
LayerPaint: A Multi-Layer Interactive 3D Painting Interface

Chi-Wing Fu

cwfu@ntu.edu.sg

Jiazhi Xia
School of Computer Engineering, Nanyang Technological University, Singapore

xiaj0002@ntu.edu.sg

Ying He

yhe@ntu.edu.sg

ABSTRACT
Painting on 3D surfaces is an important operation in com-
puter graphics, virtual reality, and computer aided design.
The painting styles in existing WYSIWYG systems can be
awkward, due to the difficulty in rotating or aligning an ob-
ject for proper viewing during the painting. This paper pro-
poses a multi-layer approach to building a practical, robust,
and novel WYSIWYG interface for efficient painting on 3D
models. The paintable area is not limited to the front-most
visible surface on the screen as in conventional WYSIWYG
interfaces. We can efficiently and interactively draw long
strokes across different depth layers, and unveil occluded re-
gions that one would like to see or paint on. In addition,
since the painting is now depth-sensitive, we can avoid vari-
ous potential painting artifacts and limitations in the conven-
tional painting interfaces. This multi-layer approach brings
in several novel painting operations that contribute to a more
compelling WYSIWYG 3D painting interface; this is par-
ticular useful when dealing with complicated objects with
occluded parts and objects that cannot be easily parameter-
ized. We evaluated our system with 23 users, including both
artists and novice painters, and obtained positive experimen-
tal results and feedback from them. The user study results
demonstrate the efficacy of our novel interface over conven-
tional painting interfaces.

Author Keywords
3D painting, WYSIWYG interface, depth segmentation

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User inter-
faces; I.3.4 Graphics Utilities: Paint systems

General Terms
Algorithms, Design.

INTRODUCTION
Painting 3D models is an important operation in computer
graphics, virtual reality, and computer-aided design, as well

as computer entertainment and gaming. A desired 3D paint-
ing system should allow the user to paint on the object sur-
faces in an efficient and intuitive way. Certain 3D input de-
vices, such as haptics, provide the users with high degree of
spatial freedom to directly control the brush movement in
the 3D space of the object. However, the cost of the hard-
ware usually limits its applications to experts, while many
artists still prefer to paint 3D models with conventional 2D
interfaces, such as the tablet and mouse, as demonstrated in
traditional painting with 2D drawing canvas.

To maximize 3D painting capability with 2D input devices,
Hanrahan and Haeberli pioneered the WYSIWYG design [12]
that allows the users to directly paint with different types of
pigments and materials onto the 3D surfaces by projecting
the footprint of the brush from the screen space to the texture
space. There are two widely-used techniques, screen- and
tangent-space, to define the projection. The former projects
the brush footprint onto the surface using inverse viewing
transformation whereas the latter places the footprint in the
tangential surface at the brush position and projects the foot-
print onto the surface in the direction parallel to the surface
normal. The WYSIWYG approach is highly intuitive, easy-
to-implement, and it usually leads to expectable results that
are faithful to what we have seen on the screen. However,
the painting style of all the existing WYSIWYG systems
can be awkward, due to the difficulty in rotating the ob-
ject for proper viewing during the painting, and such a situ-
ation can be even worse when the 3D objects have complex
topology and geometry, for example, those with occluded
region(s) that cannot be adequately revealed from many dif-
ferent viewing directions.

This paper presents LayerPaint, a novel WYSIWYG paint-
ing system that only requires low-cost 2D input devices such
as the tablet and mouse. In contrast to the existing WYSI-
WYG systems, LayerPaint uniquely allows the users to effi-
ciently paint long strokes over multiple layers without wor-
rying about the occlusions. Our design is built upon a series
of multi-layer methods that run at interactive speed with the
help of the GPU on the graphics hardware, so that we can
support interactive painting operations over multiple depth
layers. Once the artist picks a certain view of an input 3D
model, our interface first carries out multi-layer segmenta-
tion to partition the depth-peeled layers into connectable re-
gions and build pixel-level and region-level connectivity in-
formation at interactive speed. Hence, we can design and im-
plement a layer-aware painting mechanism that is sensitive
to both region occlusion and region boundary, while support-

