and its approximation q(xxx), which is
derived by:

Theorem 3: Assume the optimal importance distribution
q∗(xxx) in Eq. (7) is approximated by a product form distribution:

q(xxx)=
∏Nl

i=1 qi(xi), (10)

then the KL divergence KL(q∗‖q) is minimized when:

qi(xi)=P [xi|R(xxx)=1] . (11)

TABLE IV

AN EXAMPLE FOR THE IS METHOD

Proof: Please see the Appendix C for the detailed proof.
By now, the estimation of P [xi|R(xxx)=1] becomes a new prob-
lem. In fact, even given the exact P[xi|R(xxx)=1] expressions or
values, the performance of this IS method is still not guaran-
teed: minimizing the KL divergence can only lower bound the
estimator’s variance, and the lower bound depends on how well
q(xxx) in Eq. (11) approximates q∗(xxx). To see this, consider the
case where a network has 2 nodes connected by 3 parallel links
with ppp=(0.001, 0.2, 0.001). The flow fails if link statuses
xxx are (1,1,0), (1,1,1) or (0,1,1). By Theorem 3, one possible
importance distribution is qqq=(0.50025, 1, 0.50025). In this
case, we show that q∗(xxx) is not well approximated by q(xxx)
in Table IV.

Remark: The above example illustrates that minimizing KL
divergence cannot provide the IS method a performance guar-
antee: sometimes our chosen q(xxx) can be very different from
q∗(xxx). A major reason is that the baseline IS assumes q(xxx) has
the product form in Eq. (10), i.e., it considers link failures are
independent and ignores correlations among them. We will dis-
cuss how to improve the design of q(xxx) in later sections.
2) Estimation error bound analysis: The variance bounds of
the baseline IS method is given by the following theorem:

Theorem 4: If the IS estimator in Eq. (4) takes q(xxx) in
Eq. (11) as its importance distribution, Vq[µ̂IS] is bounded by:

µ2KL(q∗‖q)
N

≤Vq[µ̂IS]≤
µ2

√
2 log 2KL(q∗‖q )
N minxxx q(xxx)

. (12)

Here q∗ is the optimal importance distribution given by Eq. (7).
Proof: Please see the Appendix D for the detailed proof.
Remark: Although theorem 4 implies that the vari-

ance of baseline IS is upper bounded, this upper bound
can be worse than Vp[µ̂MC] when minxxx q(xxx) is very small: By
Eq. (10) and (11), the minxxx q(xxx) also depends on µ, and as there
are 2Nl realizations of xxx, minxxx q(xxx)≤2−Nl . This motivates us
to seek for more efficient sampling methods with better error
bounds, which we will discuss in details in the next subsection.

B. Conditions for Efficient Sampling

By the previous discussion, the baseline IS assumes the link
importance distributions qi(xi) are independent. This assump-
tion simplifies the problem, but does not conform to reality.
Consider the example in Section IV-A, where P[x3|R=1,x1=1]
greatly differs from P[x3|R=1,x1=0]. This implies the depen-
dence among qi(xi) and the correlation of different links’ sta-
tuses xi cannot be ignored. Next, we propose our “sequential
importance sampling” (SIS) based design and take this corre-
lation into consideration.
1) ZV sequential importance sampling: To capture the corre-
lation of links’ statuses, one possibility is to generate links’
statuses xi “in a sequential manner” (rather than generate xi

independently as the baseline IS). Then each link’s status also
depends on statuses of previous generated links. We first adapt
the ZV importance distribution in Eq. (7) for this sequen-
tial design. Let xxx1:i=(x1, x2, · · ·, xi) be statuses of the first
ith links.
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Theorem 5: For the FAVE problem, the IS estimator
in Eq. (4) achieves the ZV property if the importance distrib-
ution q(xxx)= q∗(xxx) for the SIS estimator, where:

q∗(xxx)=
∏Nl

i=1qi(xxx) and qi(xxx)=
P(R=1|xxx1:i)

P(R=1|xxx1:i−1)
pi(xi). (13)

Proof: Please see the Appendix E for the detailed proof.
Remark: Different from baseline IS, SIS generates

links’ statuses in a sequential manner, which enables its impor-
tance distribution qi(xxx) to capture the correlation of links’
statuses, i.e., links’ importance distributions are dependent.
Note that the generation order will not affect the ZV property
of q∗(xxx), but do matter if one wants to approximate q∗(xxx) more
accurately. We leave the design of link generation order as
a future work and generate links’ statuses according to link
indexes in this work.
2) Conditions for good error bounds: To apply the above SIS
estimator, we need to estimate (or approximate) P[R=1|xxx1:i].
The following theorem states that the above SIS is robust even
if there exists some error when approximating P[R=1|xxx1:i].

Theorem 6 (Conditions for BRE and VRE properties):
The IS estimator in Eq. (4) has the BRE property if
∀i=1, . . ., Nl, P̂ [R=1|xxx1:i] satisfies:

P̂ [R=1|xxx1:i] =O (P [R=1|xxx1:i]) , (14)

and the VRE property if ∀i=1, . . ., Nl, P̂ [R=1|xxx1:i] satisfies:

P̂ [R=1|xxx1:i] =P [R=1|xxx1:i] +o (P [R=1|xxx1:i]) . (15)

Proof: Please see the Appendix F for the detailed proof.
Remark: Theorem 6 gives key guidelines to design sampling

methods with BRE and VRE properties, i.e., the estimation
P̂ [R=1|xxx1:i] should satisfy conditions in Theorem 6.

In the next subsection, we discuss algorithms which approx-
imate P[R=1|xxx1:i] with BRE and VRE properties.

C. SEED Algorithms
1) SEED set and related definition: Before introducing
how to approximate P [R=1|xxx1:i] for the SIS estimator,
we first presentsome definitions used in the later discussion.

Let Ω! {1, . . . , Nl}. Function Ψ(·) and Ψ−1(·) represent the
transformations between link statuses xxx and failed links L⊆Ω:

Ψ(·) : L→xxx, where xi= i∈L, (16)
Ψ−1(·) : xxx→L, where L={i|xi=1}. (17)

Given one interested flow, the collection of all link sets, each of
which the failure can result in flow failure, is denoted by:

F! {L| R(Ψ(L))=1, L⊆Ω} . (18)

Also, let the collection of all supersets of a single link set L be:

span (L)! {L′|L⊆L′⊆Ω} . (19)

Accordingly, for a collection of link sets L= {L}, we have:

span (L)! ⋃
L∈Lspan (L) . (20)

The probability that a link set L fails (i.e., all links in L fail) is:

Φ(L) ! ∏
i∈Lpi=

∑
L′∈span(L)P [Ψ (L′)] . (21)

Definition 6 (SEED): A link set S is called “SEED”
if it satisfies the following conditions:

(1)S∈F ; (2)∀L!S, L +∈F ; (3)∀L⊇S, L∈F .

