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Abstract. Free riding has long been a serious problem in peer-to-peer
(P2P) systems due to the selfish behavior of individual users. To conquer
this problem, a key design issue of the P2P systems is to appropriately in-
centivize users to contribute resources. In P2P Video-on-Demand (VoD)
applications, content providers need to incentivize the peers to dedicate
bandwidth and upload data to one another so as to alleviate the upload
workload of their content servers. In this paper, we design a simple yet
practical incentive mechanism that rewards each peer based on its dedi-
cated upload bandwidth. We use a mean field interaction model to char-
acterize the distribution of number of peers in different video segments,
based on which we characterize the content providers’ uploading cost as
a function of the peers’ contribution. By using a game theoretic frame-
work, we analyze the interaction between a content provider’s rewarding
strategy and the peers’ contributing behaviors and derive a unique Stack-
elberg equilibrium. We further analyze the system efficiency in terms of
the price of anarchy. Via extensive simulations, we validate the stability
and efficiency of our incentive scheme.
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1 Introduction

In recent years, we have witnessed the rapid growth of Peer-to-Peer (P2P) sys-
tems, many of which have large population bases, e.g., file sharing systems like
BitTorrent [4], and Video-on-Demand (VoD) systems like PPLive [1] and PP-
Stream [2]. The key advantage of the P2P architecture is that by utilizing the
distributed resources at the peers, the system can be more scalable and fault-
tolerant than traditional client-server architectures. Nevertheless, due to the self-
ish nature of the peers, free-riding [5] often happens where peers do not have
incentives to contribute resource for other peers. Thus, designing an effective
and practical incentive scheme becomes critical in encouraging the peers to con-
tribute to the system, and thereby improving the system performance. Plenty
of work has been done for systems of traditional P2P applications, for example,
the tit-for-tat [4] protocol has been well-adopted for file sharing applications.
However, very limited work has been focusing on the incentive mechanisms for
P2P-VoD applications.
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What makes it challenging to design incentive schemes for P2P-VoD appli-
cations? Compared to file sharing, VoD applications need to satisfy more strin-
gent temporal and spacious constraints for data delivery. To share files, peers
exchange segments of files that have not been received. Segments might be re-
ceived in different orders, therefore, there is hardly a temporal constraint under
which a particular segment has to be received. On the contrary, when a user
watches a particular video segment, this segment has to be received by the user
within a short period of time, while nearby segments would not satisfy the user’s
instantaneous demand. Even worse, predicting the data demand is difficult be-
cause users might fast-forward and/or rewind among the video segments. The
tit-for-tat scheme does not work for VoD applications, because the data demand
and supply among the peers are highly volatile.

Instead of using a punishment-based scheme like tit-for-tat, we propose and
analyze a reward-based scheme that incentivizes peers to contribute upload ca-
pacity for VoD systems. Our contributions are as follows.

– We model the stochastic operations of the peers and derive the system state
by using the mean field approximation.

– We propose a practical reward-based incentive scheme based on the dedicated
upload capacity of the peers.

– We model the interaction between the content provider and the peers by using
a Stackelberg game. We derive the unique Stackelberg equilibrium and analyze
the efficiency of the equilibrium in terms of the price of anarchy.

– We validate the effectiveness of our scheme and the theoretic results via ex-
tensive simulations.

Our paper is organized as follows. In Section 2, we present the system model
and the reward-based incentive scheme for P2P-VoD systems. In Section 3, we
study the system dynamics and characterize the content provider’s cost as a
function of the peers’ dedicated upload bandwidth. In Section 4, we model the
strategic behavior between the content provider and the peers, derive a unique
system equilibrium, and analyze the efficiency of that. We evaluate the perfor-
mance of our incentive scheme in Section 5. Section 6 states the related work
and Section 7 concludes.

2 System Model and Reward-based Scheme

In a P2P-VoD system, each peer can support other peers by (1) caching data
that would be needed for other peers and (2) uploading data to other peers.
Both aspects are equally important because a peer cannot contribute if it either
does not have the needed content, or does not have upload capacity. Thus, the
design space for an incentive mechanism includes both incentivizing peers to
cache the right content as well as to devote upload capacity. Due to the compli-
cated viewing operations supported by VoD systems, data demand and supply
can be volatile. Therefore, the optimal data caching policy for a peer might be
difficult to predict given its local knowledge of the system. Although the content
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provider’s global knowledge might help guide the data caching policy, collecting
this global knowledge and coordinating with peers bring overhead to the system,
even if the peers are willing to comply. Our study focuses on incentivizing the
peers to dedicate upload capacity, while making a minimum assumption on the
data caching policy. Naturally, each peer caches the video segment it recently
watched/requested and can contribute to other peers that need the video seg-
ment. Under this default policy, a peer cannot contribute much either due to its
little upload capacity or the low demand for its recently watched segment.