Figure 1. Our multi-layer approach brings in novel painting operations that run at interactive speed: given a 3D model, we can draw a long stroke
on it, see (a)-(c), and when the stroke gets occluded (see (b) and note the cursor), the hidden region can popup automatically. We can draw the entire
green line, see (c), in only a single stroke. Users can also selectively pop-up any hidden region with a mouse click, see (d), and draw on this pop-up
region, see (e). It takes only 35 seconds (with a mouse) to complete the drawing shown in (f), see (g) for another view.

ing the drawing of depth-sensitive long strokes across differ-
ent layers. Moreover, to further take advantage of the avail-
able multi-layer connectivity information, we design also a
collection of multi-layer painting operations, for example,
an interactive region select-and-hide mechanism that one could
automatically unveil occluded regions while painting or in-
tentionally unveil the selected regions with mouse/tablet clicks.

As demonstrated in Figure 1, the users can draw a very long
stroke that spans not only the front-most visible layer but
also the hidden layers. When the stroke enters a hidden
layer, LayerPaint can automatically pop up the hidden re-
gion for the users to continue the stroke. The users can draw
continuous and smooth strokes without changing the view-
point. This feature is highly desired, especially for paint-
ing on models with highly complex occlusions. Powered
by GPU-based layer segmentation, interactive painting with
this feature can be supported, see also the implementation
and result section. The major contributions of this paper are
summarized below:

• First, this paper proposes a multi-layer approach to build a
compelling WYSIWYG painting interface for 3D models.
This is the first paper (we noticed) that explores the use of
multi-layer information for interactive 3D painting.
• Second, we propose a series of novel multi-layer methods,

including the GPU-based multi-layer segmentation to par-
tition depth-peeled layers into regions with pixel-level and
region-level connectivity information; layer-aware paint-
ing algorithm to facilitate the drawing of depth-sensitive
strokes automatically over suitable depth layers, see Fig-
ure 1; and interactive region popup and rendering algo-
rithms to allow automatic or intentional unveiling of oc-
cluded regions. Note that all these algorithms are de-
signed to run at interactive speed in order to support in-
teractive painting over multiple layers.
• Third, several multi-layer operations are introduced into

the WYSIWYG painting interface: 1) layer-aware paint-
ing; 2) interactive region select and pop-up; 3) interactive
paint-to-hide; and 4) layer-aware object rotation. These
are novel painting operations available only after we ex-
plore interaction methods with multiple depth layers.
• Last, we carefully integrate the above ideas as a work-

ing user interface and carry out a user study that further
demonstrates the efficacy and applicability of LayerPaint.

PREVIOUS WORK

3D Navigation. Painting on real 3D models involves a high
degree of freedom in the spatial movement of the paintbrush
and also in the placement of the 3D object. Manipulating

virtual objects with mouse controls usually takes more time
than direct manipulation of real objects [23]. The haptic de-
vices are capable of providing such a high degree-of-freedom
while providing also the sense of touch with force feedback
to the users. Usually, this kind of devices is armed with a
pen-like probe, which can be manipulated like the pen (the
painting brush) in the 3D painting. These unique features
make haptic devices highly desirable in narrowing the gap
between real-world 3D painting and virtual 3D painting [5,
21, 10]. Balakrishnan and Kurtenbach [3] proposed using
non-dominant hand to operate the virtual camera controls
typically found in 3D graphics applications, thus freeing the
dominant hand to perform other manipulative tasks in the
3D scene. Khan et al. [13] proposed a surface-based camera
control technique that allows the user to focus on the task
at hand instead of continuously managing the camera posi-
tion and orientation. McCrae et al. [17] proposed a multi-
scale system that allows consistent 3D navigation at various
scales, as well as real-time collision detection without pre-
computation or prior knowledge of the geometric structure.

Painting devices. Several innovative painting devices have
been developed. Among these, we notice the work of Schkolne
et al. [20], who proposed Surface Drawing for users to con-
struct 3D shapes with various hand and tangible tools in a
semi-immersive virtual environment, the work of Ryokai et
al. [18, 19], who proposed the I/O Brush to explore the com-
bination of colors, textures, and movements in everyday ma-
terials, and the work of Vandoren et al. [22], who created
a natural painting interface on an interactive table using a
brush with infrared light emitting fibers. The haptic feed-
back and an accurate brush footprint are added to the IR-
brush to enable the contact area tracking.