The collection of all SEEDs is donoted by S.

Algorithm 1 SEED Based ZV Sampling (SEED-ZV)
Input: The collection of SEEDs S
Output: An importance distribution q(xxx) to achieve the ZV prop-

erty and a sample of link statuses xxx.
1: for i=1 to Nl do
2: xi ← 1 and P̂ [R=1|xxx1:i]←0;
3: for all ∅#=A⊆S(xxx1:i) do

4:
P̂ [R=1|xxx1:i]←P̂ [R=1|xxx1:i]

+(−1)|A|−1Φ
S(xxx1:i)∈A

S(xxx1:i) ;

5: Keep xi=1 with qi(xxx)=
P̂(R=1|xxx1:i)

P̂(R=1|xxx1:i−1)
pi;

6: S(xxx1:i)← UPDATECONDSEED(i,xi,S(xxx1:i−1))
7: function UPDATECONDSEED(i,xi,S(xxx1:i−1))
8: if xi = 1 then
9: return S(xxx1:i)← {L\{i}| L∈S(xxx1:i−1)}

10: else
11: return S(xxx1:i)← {L| L∈S(xxx1:i−1), i #∈L}

Definition 7 (Conditional SEED): Let xxx1:i be the sta-
tuses of the first i links. The conditional SEED (cond-SEED
for short) S(xxx1:i) is a link set which satisfies:

(1)S(xxx1:i)⊆{i+1, · · ·, Nl}; (3)∀L!S (xxx1:i) , L∪Ψ−1(xxx1:i)+∈F ;
(2)S(xxx1:i)∪Ψ−1(xxx1:i)∈F ; (4)∀L⊇S (xxx1:i) , L∪Ψ−1(xxx1:i)∈F .

The collection of all cond-SEEDs is denoted by S (xxx1:i).
Examples: We give some examples for the above defi-
nitions. Consider the example in Section IV-A, we have
S={{1},{4,5}}. By the definition of SEED, the failure of
any subset of a SEED, e.g., L={4} or L={5}, will not result
in flow 1’s failure; and the failure of any superset of a SEED,
e.g., L={1,2}, will result in flow 1’s failure. If given the first
four links’ statuses by xxx1:4=(0, 1, 0, 1), there is only one cond-
SEED S(xxx1:4)={5}.

Next, we use the SEED set to capture the correlation of link
failures and approximate P[R=1|xxx1:i] in Theorem 5. We start
with considering the full SEED set (i.e., the collection of all
SEEDs) as input, and we leave the partial SEED set case and
SEEDs collection in the next section.
2) SEED algorithms: Theorem 5 presents the optimal
SIS importance distribution q∗(xxx). We propose the SEED-
ZV algorithmin Algorithm 1 which computes the exact value
of q∗(xxx). When generating xi, SEED-ZV first assumes xi=1
and computes the exact value of P [R=1|xxx1:i] by traversing
all combinations of cond-SEEDs S(xxx1:i)∈S (i.e., lines 3-4).
Then it keeps xi=1 with the probability qi(xxx), and changes
to xi=0 with the probability 1−qi(xxx) (i.e., line 5). To prove
SEED-ZV achieves the ZV property in Theorem 7, we have
the following lemma.

Lemma 1: The estimation P̂ [R=1|xxx1:i] in SEED-ZV satis-
fies P̂ [R=1|xxx1:i] =P [R=1|xxx1:i]. Namely,

P[R=1|xxx1:i]=
∑

A &=∅,A⊆S(xxx1:i)

(
(−1)|A|−1Φ

[⋃
S(xxx1:i)∈A

S(xxx1:i)
])

. (22)

Proof: Please see the Appendix G for the detailed proof.
Theorem 7: If the link statuses xxx are generated by SEED-

ZV, the estimator in Eq. (4) has the ZV property.
Proof: According to Theorem 5 and Lemma 1, the impor-

tance distribution q generated by SEED-ZV satisfies q=q∗.
Namely, SEED-ZV achieves the ZV property.
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Algorithm 2 SEED Based BRE Sampling (SEED-BRE)
Input: The collection of SEEDs S
Output: An importance distribution q(xxx) to achieve the BRE

property and a sample of link statuses xxx.
1: for i=1 to Nl do
2: for xi in {0, 1} do
3: P̂ [R=1|xxx1:i]←maxS(xxx1:i)∈S(xxx1:i)Φ(S(xxx1:i));

4: qi(xi)← P̂(R=1|xxx1:i)

P̂(R=1|xxx1:i−1)
pi(xi);

5: Normalize qi(xxx) by qi(1)← qi(1)
qi(1)+qi(0)

, qi(0)←1−qi(1);
6: Set xi as 1 with probability qi(1) and 0 with probability qi(0);
7: S(xxx1:i)← UPDATECONDSEED(i,xi,S(xxx1:i−1))

Remark: Though SEED-ZV has the ZV property, it is
computationally expensive: as the need for traversing all
combinations of cond-SEEDs S(xxx1:i)∈S for every link ei,
the computational complexity is O(Nl·2|S|).

Note that there is a tradeoff between the estimation
accuracy and computational complexity in estimating the
optimal sampling distribution q∗(xxx). We propose the SEED-
BRE algorithm in Algorithm 2, in which we sacrifices
some estimation accuracy of q∗(xxx) to achieve a lower linear
computational complexity. To generate xi, SEED-BRE
utilizes only probabilities of the most important cond-SEEDs
for estimating P̂ [R=1|xxx1:i] and qi(xxx) (i.e., lines 2-4), rather
than all combinations of cond-SEEDS (i.e., lines 3-4 in
SEED-ZV). To show that SEED-BRE has the BRE property
in Theorem 8, we have the following lemma:

Lemma 2: The estimation P̂ [R=1|xxx1:i] in SEED-BRE sat-
isfies P̂ [R=1|xxx1:i] =O (P [R=1|xxx1:i]). Namely,

maxS(xxx1:i)∈S(xxx1:i)Φ (S (xxx1:i))=O (P [R=1|xxx1:i]) (23)

Proof: Please see the Appendix I for the detailed proof.
Theorem 8: If link statuses xxx are generated using SEED-

BRE, the estimator in Eq. (4) has the BRE property.
By Lemma 2, the sampling distribution in SEED-BRE

satisfies P̂[R=1|xxx1:i]=O
(
P[R=1|xxx1:i]

)
. Then, according to

Theorem 6, we show that SEED-BRE has the BRE property.
Please see the Appendix J for the detailed proof.