Since peers only cache the segments of a video they are watching, without loss
of generality, we focus on a particular video content provided in the system. We
denote N as the long-term average or steady-state number of peers that watch
this video. We denote r as the required playback rate, i.e., bits per second, for
serving the video. We consider homogeneous peers and explore the symmetric
strategies of them. We denote u as the upload capacity of each peer, which is the
maximum bandwidth a peer is willing to contribute to the system. In Section 4,
the peers will choose u as their strategy to maximize utility.

2.1 Peers’ Viewing Behavior

We assume that the system organizes the video as K consecutive data segments.
We denote Si as the ith data segment. We model the user behavior of the system
by specifying a set of rate transition probabilities {pij : i, j = 0, 1, . . . , K}. Each
pij denotes the transition probability of a typical user watching Sj after finishing
segment Si. In particular, pi0 denotes the probability that a user quits watching
after finishing Si. We denote λ as the aggregate external arrival rate of users
that start watching the video. However, users might not start from the very first
segment S1, because they might have watched part of the video before. Thus,
p0i denotes the probability that an external arrival will start with Si. To keep
consistency, we define p00 = 0 and require

∑K
j=0 pij = 1 for all i = 0, . . . , K. In

practice, the probability pij represents a state transition where a peer performs
a play, fast-forward or rewind operation when j = i+1, j > i+1 or 0 < j < i+1,
respectively.

Under our default caching policy, we assume that after transitioning from
segment i to segment j, a peer only provides Si to other peers if needed when it
is viewing Sj . In practice, a peer can cache and upload multiple data segments
at any time. However, we will show that even by using such a restricted caching
policy, one can still design a simple yet effective scheme to incentivize peers
to dedicate upload capacity for other peers, which consequently reduces the
workload of the content provider as well as improves the system performance.
When a peer downloads data segment i, we assume that the system will direct
the demand to the peers that can contribute Si first, which upload Si at an
aggregate rate that equals the playback rate r. If the supply capacity of Si is
lower than aggregate demand rate, the content server will support the remaining
data rate by using content servers’ capacity.
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2.2 Reward-based Incentive Scheme

We design an incentive mechanism under which the content provider rewards the
peers based on the amount of upload capacity they contribute. The reward can
be in various forms, e.g., real money rebate for the service fee and virtual credits
or reputation record for advanced services. Notice that any reward scheme can be
represented by the currency flow from the content provider to the peers. Even
for rewards in virtual currency or reputation, they imply that the P2P-VoD
operator needs to invest money for developing advanced/prioritized services for
users. We do not restrict the form of implementing the rewards in our paper;
however, we use an abstract model to describe the reward in terms of monetary
value.

We define the reward W to a peer to be a function of its dedicated maximum
upload bandwidth capacity u as

W (u) =
∫ u

0

w(x)dx, (1)

where w(x) denotes the marginal reward at the contribution capacity level x.
Notice that our incentive scheme is based on the maximal upload bandwidth
that a peer is willing to dedicate to the system; in practice, whether a peer will
upload data at the maximum capacity u depends on the demand for the data
segment the peer has cached and the peer might not upload at the rate of u. We
assume that the system will maximize the utilization of upload capacity of the
peers whenever their data segments are requested by other peers.

A simple reward scheme is to use a linear reward function

W (u) = wu, (2)

where the marginal reward w(x) = w is the same for all levels of contribution x. w
can also be interpreted as the reward per unit capacity dedicated by a peer. The
linear reward scheme can be easily understood by the peers and implemented by
the content provider in practice. In what follows, we will start with the linear
reward model and extend our results for general reward functions W later.

In summary, under our reward based incentive scheme, the content provider
decides the reward function W , and then each peer decides its upload capacity
u dedicated to the P2P-VoD system. In Section 4, we present a game theoretic
framework to analyze the interaction between the content provider and peers
under this reward-based incentive scheme. Before we present this analysis, let
us first investigate the distribution of peers in different video segments so as to
understand the impact of peers’ upload contribution on the content provider’s
upload cost.

3 Peers’ Contribution and Content Provider’s Cost

In this section, we derive the distribution of number of peers watching different
segments based on the user behavior described in Section 2.1. We further char-
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acterize the content provider’s upload cost as a function of both the distribution
of peers and their upload contribution.