3D painting/modeling interface. A considerable amount
of research effort have been devoted to explore 3D paintings
with conventional 2D input devices. Hanrahan and Haeberli
pioneered the WYSIWYG system for the users to directly
paint on 3D surfaces by mapping the brush footprint to tex-
ture [12]. Agrawala et al. [1] presented an intuitive inter-
face for painting on scanned surfaces using a physical ob-
ject as a guide. By moving the sensor of the space tracker
over the surface of a physical object, user-picked colors can
be painted onto the corresponding locations on the scanned
mesh. Grimm and Kowalski [11] presented a painting inter-
face to control what the object should look like under differ-
ent lighting and viewing conditions. The system can render
the object under novel lighting conditions and a new view-
ing angle by combining various painting controls. DeBry et
al. [7] presented an octree-based paint and texture mapping
system that completely avoids the surface parameterization.

Figure 2. Multi-layer segmentation on two different views of the Trefoil Knot model: depth peeling is first applied to generate one set of color and
depth textures per layer; segmentation is then further applied to produce pixel-level connectivity, segmentation maps, and region-level connectivity.

Figure 3. Pixel-level (left) and region-level (right) connectivity: we illustrate these two levels of connectivity using view 1 shown on the left hand side
of Figure 2; note that we zoom into a region on layer L1 (of view 1) to illustrate the pixel-level connectivity.

Due to the adaptive nature of this approach, detail is created
on the map only, as required by the texture painter. Bae et al.
[2] proposed a 3D curve sketching system for professional
designers to iterate directly on concept 3D curve models.

Cutaway visualization/illustration of 3D models. Burns
and Finkelstein [6] developed a system for authoring and
viewing interactive cutaway illustrations of complex 3D mod-
els. Li et al. [15] presented a method for generating cutaway
renderings of polygonal scenes at interactive frame rates, us-
ing illustrative and non-photorealistic rendering cues to ex-
pose objects of interest in the context of surrounding objects.
More recently, Li et al. [14] presented a system for generat-
ing interactive exploded views for complex 3D models.

The proposed LayerPaint interface differs from conventional
WYSIWYG systems. Taking advantage of the GPU compu-
tational power, LayerPaint can efficiently allow us to paint
not just on the front-most visible area, but also on any un-
derlying regions. Since it partitions depth-peeled layers of
the current view into connectable regions, the automatic re-
gion popup and rendering algorithms can provide automatic
or intentional reveal of any occluded object part. With these
unique features, the users can draw very long strokes over
multiple layers without needing to change the viewpoint or
worrying about the occlusions.

MULTI-LAYER SEGMENTATION
Multi-layer segmentation is a view-dependent pre-processing
step, aiming at supporting the painting operations to be pre-

sented in the next section. Basically, its goal is to generate
multi-layer segmentation and connectivity information, in-
cluding the pixel-level connectivity, the segmentation maps,
and the region-level connectivity. Since it has to be per-
formed every time after the user changes the object view, we
aim at a highly efficient multi-layer segmentation that can
run interactively with the help of the GPU.

Depth Peeling. Figure 2 illustrates the entire multi-layer
segmentation process with two example views of the Trefoil
Knot model. First, we apply the conventional depth peeling
method [9] to the user-selected view on the 3D model with
backface culling enabled. Note that this process can be per-
formed entirely on the GPU, and can be further accelerated
with recent methods [4, 16]. To facilitate our discussion in
the paper, we denote L1 as the front-most depth layer (layer
ID = 1), L2 as the second layer (layer ID = 2), etc. Concern-
ing the depth-peeled layers, we have the following property:

For any foreground (non-background) pixel p(x, y) in
Lj (j > 1), there must be a foreground pixel at (x, y)
on Li (for i = 1 to j − 1) with a smaller depth value
than that of p on Lj .