Remark: The computational complexity of SEED-BRE is
O(Nl|S|) for the need to traverse all cond-SEEDs in S(xxx1:i)
for each ei. The size of S(xxx1:i) decreases when i increases.

To further improve estimation accuracy, we then propose the
SEED-VRE algorithm in Algorithm 3. The SEED-VRE is
similar to SEED-BRE, except that it utilizes the probability
sum of cond-SEEDs for estimations (i.e., line 3). We next show
that SEED-VRE has the VRE property if link failures are rare.
We first have the following lemma.

Lemma 3: Assume link failures are rare events and the cor-
responding failure probabilities have the form pi=O(ε), where
ε→0, then the estimation P̂ [R=1|xxx1:i] in SEED-VRE satisfies
P̂ [R=1|xxx1:i] =P [R=1|xxx1:i] (1+o(1)). Namely,

∑
S(xxx1:i)∈S(xxx1:i)

Φ(S(xxx1:i))=

P[R=1|xxx1:i]+o(P[R=1|xxx1:i]). (24)

Proof: Please see the Appendix K for the detailed proof.
Next we show that SEED-VRE achieves the VRE property by
the following theorem:

Theorem 9: Consider link failure probabilities are small
and in the form of pi=O(ε), ∀i∈Ω. If link statuses xxx are gen-
erated by SEED-VRE, the estimator in Eq.(4) has the
VRE property.

Algorithm 3 SEED Based VRE Sampling (SEED-VRE)
Input: The collection of SEEDs S
Output: An importance distribution q(xxx) to achieve the VRE

property, and a sample of link statuses xxx.
1: for i=1 to Nl do
2: for xi in {0, 1} do
3: P̂ [R=1|xxx1:i]← S(xxx1:i)∈S(xxx1:i)

Φ(S(xxx1:i));

4: qi(xi)← P̂(R=1|xxx1:i)

P̂(R=1|xxx1:i−1)
pi(xi);

5: Normalize qi(xxx) by qi(1)← qi(1)
qi(1)+qi(0)

, qi(0)←1−qi(1);
6: Set xi as 1 with probability qi(1) and 0 with probability qi(0);
7: S(xxx1:i)←UPDATECONDSEED(i,xi,S(xxx1:i−1))

By Lemma 3, the sampling distribution in SEED-VRE
satisfies P̂[R=1|xxx1:i]=P[R=1|xxx1:i](1+o(1)).

Remark: The computational complexity of SEED-VRE is
also O(Nl|S|), as it needs to traverse all S(xxx1:i), for each ei.

By now, we have three SEED algorithms, i.e., SEED-ZV,
SEED-BRE and SEED-VRE, to compute the importance dis-
tributions of SIS estimator. They can achieve ZV, BRE
and VRE properties respectively, and with the computational
complexities O(Nl·2|S|), O(Nl |S|) and O(Nl |S|) respectively.
However, all above discussions focus on the “single flow case”.
Next, we will generalize our methods to handle multiple flows
and take other practical issues into consideration.

V. PRACTICAL CONSIDERATION

Previous discussions illustrate the effectiveness of our SEED
methods in estimating a single flow’s availability with the full
information of SEED set S. In this section, we take more prac-
tical issues into consideration. First, consider the case that
one needs to provide flow availability estimation for all flows
in the network, of which the amount is at the order of
O(Nv

2). It can be costly to design a “customized” estimator
for each flow and individually estimate their availabilities.
If the designed estimator works for a group of flows, the
computational cost can be reduced significantly. Furthermore,
as SEED methods rely on the SEED set of which may be
difficult to obtain the full information at times, we consider
the case that only a partial information of S is available,
e.g., we only know some frequently observed SEEDs. And
we propose an algorithm to collect the SEED set information.

A. Generalization to Multiple Flows Case

To provide efficient and accurate availability estimations for
a set of flows at the same time, one possibility is to use SEED
methods to design a pure importance distribution q(k)(xxx) for
each flow fk∈F , then take a mixture of these pure distributions
with a strategy M to simulate link failures:

q(xxx)=M(q(1)(xxx), . . . , q(Nf)(xxx)). (25)

To derive such a mixture importance distribution, we take a
weighted sum of these pure distributions:

q(xxx)=
∑

kwkq(k)(xxx),
∑

k wk=1. (26)

Here wk can be viewed as the probability of taking q(k)(xxx) to
generate xxx. Denote µ(k) as fk’s failure probability and (σ(k)

q )2
as the one-run variance when taking q(xxx) to estimate fk’s fail-
ure probability. Next we analyze error bounds of this mixture
sampling strategy, when applying to the multiple flows case.
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Theorem 10: Using the mixture sampling strategy in
Eq. (26) with pure distributions q(k)(xxx) generated by SEED
methods, the IS estimator achieves the BRE property for
all flows availabi-lity estimations. Specifically, for flow fk,
the estimator’s one-run variance satisfies:

(
σ(k)

q

)2
≤

( 1
wk

−1
)
(µ(k))2+

1
wk

(
σ(k)

q(k)

)2
. (27)

Proof: This can be proved by plugging in the mixture distri-
bution q(xxx) in Eq. (26) into the definition of one-run variance(
σ(k)

q
)2

. Please see the Appendix M for the detailed proof.
Remark: Theorem 10 states that, if extending to the multiple

flow case, our methods guarantee the estimation efficiency for
all flows. Designing proper or even optimal weights {wk} is
challenging. Online learning is a good approach to find a more
efficient weight setting, and we leave this as a future work.

B. Partial Seed Set Information

It can be difficult at times to obtain a “full” SEED set S,
especially when the network is large and flow failures are rare.
To provide robust estimations, consider the case that we
have only a partial information of S, e.g., limited historical
data of flow failures which gives S′⊂S. Denote the cond-
SEED set induced by S′ and xxx1:i as S′(xxx1:i). To analyze
error bound properties of SEED algorithms, we provide the
following lemma.

Lemma 4: Given a partial SEED set S′(xxx1:i), when esti-
mating P

[
Ψ−1(xxx)∈span(S′(xxx1:i))|xxx1:i

]
: both SEED-ZV and

SEED-BRE have ZV and BRE properties respectively; assume
link failure probabilities are small and follow the form of
pi=O(ε), ∀i∈Ω, SEED-VRE has the VRE property.

Proof: The proofs follow the same lines as the proofs in the
Theorem 7, Theorem 8 and Theorem 9.