3.1 Distribution of Peers in Different Video Segments

Based on a typical user’s viewing behavior described in Section 2.1, we say that
a peer is in state i when it is watching segment Si. Thus, each peer’s viewing
behavior becomes a random process. For a system with N peers, the state space
of the P2P-VoD system is [1, . . . , K]N . To overcome the large dimensionality of
the state space, we tackle the problem from a macro perspective, i.e., instead
of observing each peer’s individual state, we are only interested in the fraction
of peers in each of the states or the distribution of the peers in the states. In
particular, we use the mean field interaction model [3] to calculate the steady
state distribution of these peers in the P2P-VoD system. We denote qi ∈ [0, 1]
as the fraction of peers in state i. The system state can now be specified by the
vector (q1, q2, . . . , qK), where

∑K
i=1 qi = 1.

Theorem 1. If the P2P-VoD system does not support the rewind operation, i.e.,
pij = 0 for all 1 ≤ j ≤ i, then

qi =
P0i∑K

j=1 P0j

∀ i = 1, . . . , K, (3)

where Pij denotes the aggregated probability of transitioning from state i to j,
which can be defined recursively as follows.

Pij =
{

pij if j = i + 1,∑j−1
k=i+1 pikPkj + pij otherwise.

(4)

Proof. Recall λ is the external arrival rate of new peers that start watching the
video. In the steady-state, we can express the external arrival rate to state i
as λp0i. We denote µ as the rate at which users change states, which includes
the events of (1) moving to the next segment, (2) fast-forwarding or rewinding
and (3) quitting the system. Because the departure rate of a particular state is
proportional to the number of peers in the state, the departure rate from state
i is µqi. After finishing watching Si, a peer has different probabilities to start
watching another segment; and therefore, the transition rate from state i to
state j is µqipij . Each system state i satisfies the following ordinary differential
equation (ODE):

N · dqi

dt
= λp0i +

K∑

j=1,j 6=i

µqjpji −
K∑

k=1,k 6=i

µqipik − µqipi0, ∀i. (5)

The left hand side represents the change in the number of peers in state i.
The right hand side counts all the possible cases where changes can incur. The
increase of number of peers in state i can occur when external arrivals start
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watching the video at segment Si (with a rate of λp0i), or any peer which just
finished watching Sj continues (or performs fast-forward or rewind operation) to
watch Si (with a rate of µqipji). The decrease of number of peers in state i can
occur when a peer finishes watching Si and starts watching another segment Sk

(with rate µqipik), or this peer quits viewing the video (with rate µqipi0).
In steady-state, the external arrival rate to the P2P-VoD system should be

equal to the departure rate, i.e.,

λ =
K∑

i=0

µqipi0, (6)

and the rate of change in each state should be zero, i.e.,

N · dqi

dt
= 0. (7)

Given pij = 0 for all 1 ≤ j ≤ i, we have q1 = λ
µp01 and qi = λ

µp0i +
∑i−1

j=1 pjiqj .

By recursively solving qi and requiring
∑K

i=1 qi = 1, we can derive the above
formula. ut

3.2 Content Provider’s Upload Cost

Since content providers are often charged by their transit providers (ISPs)
based on the traffic volume going through them, we assume that the content
provider’s cost is proportional to the upload capacity needed to support all
peers. In steady-state, Nqi peers watch segment Si. Given a required playback
rate of r, the aggregate required upload capacity for Si should be Nqir. In the
proof of Theorem 1, we have derived qi = λ

µp0i +
∑i−1

j=1 pjiqj , or equivalently,

Nqi = N λ
µp0i+

∑i−1
j=1 Npjiqj . Among the peers watching Si, N λ

µp0i peers are ex-
ternal arrivals that start watching at Si and Npjiqj peers have viewed Sj before
transitioning to watch Si. Note that we can only assure that peers performing
continuous play, i.e., moving from Si to Si+1, have watched and therefore cached
the whole segment of Si. Under our simplistic caching policy, only the peers that
have transitioned from Si to Si+1 and currently watching Si+1 can upload Si

to other peers. Suppose each peer contributes u amount of capacity for upload-
ing available video segments, the total available upload capacity for Si would
be Nqipi,i+1u. If the dedicated peer contribution Nqipi,i+1u is less than the re-
quired download capacity Nqir, the content provider needs to upload segment
Si to support the difference in capacity. In particular, the playback requirement
of the last segment, NqKr, must be supported by the content provider. Assume
the content provider incurs a cost cs (cs > 0) per unit bandwidth capacity. Then,
the content provider’s total upload cost is:

Cs(u) = csN ×
[

K−1∑

i=1

qi(r − pi,i+1u)+ + qKr

]
. (8)
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Proposition 1. Cs(u) is a convex and non-increasing function in u.