Such a property can be highly useful for accelerating the
multi-layer rendering to be presented in the “Multi-layer Op-
erations” Section. And the result of this step is one set of
color and depth images (GPU textures) for each depth layer,
see the first row of Figure 2. Note that occlusion query on
GPU is used to count foreground pixels per layer.

Connectivity and Segmentation Information. Our second
step to build the connectivity and segmentation information
contains the construction of 1) pixel-level connectivity; 2)
segmentation map; and 3) region-level connectivity. Since
these operations are heavily related to the GPU, please refer
to the Appendix for the detail.

Table 1. Comparing LayerPaint and Eisemann et al. [8]

In fact, there are other ways to segment depth-peeled lay-
ers. For instance, a recent work on creating vector graphs
from 3D models [8] explores also multi-layer segmentation.
However, our goal is quite different from this work (See Ta-
ble 1 for a detailed comparison with Eisemann et al. [8]),
where we aim at high performance and robust segmentation
(and the production of multi-layer connectivity information)
with the GPU, so that we can support the proposed painting
operations at interactive speed.

MULTI-LAYER OPERATIONS
After multi-layer segmentation, we could perform various
interactive operations over multiple layers. The following
multi-layer operations/interactions are proposed:

(1) Layer-aware painting
Unlike previous WYSIWYG screen painting interface, layer-
aware painting supports the drawing of long strokes in a
depth-sensitive manner, see also Figure 1. In detail, we main-
tain two screen-sized maps storing paintable and trackable
information during program runtime:

Figure 4. Paintable (red) and trackable (include both red and blue)
regions over multiple layers as we draw a stroke on the screen.

Paintable Region: When the user starts a paint action, say
with a touch pen or a mouse, we first obtain the on-screen
pixel location, say (x0, y0), and lookup the layer ID, say Li,
corresponding to the pixel currently visible on the screen.
Note that with the region popup and hiding operations to be
presented later, the visible pixel at (x0, y0) may correspond
to an underlying layer. Then, starting from (x0, y0, Li), we
can apply breath-first search with the pixel-level connec-
tivity information to recursively visit all neighboring pixels
within a user-defined brush radius, say R. Since the breath-
first search could visit the same pixel location more than
once (note that it may go over another layer and loop back),
we use a screen-sized map, say Mp(x, y), to bookmark the
layer ID for each visited (paintable) pixels. Hence, we can

ensure that only one certain layer is paintable for each screen
pixel location. And since we use breath-first search, the pixel
nearer to (x0, y0, Li) is guaranteed to be picked first. As
a result, Mp(x, y) can tell us the paintable region around
(x0, y0, Li). Figure 4 shows the paintable regions in red,
and as the cursor moves, the paintable region may fall (com-
pletely or partially) behind other layer(s) as demonstrated in
(b) and (c), and the paintable region is also sensitive to the
region border, see (d).

Trackable Region: To support the drawing of long strokes
with mouse/touch-pen drag while maintaining depth conti-
nuity, we need to determine the layer ID for the succeed-
ing mouse cursor location, say (x1, y1), after the cursor just
moves away from (x0, y0). Generally, we need to check
all multi-layer (foreground) pixels existed on (x1, y1), and
find out the one that is the nearest to (x0, y0, Li) against
the pixel-level connectivity information, which works like a
graph data structure in this case. Since tracking from multi-
layer pixels at (x1, y1), especially from those on unmatched
layers, could be computationally expensive, we take an al-
ternative approach to compute a trackable region, say Mt,
from (x0, y0). Its advantage is that we can build this track-
able region efficiently by re-using the information available
in the paintable map, i.e., the layer ID. In particular, rather
than stopping the breath-first search at R (when construct-
ing the paintable region), we can continue the search until a
much larger radius, say Rmax. Thus, we can obtain the layer
ID for more pixels around (x0, y0). Then, such a trackable
map can support a fast lookup of the layer ID when the cur-
sor just moves to (x1, y1). Furthermore, we can also take
advantage of the layer ID coherence to avoid rebuilding of
the entire trackable region on successive cursor movements.
See also Figure 4 for the trackable region, which includes
both the red and blue areas.