Remark: Theorem 6 states that the estimation accuracy
depends on how well P[R=1|xxx1:i] is approximated. Given S,
SEED methods have good error bound properties for they can
well approximate P[Ψ−1(xxx)∈span(S(xxx1:i))|xxx1:i]=P[R=1|xxx1:i].
Yet, given a partial SEED set S′, the bias between P[R=1|xxx1:i]
and P

[
Ψ−1(xxx)∈span(S′(xxx1:i)) |xxx1:i

]
should be considered.

Let us consider the following two cases:
• Good coverage case. SEED methods maintain good

error bound properties if the partial SEED set S′ has
a good coverage, which is defined formally as:

P[Ψ−1(xxx)∈span(S′)]=P[Ψ−1(xxx)∈span(S)](1+o(1)).

Here is an example of such a partial SEED set:

S′=
{
S|S∈S, |S|≤minSj∈S |Sj |+k

}
, where pi=O(ε), k≥0.

• Poor coverage case. Without prior knowledge of network
and flow failures, S′ may have a poor coverage and even
S′=∅. If so, the SEED set information can be collected
via pre-samplings and updated while simulating flow
failures. We provide one possibility to collect SEED set
information in the later section.

C. SEED Set Collection

The information of SEED sets can be collected via some
pre-samplings or updated adaptive while simulating flow fail-
ures. In either case, SEED sets need to be updated according to
the observed simulation results. We provide the Algorithm 4 to

Algorithm 4 SEED Sets Updating (SEED-Updating)

Input: L(k) Nf

k=1
, where L(k)⊂F(k) and L is a “sperner family”;

N , the number of simulations.
Output: {S ′(k)}Nf

k=1.
1: for i=1 to N do
2: Generate topology sample xxx according to q(xxx);
3: for k=1 to Nf do
4: if R(k)(xxx)=1 and Ψ−1(xxx) #∈span L(k) then
5: L(k) ← L(k)∪{Ψ−1(xxx)}\{L|L∈L(k), L⊃Ψ−1(xxx)};
6: S ′(k)←L(k) where 1≤k≤Nf .

Fig. 2. Topology of a small scale network.

conduct this update, and we claim that the Algorithm 4 works
via the following theorem:

Theorem 11: The SEED-Updating algorithm guarantees
that span

(
L(k)

)
↑ span

(
S(k)

)
, i.e., span

(
L(k)

)
monotone con-

verges to span
(
S(k)

)
, for ∀fk∈F .

Proof: Please see the Appendix N for the detailed proof.
Remark: Theorem 11 implies that SEED-Updating improves

the coverage quality of partial SEED set, and it also guarantees
the updated partial SEED set converges to the full SEED set.

Note that the sampling distribution q(xxx) is not specified in
Algorithm 4. Namely, SEED-Updating can cooperate with any
sampling method to collect SEED set information. Besides, the
convergence rate depends on the way we generate xxx. We leave
the efficient SEED set collection as the future work.

VI. EVALUATION OF SEED METHODS

To evaluate the effectiveness of our methods, we consider
both an illustrative small scale network, and a realistic network
with the topology and traffic matrices extracted from the Abi-
lene backbone network [15]. The simulation cost to guarantee
the estimation error (or relative error) below a constant δ
is N≥4α2

δ2 σ2
q (or N≥ 4α2

δ2

(σq

µ

)2
). Hence, we use the one-run

variance σ2
q and coefficients of variation (CV) εCV=σq

µ to
quantify the estimation efficiency. The variance reduction, i.e.,

σ2
MC

σ2
SEED

, can imply the simulation cost reduction, i.e., NMC
NSEED

.

A. Experiments on an Illustrative Network
The illustrative network1 demonstrates the “best achievable

theoretical improvements” using our method, compared with
MC and baseline IS. We start with the single flow case, where
full SEED sets or partial SEED sets with good coverages are
provided. Then we extend it to the multiple flows case.
Experiment setting: The network is modelled as a directional
multigraph G with five nodes and 12 links as depicted in Fig.2.
For each link ei: the link failure probability pi is uniformly dis-
tributed over [0.5ε, 1.5ε] (ε is a small positive number); the link
capacity ci is uniformly distributed over [50, 80, 100, 200]. The

1This is provided so that readers can simulate and validate our methods.
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TABLE V

FLOW UNAVAILABILITY ANALYSIS RESULTS FOR THE NETWORK IN FIG.2

Fig. 3. Performance on the illustrative network (multiple flow case).

flow set F contains 18 flows. For each flow fk: the source
and destination are randomly selected; dk is the bandwidth
demand and uniformly distributed over [5, 25]. We consider
traffic engineering follows the shortest path and max-min
fairness policies. Note that the above setting provides an
instance of the network routing function R(·) in Eq. (8).
Single flow analysis: We start with the single flow case, and
select one particular flow fi∗ from the 18 flows. The detailed
information of fi∗ , together with the SEED set information, are
introduced in notes of Table V. We compare our SEED meth-
ods with MC and baseline IS. The comparison result, includ-
ing the expectation µ, theoretical one-run variance σ2

q and
CV εCV, are summarized in Table V. Let ε=0.05: given a
full SEED set S, SEED-BRE and SEED-VRE achieve vari-
ance reductions of around 2,000 and 360,000 times compared
with MC, and around 45 and 7,000 times compared with
baseline IS; given a partial SEED set S′, our SEED methods
estimate flow availabilities with very small biases and much
smaller variances, i.e.,with a small simulation cost, the estima-
tion can be very close to the theoretical value. We also reduce
ε from 0.05 to 0.001, to validate the vanishing property of
SEED methods. While µ reduces with the decreasing ε: εCV of
MC increases significantly as we have discussed in Section III;
εCV of baseline IS is relatively stable; εCV of SEED methods
reduces significantly, and εCV of SEED-VRE even achieves a
300 times reduction.
Multiple flows analysis: Next, we take all 18 flows into consi-
deration. Let ε=0.001. We consider an equally weighted sum
of flows’ pure importance distributions as the mixture SIS dis-
tribution. Fig. 3 illustrates cumulative distributions of εCV if
pure distributions are generated by different methods. With
SEED methods, for around 80% flows εCV≤2, which is
smaller than the best case of εCV of baseline IS. This demon-
strates the BRE property of SEED methods as stated in
Theorem 10. Furthermore, both SEED methods and baseline
IS, their εCV are 1,000 times smaller than that of MC.

Fig. 4. Topology of the Abilene network.

To depict the variance reduction compared with MC much
clearer, Fig. 3 shows cumulative distributions of the variance
reduction compared with MC. With SEED methods, more than
80% flows have variance reductions σ2

MC/σ2
SEED>200, 000.

To better illustrate the efficiency improvement, Table VI
summarizes simulation costs to guarantee that for 80% flows,
“with 95% confident the relative error is less than 0.01”, i.e.,
α95σq/

√
N≤0.01µ̂.