Proof. Because cs, N , qi and pi,i+1 are all positive, the cost Cs(u) is non-
increasing in u. Since (r − pi,i+1u) is linear (and therefore, convex) in u,
(r−pi,i+1u)+ = max(r−pi,i+1u, 0) is convex in u. Given that the convex property
keeps under summation operation, we reach the above conclusion. ut

Notice that the maximum cost is Cs(0) = csNr when the peers do not
contribute any capacity and the minimum cost is Cs(u) = csNqKr when u is
large enough. In particular, when u ≥ r, the system might not be able to utilize
all peers’ upload resource, i.e., fewer peers will participate in data uploading
when u increases. This implies the sub-linearity of cost saving of the content
provider with respect to the increase of peers’ capacity contribution u. We will
show an example that validates the convexity feature in Section 5.

4 Game Theoretic Analysis on Incentive Scheme

In this section, we present a game-theoretic model to study the strategies of the
content provider and the peers in a P2P-VoD system under the reward-based
incentive scheme and analyze the stability and efficiency of the incentive scheme.
We define w, the per capacity reward to the peers, as the strategy of the content
provider and u, the amount of dedicated capacity, as the strategy of the peers.
We assume that peers are homogenous and use the same u strategy in the game.
We denote [0, w̄] and [0, ū] as the strategy space of the content provider and the
peers, where w̄ and ū are the upper-bound of the content provider’s and peers’
strategy respectively.

4.1 Stackelberg Game Model

From the content provider’s perspective, it aims at minimizing its total cost, i.e.,
the cost of uploading and the cost of rewarding the peers. We define the utility
of the content provider as the following:

πs(w, u) = −Cs(u)− wuN. (9)

Similarly, we define the utility of a peer as the reward it receives, minus its cost
of upload contribution as the following:

πp(u,w) = wu− Cp(u), (10)

where Cp(u) denotes the cost of dedicating u amount of capacity. To maximize
their utilities, the content provider solves the optimization problem maxw πs(w, u),
and the peers solves maxu πp(u,w). Here, we do not specify the form of the peer’s
upload cost function Cp(u). Rather, we assume the cost function satisfies the fol-
lowing property:

(1) Cp(u) is continuous and twice differentiable in u.
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(2) Cp(0) = 0, C ′p(u) > 0, C ′′p (u) > 0.
C ′p(u) > 0 means that a peer’s cost increases with its dedicated capacity. C ′′p (u) >
0 means the marginal cost also increases with the dedicated capacity. The above
assumption reflects the fact that a peer’s viewing performance would not be
affected too much if it contributes a small amount of upload capacity; however,
when a peer dedicates much upload capacity, its download rate as well as the
performance of video might be substantially reduced.

Proposition 2. πp(u,w) is a strictly concave function in u.

Proof. Noting that C ′′p (u) > 0 implies −Cp(u) is strictly concave in u, and that
wu is linear and hence concave in u, we have πp(u,w) strictly concave in u. ut

We consider a Stackelberg game [15] where the content provider decides w
first, and after that, the peers decide u. It is natural to assume the content
provider as the first-mover whereas the peers response to the reward w accord-
ingly, because once u is determined, the content provider would have no incen-
tives to provide any reward for the peers. To obtain the Stackelberg equilibrium
of the game, we can use the backward induction [15]. In particular, the peers solve
the problem u∗(w) = argmaxu πp(u,w) given any w. By knowing the peers’ best
responses, the content provider solves the problem w∗ = argmaxw πs(w, u∗(w)).
In what follows, we analyze the existence, uniqueness and efficiency of the Stack-
elberg equilibrium.

4.2 Existence and Uniqueness of Stackelberg Equilibrium

We start with the following lemma, which establishes the connection between
the Stackelberg equilibrium and an optimization problem:

Lemma 1. If u∗ is a solution to the following problem:

min
u

Cs(u) + NuC ′p(u), (11)

then there exists a Stackelberg equilibrium (u∗, u∗C ′p(u
∗)); further, if (u∗, w∗) is

a Stackelberg equilibrium, then u∗ is the solution to problem (11).