The Painting Algorithm: Given the paintable and trackable
regions, our painting algorithm works as follows:

On-Mouse-Down (x0 , y0 , object) {
Li ← lookup layer ID of visible pixel on (x0 , y0)
(Mp , Mt)← build maps(x0 , y0 , Li)
paint object(object , Mp)
}
On-Mouse-Drag (x1 , y1 , object) {

Li ← lookup layer ID from Mt

Mp← build paintable map(x1 , y1 , Li)
Mt← update trackable map(x1 , y1 , Li , Mt)
paint object(object , Mp)
}

In practice, before we lookup the layer ID Li, we need to
check if the cursor moves to a non-foreground pixel or a non-
depth-connected region, i.e., outside Mt. If this happens, we
have to ignore the mouse action to avoid mis-painting.

Avoiding Color Bleeding: One potential problem with WYSI-
WYG painting is accidental painting on irrelevant layers.
This weird case may also happen in LayerPaint, see the mid-
dle column of Figure 6, where the cursor locates very close
to the end of a suggestive contour line, and so, the breath-
first search could go around the end of the contour line and
label also the pixels on the opposite side of the contour.

Figure 5. Region sorting and rendering after intentional region select and popup.

To resolve this problem, we put an additional constraint in
the breath-first search while building the paintable map. Here
we keep track of the distance the breath-first search moved
so far from the starting cursor location, i.e., (x0, y0). If the
distance goes above

√
2R at a certain pixel being visited, we

stop the search there even though the pixel is still within the
brush radius R, see the fixed result in the last column of Fig-
ure 6. Note that the second row shows another views that
better reveal how unpleasing color bleeding could be.

Figure 6. With (middle) and without (right) Color Bleeding.

(2) Interactive Region Select and Popup
The multi-layer segmentation and connectivity information
facilitates two kinds of interactive region select and popup:

1. Intentional region popup: The user can click on the screen,
say (x2, y2), to unhide the region below the currently vis-
ible pixel. First, our interface can look up the layer ID,
say Li, of the currently visible pixel at (x2, y2). Then,
it checks the layer behind Li to see if there is any fore-
ground pixel just below the visible pixel. If it is the case,
it will lookup the region ID, say si, of the region con-
taining (x2, y2, l2) from the segmentation map and do a
region popup on si. Otherwise, it looks up the segmented
region containing (x2, y2, L1), i.e., the front-most layer,
and do a region popup with this front-most region. Thus,
the user can also cycle through different available regions
on (x2, y2), see (c) and (d) in Figure 1 for an example of
intentional region popup.

2. Automatic region popup: After each cursor movement in
layer-aware painting, if the painting location, say (x3, y3)
with layer ID Li, is not the currently visible pixel on the
top, our system looks up the segmented region containing
(x3, y3, Li) and do a region popup on the region, see (a)

and (b) in Figure 1 for an example. Note that the user
can disable this feature if they want to keep the on-screen
region visibility ordering during the painting.

Region popup and sorting: Every time after we build the
connectivity and segmentation information, we keep a front-
to-back sorted list of segmented region IDs, for example, for
view 2 shown in Figure 2 (right) (also Figure 5), we maintain
a list of nine region IDs: s1 → s2 → ... → s9, where
initially, the three segmented regions on the first layer, i.e.,
s1 to s3, are in the front, and so on. If si is the region to be
popup (either in an intentional or automatic region popup),
si will be moved to the front of this sorted list.

In case it is an intentional popup, we popup also the re-
gions connected to si (and potentially the regions further
connected to the first region group in a recursive manner).
In practice, we do a two-level recursion, so that we can bet-
ter reveal the surroundings around si. Note that for those
additional regions popup with si, we sort them according to
their layer IDs and move them to the front of the sorted list
from back to front, e.g., if the initial sorting order is

s1 → s2 → s3 → s4 → s5 → s6 → s7 → s8 → s9 ,

and s4 (on 2nd layer) is intentionally selected for popup with
s1 (on 1st layer) and s9 (on 3rd layer) connected to it (see
Figure 5 for the region labels), s1 and s9 will first be moved
to the front of the list after s4:

s4 → s1 → s9 → s2 → s3 → s5 → s6 → s7 → s8 .