B. Experiments on a Realistic Network
Next, consider a realistic network to show the “improve-

ments in practice” by using our methods. As it is hard to obtain
the full SEED sets information in the complex realistic case,
simulations on the realistic network can validate the efficiency
of SEED methods when estimating all flows’ availabilities,
given partial SEED sets with poor coverage property.
Experiment setting: We use the Abilene network [15], [20]
with topology and traffic matrices collected by [21]. The net-
work contains 12 nodes and 30 links. Link capacities are illus-
trated in Fig. 4. The flow set contains 132 aggregated flows:
all flows with the same source and destination are aggregated
as a single flow2. We take each flow’s peak (99 percentile)
throughput [22] as its raw demand. As Abilene has a sufficient
capacity to serve raw demands, we double raw demands to see
whether the network can still support oversubscribed demands.
The routing follows the shortest path policy. The capacity
allocation follows the max-min fairness policy, which is also
adopted by Google’s B4 backbone network [23].
Multiple flows analysis: We consider all aggregated flows and
estimate their availabilities at the same time. Due to the high
dimensionality of FAVE in this realistic network, it is costly to

2We take the Abilene network as an example and consider aggregated flows
due to limitations of the accessible realistic traffic data.
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Fig. 5. Performance on the Abilene network (multiple flow case).

TABLE VI

SUMMARY OF SIMULATION COSTS (N STEPS)

obtain theoretical variances of different methods. Thus, we run
each method 10,000 times and use the empirical variance σ̂2

q

[24] to estimate the one-run variance σ2
q and compute the

simulation cost N to guarantee that “with 95% confident
the relative error is below 0.01”. Fig.5(a) shows cumulative
distributions of N by taking the mixture of pure distribu-
tions generated by different methods3. With SEED-VRE, we
find that to achieve the desired accuracy level, for around
60% flows the required simulation costs N≤1, 000, and for
around 80% flows N≤1, 400. Simulation costs for SEED-
BRE, baseline IS and MC methods to guarantee 80% flows
to achieve the accuracy target are 100,000, 180,000 and
1,260,000, respectively. So the efficiency is improved by
around 900 times via SEED-VRE and 13 times via SEED-
BRE, compared with MC. Fig. 5 illustrates cumulative distri-
butions of the variance reduction compared with MC. With
SEED methods, 80% of the flows have variance reductions
larger than 900 times.

VII. APPLICATIONS IN CAPACITY PLANNING

AND SALES PROJECTION

Now, we demonstrate the utility of our methods in the capa-
city planning, sales projection and topology planning. By test-
ing flow availabilities for the planning proposals of capacity,
sales or topology, we can not only determine which proposal
allows the network to provide better flow availability guaran-
tees even if flows demand for more bandwidth resources, but
also utilize flow availability feedbacks for further refinements
of infeasible proposals. We use Abilene as an example to show
how does our method work in details, and compare with the
NCR and MFR based methods.

A. Applications in the Sales Projection
Consider the case that a network provider wants to increase

sales via, e.g, oversubscribing flow demands, providing higher
flow availability guarantees or admitting new flows. For a new
sales projection proposal SP , we will:

• Test flow availabilities. Collect flow availability feed-
back for each flow fi, including a flow availability
estimation µ̂i with upper confidence bound µi and lower
bound confidence µi derived from the empirical variance.

• Check feasibility. We run enough simulations to make
sure oi +∈[µi, µi]. fi’s availability target oi is achieved if

3Due to the exponential complexity, SEED-ZV is not applied in this case.

Fig. 6. An example of applying FAVE to the sales planning.

µi≥oi and unreached if µi<oi. SP is feasible if all flow
availability targets are achieved; and infeasible otherwise.

• For a feasible proposal SP , we either apply it directly
or refine it using availability feedbacks. Specifically, we
can improve fi’s experiences by supporting its current
demand di with a higher availability target o′i or support-
ing a higher demand d′i with its current availability target
oi when µi>oi. We can also admit a new flow fj .

• For a infeasible proposal SP , we can take a reasonable
compromise between SP and a feasible SP ′, e.g., for flow
fi with di, oi in SP and d′i, o

′
j in SP ′, we take (di+d′i)/2

and (oi+o′i)/2 as the new demand and flow availability
target, respectively.

To see the achievable gains by doing, we take the Abilene
network as an example. Let flow availability targets oi=99%
and take raw demands in Section VI-B as the original proposal
SP0. First, as SP0 is feasible and flow availabilities far surpass
availability targets, we double the demands in SP0 as our new
proposal SP1. Then, as SP1 is infeasible, we take a compro-
mise between SP0 and SP1 and obtain the proposal SP2.
Next, as SP2 is still infeasible, we continue the refinements
until we obtain a feasible proposal SP3. Fig. 6(a) summarizes
the complementary cumulative probabilities (CCDF) of flow
availabilities achieved by applying different proposals. One
can observe that, by refining the sales projection proposals, we
obtain a feasible oversubscribe factor for each flow demand
such that the network can still support these oversubscribed
flow demands with given flow availability targets. Fig. 6(b)
shows the significant flow demand improvements achieved by
applying our method, which implies a 90.5% sales increase.

B. Applications in the Capacity Planning
Consider the case where a network provider builds new links

with certain capacities to achieve all flow availability targets.
For a capacity planning proposal CP, similar to the sales pro-
jection case, we can evaluate its feasibility and adopt it if
feasible. We are more concern about how the availability
feedbacks can be applied to refine infeasible proposals. Specif-
ically, we refine an infeasible proposal with the following
information:

• Link capacity utilization based: The utilization met-
ric is the primary metric of interest in capacity plan-
ning [1]. Hence, link capacity utilizations can imply the
importance of links.

• Maximum flow based: The maximum flow value is
a widely adopted network reliability measure [12]–[14].
We take the increase of the sum of maximum flows
brought by increasing one unit link capacity to measure
the importance of links.

• SEED based: By testing flow availabilities, we get
F ′, the set of flows with unsatisfied availability tar-
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Fig. 7. Link importance ranking.