Proof. We start by showing the first half of the statement. Denote u∗ =
argminu[Cs(u) + NuC ′p(u)] and w∗ = u∗C ′p(u

∗). We show that (u∗, w∗) is a
Stackelberg equilibrium. Since πp(u,w) is strictly concave in u, so for any given
w∗, if u∗ satisfies u∗C ′p(u

∗) = w∗, then u∗ maximizes the peers’ utility πp(u,w∗).
Hence, the peers do not have incentives to deviate from u∗. Suppose the content
provider has an incentive to deviate from w∗ and can obtain higher utility by
setting w = w0, where the peers’ response is to set u = u0 so that u0 maxi-
mizes πp(u,w0). Because of the strict concavity of πp(u,w), there are only three
possible cases:

(1) C ′p(u0) = w0 if C ′p(0) ≤ w0 ≤ C ′p(ū); or
(2) u0 = 0 if C ′p(0) > w0; or
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(3) u0 = ū if C ′p(ū) < w0.
For any of the above cases, we have

Cs(u0) +Nu0C
′
p(u0) ≤ Cs(u0) + Nu0w0

< Cs(u∗) +Nu∗w∗ = Cs(u∗) + Nu∗C ′p(u
∗). (12)

The first inequality holds for the above three cases. The second inequality holds
because we assume the content provider can have higher utility by setting u =
u0 instead of u = u∗. However, Cs(u0) + Nu0C

′
p(u0) < Cs(u∗) + Nu∗C ′p(u

∗)
contradicts the fact that u∗ is a solution of (11). This implies that the content
provider has no incentive to deviate from w∗. Given that we have shown the
peers do not have any incentive to deviate from u∗ given any w∗, we conclude
(u∗, w∗) is a Stackelberg equilibrium1.

To show the second half of the statement, suppose there exists a Stackel-
berg equilibrium (u∗, w∗), but u∗ is not a solution to (11), i.e., there exists
u0 6= u∗ such that Cs(u0) + NuC ′p(u0) < Cs(u∗) + NuC ′p(u

∗). Assume the con-
tent provider sets w0 = u0C

′
p(u0). Taking the derivative in (10) and noting the

strict concavity of πp(u,w), we have the peers’ unique best response is u = u0

for given w0 = u0C
′
p(u0). Therefore, πs(w0, u0) = −Cs(u0) − Nu0C

′
p(u0) >

−Cs(u∗)−Nu∗C ′p(u
∗) = πs(w∗, u∗), which contradicts to the fact that (u∗, w∗)

is a Stackelberg equilibrium. This implies u∗ must be a solution to (11). ut
Theorem 2. The Stackelberg equilibrium always exists. If uC ′p(u) is strictly con-
vex in u, then the peers’ solution u∗ at the Stackelberg equilibrium is unique.

Proof. We first show the existence. The peers solve maxu πp(u,w) = wu−Cp(u).
For any given w, πp is continuous and strictly concave in u over the compact
set [0, ū]. Hence, the optimal solution u∗(w) = argmaxu πp(u,w) exists and is
unique. Substituting u by u∗(w) in πs(w, u), the provider’s utility πs(w, u∗(w))
is continuous in w over the compact set [0, w̄], so w∗ = argmaxw πs(w, u∗(w))
exists.

Next we show the uniqueness of u∗ when uC ′p(u) is strictly convex in u. Since
Cs(u) is convex in u (Proposition 1), and uC ′p(u) is strictly convex in u, we can
observe that the problem (11) is a strictly convex minimization over a compact
set, which has a unique solution. According to Lemma 1, any Stackelberg equi-
librium (u∗, w∗) satisfies that u∗ is a solution to (11). Therefore, we conclude
that the peers’ solution in the Stackelberg equilibrium is unique2. ut
1 Noting the above three cases and that the content provider aims at maximizing its

utility, if u∗ > 0, then the corresponding Stackelberg equilibrium is unique where
w∗ = u∗C′p(u∗). If u∗ = 0, then any (u∗, w∗) where 0 ≤ w∗ ≤ C′p(0) is a Stackelberg
equilibrium.

2 We do not claim the Stackelberg equilibrium is unique. The only chance of having
multiple Stackelberg equilibria is u∗ = 0, where any (u∗, w∗) with 0 ≤ w∗ ≤ C′p(0)
is a Stackelberg equilibrium. When u∗ > 0, the Stackelberg equilibrium is unique,
where the content provider sets w∗ = u∗C′p(u∗).
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In the proof, we assume uC ′p(u) to be strictly convex. In fact, if the marginal
cost C ′p(u) is super-linearly increasing in u, then by multiplying a linear function
f(u) = u, the term uC ′p(u) can be guaranteed to be strictly convex.

4.3 Efficiency of Stackelberg Equilibrium

Now we discuss the efficiency of the Stackelberg equilibrium. For mathematical
simplicity, in this subsection, we assume Cs(u) is differentiable in u.

We define the social welfare, πw, as the sum of the content provider’s and all
peers’ utilities:

πw(u) = πs + Nπp = −Cs(u)−NCp(u). (13)

Because of the convexity of Cs(u) and the strict convexity of Cp(u), we
immediately have

Proposition 3. πw(u) is strictly concave in u.