Other than region rendering, the sorted list can also affect
the layer orderings on screen when we lookup the currently
visible pixel, e.g., starting a new drawing stroke from a pixel
or doing an intentional region popup.

Back-to-front region rendering: Rendering the segmented
regions from back to front can be done by using the fragment
program on the GPU. In our current implementation, we do
a back-to-front rendering according to the sorted list, but as
a speedup, we can first analyze the region sorted list. By
considering the depth peeling property stated earlier, when
we render a region located in layer Li (i > 1), say s,

we can ignore the rendering of s if all regions on layer
Lj (for some j < i) are to be drawn after s.

In this way, we could prune regions from back to front in the
sorted list and generate a smaller number of regions in actual
rendering. For instance, given the example sorted list shown
previously, we can truncate it into:

s4 → s1 → s9 → s2 → s3 .

Since s1, s2, and s3 form a complete set of regions on the
first layer, they can block regions on the right of s3 in the
original sorted list. Figure 5 shows an example sorting and
rendering result of applying intentional region select and
popup twice on the same screen pixel location. Different un-
derlying regions (s6 then s9) below the initially visible pixel
can be unhidden and transparency can also be added into the
multi-layer rendering. However, it is worthwhile to note that
if transparency is enabled, we can only prune regions against
the first layer (but not others), since regions in the first layer
always stay opaque, while others are not. And in fact, such
rendering feature can be further used to interactively create
exploded views that commonly used for visualizing the inner
parts of 3D models.

(3) Interactive Paint-to-Hide
In addition to unhiding regions underneath, we support an-
other kind of region-selection, namely the interactive paint-
to-hide. As shown in Figure 7, we can paint on the view
of the segmentation map to remove image region(s) from
the view. Hence, we can interactively edit the visibility of
various part(s) to best suit our painting purpose. Note that
when interactive paint-to-hide is in use, we have to ignore
the acceleration trick in layer-based rendering because some
regions below the removed part(s) may become visible.

Figure 7. Interactive Paint-to-Hide by region markup.

(4) Layer-aware Object Rotation
When we explore a 3D object with rotation, the rotation cen-
ter is usually the object center, world center, or a user-picked
surface point, where we can locally explore the object while
keeping the spatial context around the picked point. With
the multi-layer information, we can extend such a rotation to
include points over different layers. In our design, when the
user clicks on the object surface to initialize a rotation, say
(x4, y4) on the screen, we pick up the layer ID of the cur-
rently visible pixel on (x4, y4), and lookup its depth value
from the related depth map. Then, we can compute its ob-
ject coordinate, and rotate about the point. Figure 8 shows
a practical usage of this operation. After we popup an un-
derlying region and create an exploded view, we can paint
on this underlying region. When we need to further explore

Figure 8. Layer-aware Object Rotation allows us to rotate about sur-
face point on any layer.

its surrounding from different angles, we can pick a surface
point in this underlying region, and rotate about it. The ad-
vantage of such an operation is that we can keep the spatial
context and explore around the picked point even though it
is not on the front-most visible layer.

IMPLEMENTATION AND RESULTS
We employed several GPU methods in our implementation
to support interactive multi-layer segmentation and painting
operations. First, we store most data directly on the GPU,
e.g., the per-layer textures as frame buffer object (FBO) and
the object geometry as vertex buffer object (VBO). Since
the color, depth value, and segmentation information are the
most-frequently accessed data for all layer-aware operations,
we allocate one texture buffer for each of them, as illus-
trated in Figure 2. Note also that the FBO facilitates efficient
texture data read/write with off-screen rendering during the
depth peeling process. In addition, since the geometry is
static, storing it on the GPU helps to avoid redundant geom-
etry transfer from the main memory via the bus to the GPU.

Figure 9. The setup of LayerPaint with the input tablet.