Fig. 8. An example of applying FAVE to the sales planning.

gets. The number of failed flows in F ′ when ej fails
(
∑

fi∈F ′ P [Ri=1|xj=1]) can be estimated using SEED
algorithms and can imply the importance of links.4

We take the current capacity design of Abilene as
the original proposal CP0, and we double the raw demands
as flow demands so that CP0 is infeasible. We rank links
using the above metrics and summarize rankings in Fig. 7.
Assume the provider has a budget and only affords to build
four new links, each has a capacity of 2.5Gbps and a failure
probability of 0.01. Based on rankings in Fig. 7, we have
three proposals, i.e., CP1, CP2 and CP3 by taking the top
four links in Fig. 7(a), 7(b) and 7(c). Fig.8(a) shows flow
availability evaluation results. As our method selects links with
the largest impact on flow failures, it achieves greater flow
availability improvements: in CP3, flow availabilities of around
80% of the flows reach 99.9%. Our method also provides more
accurate evaluations to determine better capacity proposals.
According to Fig. 8(a), we can easily determine a better
proposal by comparing CP1, CP2 and CP3 over the flow
availability. However, as shown in Fig. 8(b), when comparing
these three proposals over maximum flow volumes, it is hard
to tell which one is better.
Insights 1: Improper capacity planning offers little help on im-
proving flow availabilities. E.g., although CP2 maximizes the
sum of maximum flows, it does not consider the distribution of
traffic demands across the network, and thus only brings little
improvements on flow availabilities.
Insights 2: Link utilization is not always the best indicator of
capacity planning. With the shortest path routing policy, link
ei has high capacity utilization if many flows’ shortest paths
go through it. Yet, if it is easy to find an alternate link when ei

fails, ei’s failure will not result in flow failures and so ei is not
the most important if aiming at improving flow availabilities.

4As P[Ri=1|xxx1:k], the probability that flow fi fails given the first kth links’
statues xxx1:k , can be estimated using SEED algorithms, P [Ri=1|xj=1] can
also be estimated by taking ej as the first link and let k=1, xxx1:k=1.

Fig. 9. An example of topology design.

C. Applications in the Topology Design
Consider the case where the network provider wants to str-

engthen the network by building some new links among some
already directly connected nodes. We can use the method in ca-
pacity planning to determine important links. If a network pro-
vider plans to add some new nodes and build links to connect
them, our method can help to check feasibilities and compare
the flow availability guarantees of different topology designs.

We consider the example in the capacity planning case. Tra-
ditional methods prefer topology designs with better network
connectivities. We compare the evaluation results on both the
flow availabilities in Fig. 8(a) and the achieved network con-
nectivities in Fig. 9(a), for the above four proposals. One can
observe that: our method can easily determine that the propo-
sal CP3 results in the best flow demands satisfaction; on the
contrary, when comparing these proposals over the network
connectivity, CP2 has the highest network connectivity and
even the infeasible proposals CP0 and CP1 achieve high net-
work connectivities of 99.9%. This implies that the network
connectivity is not a proper metric for evaluating the satisfac-
tion of flow demands.

VIII. CONCLUSION

In this paper, we generalize the classical network reliability
problem and consider the flow availability estimation (FAVE)
problem, where a flow availability is defined as the satisfaction
probability of flow demands. We propose fast and accurate
methods in solving the FAVE problem. We introduce the con-
cept of “SEED” to determine the importance of roles played by
different links in flow failures, and propose three SEED based
SIS methods which achieve the BRE and VRE properties with
linear computational complexities. To provide robust and scal-
able estimations, we extend FAVE to the multiple flows case
and partial SEED set case, and our methods maintain the esti-
mation efficiency. We apply our methods on both an illustrative
network and a realistic network, and our methods reduce the
simulation cost by around 900 and 130 times compared with
the MC and baseline IS methods on the Abilene network.
We demonstrate that our methods can facilitate the capacity
planning and sales projection: For capacity planning, our me-
thods provide more accurate network reliability estimations
compared with classical methods, and greater flow availabil-
ity improvements compared with solely using link capacity
utilizations; for sales projection, our methods provide flow
availability guarantees even if flows demand more bandwidth,
and so increases the total sales.

APPENDIX

We give the detailed proofs for some theorems and lemmas
appeared in this paper in the following:
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A. The Proof of Theorem 1
By Eq. (6), the estimator in Eq. (4) has the ZV property if:

Ep [R(xxx)ω(xxx)] = µ2. (28)

Next, extend Eq. (28) as the integral form and plug in q=q∗:

Ep [R(xxx)ω(xxx)] =
∫ R(xxx)p2(xxx)

P [xxx|R(xxx)=1]
dxxx=

∫ (R(xxx)p(xxx))2

P [xxx|R(xxx)=1]
dxxx

=
∫ P [xxx,R(xxx)=1]

P [xxx|R(xxx)=1]
R(xxx)p(xxx)dxxx

= µ
∫
R(xxx)p(xxx)dxxx=µ2. (29)

Hence, q∗ is the optimal importance distribution. The proof of
Theorem 1 is completed.

B. The Proof of Theorem 2
One can easily verify that:
• When there is no link capacity constraints, i.e., ci=∞,

the satisfaction of flow demands only depends on the con-
nectivity between the source and the destination. Namely,
the FAVE problem becomes a NCR problem.

• When Nf=1, i.e., the flow set F contains only a sin-
gle flow, the satisfaction of flow demands only depends
on the proba- bility that the maximum achievable band-
width from the sourceto the destination exceeds the flow
demand value. Namely, the FAVE problem becomes a
MFR problem.

Therefore, the proof of Theorem 2 is completed.

C. The Proof of Theorem 3
Assume q∗ is approximated via a product form distribution:

q(xxx)=
∏Nl

i=1 q(xi), (30)

by minimizing their KL divergence:

KL(q∗‖q) =
∫

q∗(xxx) log
q∗(xxx)
q(xxx)

dxxx

=
∫

q∗(xxx) log q∗(xxx)dxxx −
∫

q∗(xxx) log q(xxx)dxxx.(31)

This is equivalent to maximize the following:
∫
q∗(xxx) log q(xxx)dxxx

=
∫

P [xxx|R(xxx)=1] log
∏Nl

i=1 q(xi)dxxx

=
∑Nl

i=1

∫
P [xxx|R(xxx)=1] log q(xi)dxxx

=
∑Nl

i=1

∫ (∫
P [xxx|R(xxx)=1] dxxx−i

)
log q(xi)dxi

=
∑Nl

i=1

∫
(P [xi|R(xxx)=1]) log q(xi)dxi

=
∑Nl

i=1(−KL(P [xi|R(xxx)=1] ‖q(xi))
+

∫
P [xi|R(xxx)=1] logP [xi|R(xxx)=1] dxi). (32)

where xxx−i=(x1, · · ·, xi−1, xi+1, · · ·, xNl). It is easy to show
that Eq. (32) is maximized when:

q(xi) = P [xi|R(xxx)=1] . (33)

Hence, taking the importance distribution in Eq. (33), the KL
divergence in Eq. (31) is minimized and:

KL(q∗‖q)=
∫

P [xxx|R(xxx)=1] log
P [xxx|R(xxx)=1]

∏Nl

i=1 P [xi|R(xxx)=1]
dxxx.(34)

The proof of Theorem 3 is completed.