We define the price of anarchy (PoA) [10] to be the ratio of the social wel-
fare at the worst Stackelberg equilibrium to the maximal social welfare one can
achieve when varying u ∈ [0, ū]. In particular, when the Stackelberg equilibrium
(u∗, w∗) is unique, we have

PoA =
πw(u∗)
πw(uw)

, (14)

where uw = argmaxu πw(u) and u∗ is the peers’ solution at the Stackelberg
equilibrium. In our model, the social welfare is non-positive, so PoA is in general
no less than 1. When PoA is close to 1, it implies the system is in an efficient
state. We first state the following lemma:

Lemma 2. The peers’ upload contribution at the Stackelberg equilibrium is no
larger than the upload capacity that maximizes the social welfare, i.e., u∗ ≤ uw.

Proof. Denote CSW (u) = −πw(u) = Cs(u) + NCp(u), and CSE(u) = Cs(u) +
uC ′p(u). Maximizing the social welfare is equivalent to solving minu CSW (u),
u ∈ [0, ū]. According to Lemma 1, u∗ can be obtained by solving minu CSE(u),
u ∈ [0, ū]. Therefore, uw and u∗ are the minimizers to CSW (u) and CSE(u),
respectively. By taking the first order derivative, we have

C ′SW (u) = C ′s(u) + NC ′p(u), (15)
C ′SE(u) = C ′s(u) + NC ′p(u) + NuC ′′p (u). (16)

There are only two possible cases regarding C ′SW (u):
(1) If C ′SW (u) > 0, ∀u ∈ [0,∞), then uw = 0. Since NuC ′′p (u) ≥ 0, we have

C ′SE(u) = C ′SW (u) + NuC ′′p (u) > 0, ∀u ∈ [0,∞), so u∗ = 0 = uw.
(2) If there exists a uSW ∈ [0,∞) such that C ′SW (uSW ) = 0, then uSW must

be unique due to the strict convexity of CSW (u). We have uw = max(uSW , ū).
By the concavity assumption on Cp(u) and Proposition 1, C ′s(u) and NC ′p(u) are
both non-decreasing in u and NuC ′′p (u) > 0. Hence, for any u > uSW , we have
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C ′SE(u) > C ′SW (u) > C ′SW (uSW ) = 0. This implies any u > uw = max(uSW , ū)
cannot be the minimizer of CSE(u), u ∈ [0, ū]. Therefore, u∗ ≤ uw.

Combining the results in the above two cases, we have u∗ ≤ uw. ut
Theorem 3. Denote u∗ as the peers’ solution at any Stackelberg equilibrium. If
u∗ = 0 or u∗ = ū, the system obtains the maximal social welfare, i.e., PoA=1.

Proof. If u∗ = 0, then C ′SE(0) ≥ 0. Suppose uw 6= 0, then by the strict convexity
of CSW (u), we have C ′SW (uw) = 0 and C ′SW (0) < 0. From Eq. 15 and Eq. 16,
we have C ′SE(0) = C ′SW (0) < 0, which contradicts to C ′SE(0) ≥ 0. Hence,
uw = 0 = u∗, so PoA=1.

If u∗ = ū, then by Lemma 2, we have uw ≥ u∗ = ū. In the meanwhile,
uw ≤ ū, so uw = ū = u∗, and hence PoA=1. ut

In general, πw(uw) and πw(u∗) may not be equal. Given the concavity prop-
erty in Proposition 3, πw(u) is strictly increasing in [0, uw]. Therefore, the gap
between πw(uw) and πw(u∗) is impacted by the gap between uw and u∗. In partic-
ular, we have πw(uw)−πw(u∗) ≤ π′w(u∗)(uw−u∗), and PoA≤ 1− π′w(u∗)

πw(uw) (uw−u∗).
Given a general form of Cp(u), it is mathematically hard to further quantify PoA
for 0 < u∗ < ū. In the next section, we will use simulations to show the efficiency
of the Stackelberg equilibrium in general cases.

4.4 General Reward Scheme

The linear reward model is a simplification of the general reward model in Sec-
tion 2. If we use the general model where w(x) denotes the marginal reward per
upload capacity x, the content provider’s problem is

max
w(x)

πs(w(x), u) = −Cs(u)−Nu

∫ u

0

w(x)dx, (17)

and the peers’ problem is

max
u

πp(u,w(x)) = u

∫ u

0

w(x)dx− Cp(u). (18)

We discuss the following question: among all possible reward models, which
reward model can make the content provider obtain the maximal utility?

Theorem 4. If the content provider can find u∗ = argmaxu−Cs(u)−NCp(u),
then any reward scheme satisfying the following property can make the content
provider’s utility arbitrarily close to the maximal:

W (u) =
∫ u

0

w(x)dx

{≤ Cp(u) if u 6= u∗,
= Cp(u) + ε if u = u∗, (19)

where ε is a positive real number and is arbitrarily small.
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Proof. For a given reward scheme w(x), assume the peers set u = u∗(w(x)) to
maximize their utility. We have πp(u∗, w(x)) = u∗

∫ u∗

0
w(x)dx − Cp(u∗) ≥ 0;

otherwise, the peers can obtain πp(u,w) = 0 > πp(u∗, w(x)) by setting u = 0.
Therefore, the content provider’s utility πs(w(x), u) in (17) is upper-bounded by
argmaxu−Cs(u)−NCp(u). The content provider’s utility achieved in Eq. 19 is
argmaxu−Cs(u)−NCp(u)− ε, so it can be arbitrarily close to the upper-bound
when ε is arbitrarily small. ut

In this subsection, we relax the requirement of continuity on the reward
function W (u). An interesting implication is that the theorem provides us the
insight in designing such reward schemes that maximize the content provider’s
utility. In fact, maxu−Cs(u)−NCp(u), or minu Cs(u) + NCp(u) is a standard
convex optimization and can be easily solved. After obtaining u∗, we can easily
design a reward scheme satisfying (19). For example, we can design

w(x) = C ′p(x) + εδ(u∗), (20)

where δ(x) is the unit impulse function.
It is also interesting to note, using the general reward scheme in Theorem 4,

the procedure of determining u∗ is exactly maximizing the social welfare. There-
fore, we have PoA=1, i.e., the social welfare is maximized when the content
provider maximizes its own utility.

We briefly conclude the result in our game theoretic analysis. The interaction
of the content provider and the peers can be viewed as a Stackelberg game where
the content provider takes the first action and the peers follow. The existence and
uniqueness of Stackelberg equilibrium shows the stability of the reward scheme,
while efficiency is quantified by price of anarchy. We also point out the content
provider’s best strategy in designing reward in the general form.

5 Performance Evaluation

In this section, we validate the stability and efficiency of our incentive scheme
via extensive simulations. We have the following settings:

– The system consists of N = 10, 000 peers, one server and one video with
K = 50 segments and playback rate r = 500 Kbps.

– The peers’ external arrival probability to segment i is p0i = 2i−1

(i−1)!e
−2 (1 ≤

i ≤ K); the probability of doing play operation is pi,i+1 = 1 − 0.6e−0.25×i

(1 ≤ i ≤ K − 1); and the probability of quit operation is pi0 = 1 − pi,i+1

(1 ≤ i ≤ K− 1), pK0 = 1. Assume the fast-forward and rewind operations are
rare and can be omitted.

– The content provider’s cost per unit capacity cs = 1. The peers’ upload cost
Cp(u) = cpu

β , where cp and β are parameters we will vary in simulation.
– The content provider chooses w ∈ [0, 1], and the peers choose u ∈ [0, 1000]Kbps.



Incentivizing Upload Capacity in P2P-VoD Systems 13

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

i

p
0i

 &
 p

i0

arrival probability p
i0

departure probability p
0i

Fig. 1. Arrival and departure probability
for each video segment

0 10 20 30 40 50
0.01

0.02

0.03

0.04

0.05

i

q
i

Fig. 2. Fraction of peers in each video seg-
ments

0 200 400 600 800 1000
0

1

2

3

4

5
x 10

6

u

C
s(u

)

Fig. 3. Content provider’s upload cost

0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

x 10
7

w

π s

Fig. 4. Content provider’s utility

In Fig. 1, we plot the arrival probability p0i and departure probability pi0

of each segment i. Observe that when a peer starts watching a video, it has
probability p01 = 0.135 to start from the first segment, and p02 = p03 = 0.271
to start from the second or third segment, but the probability of watching from
S4 and onwards decreases rapidly. This corresponds to the reality where some
people start from the beginning, but more people would like to skip the first few
segments like advertisement. We can also observe that peers watching S1 will
quit the viewing course with probability 0.6, but the probability of quit operation
decreases for peers watching later segments of the video. In Fig. 2, we plot the
fraction of peers qi for each video segment i. We can see from the figure that
there is an increasing trend of popularity from S1 to S4, and a decreasing trend
thereafter. This trend is due to the peers’ viewing behaviors described above.