D. The Proof of Theorem 4

According to Eq. (6), we have

Vq [µ̂IS] =
Vq [R(xxx)ω(xxx)]

N
=

1
N

(∫ (R(xxx)p(xxx))2

q(xxx)
dxxx−µ2

)

=
1
N

(∫ P2 [xxx,R(xxx)=1]
q(xxx)

dxxx−µ2
)

=
µ2

N

∫ q∗(xxx)2

q(xxx)
dxxx−µ2

N
=

µ2

N
χ2(q∗‖q). (35)

χ2(q∗||q) ≥ log
[
χ2(q∗||q) + 1

]
≥KL(q∗||q). (36)

χ2(q∗||q) ≤ 1
minxxxq(xxx)

√
2 log 2KL(q∗||q). (37)

Thus, Eq. (12) is proved. The proof of Theorem 4 is completed.

E. The Proof of Theorem 5

We first derive the sequential form of the previ-
ous ZV importance distribution:

q∗(xxx) = P [xxx|R(xxx)=1]
= P [x1|R=1] · P [x2|x1,R=1] · · ·P [xNl |xxx1:Nl ,R=1]

(38)

P [xi|xxx1:i−1,R=1]=
P [xxx1:i,R=1]

P [xxx1:i−1,R=1]
,

=
P [R=1|xxx1:i] P [xxx1:i]

P [R=1|xxx1:i−1P [xxx1:i−1]]
=

P [R=1|xxx1:i]
P [R=1|xxx1:i−1]

pi(xi).

(39)

Hence, the proof of Theorem 5 is completed.

F. The Proof of Theorem 6

Without loss of generality, we assume P [R=1|xxx1:i] >0 (oth-
erwise it is not necessary to generate the corresponding sample
xxx). Then, Eq. (14) is equivalent to:

P̂ [R=1|xxx1:i] = θiP [R=1|xxx1:i] +o (P [R=1|xxx1:i])
= P [R=1|xxx1:i] (θi+o(1)) , (40)

where θi is a constant. Thus,

P̂ [R=1|xxx1:i]
P̂ [R=1|xxx1:i−1]

=
P [R=1|xxx1:i]

P [R=1|xxx1:i−1]
· (θi + o(1))
(θi−1 + o(1))

=
P [R=1|xxx1:i]

P [R=1|xxx1:i−1]
·
(

θi

θi−1
+o(1)

)
. (41)

Therefore,

q(xxx)=
∏Nl

i=1

P̂ [R=1|xxx1:i]
P̂ [R=1|xxx1:i−1]

p(xi)

=
∏Nl

i=1

P [R=1|xxx1:i]
P [R=1|xxx1:i−1]

p(xi) ·
∏Nl

i=1

(
θi

θi−1
+o(1)

)
(42)

=q∗(xxx)·
(∏Nl

i=1

θi

θi−1
+o(1)

)
. (43)

Vq [R(xxx)ω(xxx)] = µ2
∫ q∗(xxx)2

q(xxx)
dxxx − µ2

= µ2

(∏Nl

i=1

θi−1

θi
−1+o(1)

)
=O(µ2). (44)

Namely, BRE property is achieved.
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Eq. (15) is a special case of Eq. (40) by restricting θi=1 for all
i. Similar to the above proof, we can show that Vq[R(xxx)ω(xxx)]
=o(µ2). Namely, the VRE property is achieved. The proof of
Theorem 6 is completed.

G. The Proof of Lemma 1
Consider the statuses of some links are fixed by xxx1:i. We use

L⊆{i+1, . . ., Nl} to denote the set of failed links in the re-
maining dimensions. The event “flow fails and all links in the
cond-SEED S (xxx1:i) fail” has the following probability:

P
[
Ψ−1(xxxi+1:Nl)∈

{
L|L∪Ψ−1(xxx1:i)∈F , L∈span (S (xxx1:i))

}]

= P
[
Ψ−1(xxxi+1:Nl)∈span (S (xxx1:i))

]
=Φ (S (xxx1:i)) . (45)

If L∪Ψ−1(xxx1:i)∈F , there must exist S (xxx1:i)∈S (xxx1:i) such
that L∈span (S (xxx1:i)). Also, according to the definition of the
cond-SEED, if there exists a cond-SEED S (xxx1:i) which makes
L∈span(S (xxx1:i)), then L∪Ψ−1(xxx1:i)∈F . Therefore,

{L|L∪Ψ−1(xxx1:i)∈F , L⊆{i+1, . . ., Nl}}
=

⋃
S(xxx1:i)∈S(xxx1:i)

span (S (xxx1:i)) . (46)

P [R=1|xxx1:i]
=P

[
Ψ−1(xxxi+1:Nl)∈{L|L∪Ψ−1(xxx1:i)∈F , L⊆{i+1, . . ., Nl}}

]

= P
[
Ψ−1(xxxi+1:Nl)∈

⋃
S(xxx1:i)∈S(xxx1:i)

span (S (xxx1:i))
]
. (47)

Hence, according to the “inclusion−exclusion principle”, we
have Eq. (22). The proof of Lemma 1 is completed.

H. The Proof of Theorem 7
According to Theorem 5 and Lemma 1, the importance dis-

tribution q generated in the SEED-ZV algorithm satisfies q=q∗.
Namely, SEED-ZV can achieve the ZV property. The proof of
Theorem 7.

I. The Proof of Lemma 2
Denote Φ

(
S∗(xxx1:i)

)
=maxS(xxx1:i)∈S(xxx1:i)Φ

(
S(xxx1:i)

)
. Accord-

ing to Eq. (47), we have:

P [R=1|xxx1:i]≥Φ (S∗ (xxx1:i)) (48)
P [R=1|xxx1:i]

≤
∑

S(xxx1:i)∈S(xxx1:i)
P

[
Ψ−1(xxxi+1:Nl)∈span (S (xxx1:i))

]

=
∑

S(xxx1:i)∈S(xxx1:i)
Φ (S (xxx1:i))≤ |S (xxx1:i)|Φ (S∗ (xxx1:i))

(49)

The proof of Lemma 2 is completed.