In Fig. 3, we plot the content provider’s upload cost Cs(u) (refer to Eq. 8)
when we vary u ∈ [0, 1000] Kbps. From this figure, we can observe that Cs(u) is
convex and non-increasing in u, which validates Proposition 1.

In Fig. 4, we investigate the content provider’s utility πs(w, u) (refer to Eq. 9)
when varying the unit reward w to peers. Assume the peers decide their upload
capacity u to maximize their utility for given w. In this simulation, we fix cp =
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0.15 and β = 1.2 in the peers’ upload cost function Cp = cpu
β . We plot the

content provider’s utility πs when varying w ∈ [0, 1]. When w = 0, peers do not
contribute any upload bandwidth and thus the content provider’s utility equals
the negative value of the cost for supporting all peers’ viewing requirement.
When w increases from 0, the content provider can utilize part of peers’ upload
capacity so as to increase its utility. However, when w is very large, peers’ decision
u is also large. The content provider’s utility decreases due to the huge amount of
reward it has to pay to the peers. There exists an optimal unit reward w = 0.62
where the content provider’s utility is maximized with value −3.63× 106.

In Fig. 5, we investigate the Stackelberg equilibrium under different parame-
ters. In particular, we plot the value of w∗ and u∗ at the Stackelberg equilibrium
when fixing β = 1.2 and varying cp ∈ [0.02, 0.20]. The figure shows that when cp

increases, i.e., the upload cost of peers increases, the content provider rewards
more to peers, and the peers tend to contribute less. However, we also note u∗

is not monotonous in cp, and there is a local minimum of u∗ when cp = 0.06.
We compare the maximal social welfare and the social welfare at Stackel-

berg equilibrium in Fig. 6. We fix cp = 0.2 and vary β ∈ [1.06, 1.60]. We can
observe from the figure that the social welfare at the Stackelberg equilibrium is
always very near to the maximal value, i.e., PoA≈1 for any β ∈ [1.06, 1.60]. This
simulation result illustrates the efficiency of our incentive scheme.

To summarize, all these simulation results validate our theoretic analysis and
show the stability and efficiency of our incentive scheme.

6 Related Work

Incentive issue has received plenty of attentions in P2P applications. Zhao et
al. [19] proposed a general framework to evaluate the expected performance
gain and system robustness for a class of incentive protocols wherein peers can
distributively learn to adapt their actions. In [16], the authors used game model
to analyze the content production and sharing in P2P networks and compare the
performance of different existing incentive schemes. There are also some exist-
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ing works on designing particular incentive schemes. The first incentive scheme
proposed for P2P system is the micropayment in [6]. Misra et al. [13] proposed
a Shapley value approach in incentive design using a cooperative game model.
Reputation [7, 9] is another well-known approach where a peer’s reputation rep-
resents its history of contribution in the system. Ma et al. [12] proposed a service
differentiation approach in P2P network based on the amount of contribution
each node has provided to the network community.

All these existing works are based on general P2P settings or are specifically
designed for P2P file sharing systems. However, P2P-VoD systems have special
features. Wu et al. [18] analyzed how to efficiently utilize the peers’ resources,
but did not address how to incentivize peers to contribute their resources. Habib
et al. [8] proposed a service differentiation approach for incentive scheme in
P2P multimedia systems, where peers with high contribution have flexibility
in peer selection so that they receive better quality of service. Mol et al. [14]
designed a free-riding-resilient P2P-VoD system where peers favor uploading to
other peers who have proven to be good uploaders. These two works are similar
because these incentive schemes they proposed are both variants of the tit-for-tat
mechanism in file sharing applications. Similar approaches were also proposed for
live streaming systems, e.g., in [17], the authors presented a modified tit-for-tat
mechanism; in [11], a multi-layered live streaming system punishes the peers with
low contribution by providing them with low quality of service. Instead of using
the punishment-based approach, we propose a general reward-based incentive
scheme where we incentivize the peers to contribute their upload capacity. In
practice, peers’ upload capacity is constrained by their Internet access types and
hence varies a lot. Using our approach, peers with low upload capability can still
receive good quality of service provided that they accept a low level of reward.

7 Conclusion

Incentive scheme is a key design issue in P2P applications in order to encourage
peers’ resource contribution. However, due to the complex and stochastic nature
of peers’ behavior, it is challenging to design an effective incentive scheme in
P2P-VoD systems. In this paper, we propose a simple yet effective reward-based
incentive scheme. We model the peers’ distribution in movie segments using mean
field approximation, characterize the content provider’s cost in terms of peers’
contribution and develop a game-theoretic framework to analyze the interactions
of the content provider and peers under our reward-based incentive mechanism.
We also show the stability and efficiency of our incentive scheme via extensive
simulations.
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