J. The Proof of Theorem 8
According to Lemma 2, we have:

P̂[R=1|xxx1:i−1, xi=1]pi+P̂[R=1|xxx1:i−1, xi=0](1−pi)
=O(P[R=1|xxx1:i−1, xi=1])pi+O(P[R=1|xxx1:i−1, xi=0])(1−pi)
= O(P [R=1|xxx1:i−1]) (50)

As there is a normalizing step in Algorithm 2, qi(1) is
normalized by the following:

qi(1)/(qi(1) + qi(0))

=
piP̂ [R=1|xxx1:i−1, xi=1]

piP̂ [R=1|xxx1:i−1, xi=1]+(1−pi)P̂ [R=1|xxx1:i−1, xi=0]

=
O (P [R=1|xxx1:i−1, xi=1])

O (P [R=1|xxx1:i−1])
pi. (51)

Similar conclusion holds for qi(0). Therefore, the sampling
distribution satisfies:

q(xi|xxx1:i−1)=
O(P(R = 1|xxx1:i))

O(P(R = 1|xxx1:i−1))
pi(xi), (52)

and it matches the definition in Theorem 5. Hence, according
to the proof of Theorem 6, SEED-BRE can achieve bounded
relative error. The proof of Theorem 8 is completed.

K. The Proof of Lemma 3

Note that the cond-SEED S1:i is a “sperner family”. Hence,
there is no inclusion among all members of S1:i. For A⊆S1:i,
consider the case that |A|≥2,

∣∣∣
⋃

S(xxx1:i)∈AS(xxx1:i)
∣∣∣≥maxS(xxx1:i)∈A

∣∣S(xxx1:i)
∣∣+1. (53)

Therefore, ∀Sj(xxx1:i) ∈ A

Φ
(⋃

S(xxx1:i)∈A
S(xxx1:i)

)
=O

(
Φ (Sj(xxx1:i)) ε

)
, (54)

∑
∅&=A⊆S(xxx1:i)

(
(−1)|A|−1Φ

[⋃
S(xxx1:i)∈AS (xxx1:i)

])

=
∑

S(xxxi:i)∈S(xxxi:i)

Φ
(
S(xxx1:i)

)
+O

(
ε
∑

S(xxxi:i)∈S(xxxi:i)
Φ

(
S(xxx1:i)

))

=
∑

S(xxxi:i)∈S(xxxi:i)

Φ
(
S(xxx1:i)

)
·
(
1+O(ε)

)
. (55)

As O(ε)=o(1), thus,
∑

S(xxx1:i)∈S(xxx1:i)

Φ
(
S(xxx1:i)

)
=P

[
R=1|xxx1:i

](
1 + o(1)

)
. (56)

Hence, Eq. (24) is proved. The proof of Lemma 3 is completed.

L. The Proof of Theorem 9

According to Lemma 3, we have:

P̂ [R=1|xxx1:i−1, xi=1] pi+P̂ [R=1|xxx1:i−1, xi=0] (1−pi)
= pi (P [R=1|xxx1:i−1, xi=1] +o (P [R=1|xxx1:i−1, xi=1]))

+(1−pi) (P [R=1|xxx1:i−1, xi=0]+o(P[R=1|xxx1:i−1, xi=0]))
= P [R=1|xxx1:i−1] (1+o(1)). (57)

As there is a normalizing step in Algorithm 3, qi(1) is nor-
malized by the following:

qi(1)/(qi(1) + qi(0))

=
piP̂ [R=1|xxx1:i−1, xi=1]

piP̂ [R=1|xxx1:i−1, xi=1] +(1−pi)P̂ [R=1|xxx1:i−1, xi=0]

=
P [R=1|xxx1:i−1, xi=1] (1+o(1))

P [R=1|xxx1:i−1] (1+o(1))
pi

=
P [R = 1|xxx1:i−1, xi=1]

P [R=1|xxx1:i−1]
pi(1+o(1)) (58)

Similar conclusion holds for qi(0). Therefore, the sampling dis-
tribution satisfies:

q(xi|xxx1:i−1)=
P(R = 1|xxx1:i)

P(R = 1|xxx1:i−1)
pi(xi)(1+o(1)), (59)

and it matches the definition in Theorem 5. Hence, accord-
ing to the proof of Theorem 6, SEED-VRE can achieve the
VRE pro-perty. The proof of Theorem 9 is completed.
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M. The Proof of Theorem 10

By the definition of the one-run variance
(
σ(k)

q
)2

, we have:

(
σ(k)

q

)2
=

∫
(
R(k)(xxx)p(xxx)

)2

∑
j wjq(j)(xxx)

dxxx −
(
µ(k)

)2

≤
∫

(
R(k)(xxx)p(xxx)

)2

wkq(k)(xxx)
dxxx −

(
µ(k)

)2

=
1

wk

((
σ(k)

q(k)

)2
+ (µ(k))2

)
−

(
µ(k)

)2
. (60)

Thus Eq. (27) is proved. As we have discussed that the SEED
algorithms can guarantee at least a bounded relative error, i.e.,
σ(k)

q(k)=O
(
µ(k)

)
. Thus σ(k)

q =O
(
µ(k)

)
. The proof of Theorem 10

is completed.

N. The Proof of Theorem 11
Consider one particular flow fk. Similar to the defini-

tion in Eq. (18), we use F (k) to denote the collection of
all link statuses xxx satisfying R(k)(xxx)=1. Assume we are
given a set of failure configurations L(k)⊂F (k), and there
is no inclusion among members of L(k). When a new
sample of xxx is generated, and Ψ−1(xxx)+∈L(k): If R(k)(xxx)=0
(i.e., flow succeeds), Ψ−1(xxx) cannot be a SEED; Otherwise,
if R(k)(xxx)=1 (i.e., flow fails), we consider the following
cases:

1) If Ψ−1(xxx)∈span
(
L(k)

)
, then

{
L|L!Ψ−1(xxx), L∈L(k)

}
+=∅.

As-sume that Ψ−1(xxx) is a SEED, according to the
definition of SEED in Definition 6, ∀L!Ψ−1(xxx),
L +∈F (k)⊂L(k). Due to the contradiction, Ψ−1(xxx) cannot
be a SEED and we drop it.

2) If Ψ−1(xxx)+∈span
(
L(k)

)
, to make span

(
L(k)

)
pro-

vide a better coverage for F (k), we add Ψ−1(xxx) to the
SEED set and so extend span

(
L(k)

)
. Before extending,

L(k) is pruned by removing {L|L∈L(k), L⊃Ψ−1(xxx)}
from it, which is a subset of span

(
Ψ−1(xxx)

)
.

As span
(
L(k)

)
is monotone increasing, the coverage of L(k)

can be improved through the update in Algorithm 4, and even-
tually span

(
L(k)

)
→F (k). Also, once Ψ−1(xxx) is added into

L(k), it can only be replaced by its subset. This means that
∀L∈L(k), L is monotone decreasing. Hence, according to
the definition of SEED in Definition 6, L(k)→S(k). Hence,
the proof of Theorem 11 is completed.
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