In addition, we experimented with LayerPaint on a 64-bit
workstation that equipped with a quad-core Xeon 2.50GHz
CPU, 8GB memory, and the graphics board GeForce GTX
285 (1GB GPU memory). Figure 9 shows the entire setup in-
cluding the tablet we used in the experiment and user study.
Furthermore, to demonstrate the performance of LayerPaint,
we measured the time taken for the following four critical
procedures in LayerPaint:

• start stroke (corresponding to On-Mouse-Down) is called
every time when the user starts a stroke with a mouse
click. It initializes the paintable and trackable maps, and
paints the first spot on the object surface;

• move stroke (corresponding to On-Mouse-Drag) con-
tinues a stroke with a mouse drag. It updates the two maps
and paints a new spot on the current mouse location;

• build layers is called whenever the object view changes;
this procedure invokes the multi-layer segmentation to con-
struct connectivity and segmentation information;

• draw layers applies fragment shader to render layer by
layer using the sorted region list.

Table 2 shows the performance of these procedures as ex-
perimented with four different 3D models. Given the timing
statistics, we can see that interactive segmentation is achiev-
able with the GPU support and real-time painting of long
strokes can also be realized with LayerPaint.

Table 2. Performance of LayerPaint: Average time taken to perform
these operations on four different models (in milliseconds).

Model # vertices start stroke move stroke build layers draw layers
Trefoil Knot 144K 168.00 5.73 85.81 0.19

Bottle 190K 330.25 6.03 98.36 0.17
Pegaso 75K 132.05 6.84 67.90 0.12

Children 200K 351.75 11.66 124.83 0.11

USER STUDY
Furthermore, we conducted a user study to quantify the ben-
efits that our system can provide to general users. We com-
pared the proposed LayerPaint system against conventional
WYSIWYG systems. To make the comparison fair, we con-
sider the following issues when designing the user study: 1)
the models to be painted; 2) the painting pattern; and 3) the
way to present the requirements to the users. After consult-
ing with several artists, we chose three testing models (see
Figure 10) and designed the painting patterns to simulate the
common painting tasks.

Another concern is that familiarity with the system may af-
fect the experiments on painting performance. To minimize
such a potential discrepancy, we recruited two groups of
participants for the user study. The first group painted the
required pattern using the conventional system followed by
LayerPaint, while the other group did exactly the same set of
tasks but in reverse order. Before the user study, we briefly
informed the participants the controls in the user interface
and the tablets. Then, each participant was given five min-
utes’ time to experiment with the painting controls. Note
that LayerPaint is developed based on an existing WYSI-
WYG system, so participants can simply check/uncheck a
GUI checkbox to enable/disable the layer-aware operations.

There are 15 participants in the first group: eight males and
seven females, aged from 22 to 31. Four of them have rich
experience in 2D/3D painting and the others are novice painters.
We recruited 8 participants in the second group: five males
and three females, aged from 21 to 32. Two of them are
experienced 2D/3D painters. Note that experienced painters
and beginners may have completely different painting styles
that could lead to inaccurate measurements in our tests. To
reduce such kind of discrepancy, we first marked the re-
quired painting region on the testing models (see the col-
ored areas in Figure 10), and the participants were asked to
choose a color for the brush and fill the marked region.

There are two stages in the user study. In the first stage
(for the first group), the participants were first asked to do
a series of painting tasks using a conventional WYSIWYG
system. After that, we taught the participants the concept
of LayerPaint and the related layer-aware operations. Next,
they were given another five minutes to experiment with the
new features, and then perform the same set of tasks as in
the first stage, but with the features in LayerPaint. In each
painting task, we measured the time taken by each partici-
pant to finish the required drawing. The user study for the
second group is slightly different. Before the user study, we
first taught the participants the concept of 3D painting, Lay-
erPaint and the corresponding layer-aware operations. After
experimenting with the system for five minutes, the partici-
pants were then asked to do the painting tasks using Layer-

Paint. After that, they were given another 5 minutes to get
familiar with the painting interface without the layer-aware
features, and then perform the same set of tasks with the
conventional WYSIWYG interface.

Experiment #1: The first experiment aims at evaluating
the performance of painting a long stroke on the Trefoil Knot
model, see also Figure 10 (left). Note that being able to draw
a long stroke can significantly improve the 3D painting ef-
ficiency. However, due to occlusions, the participants can-
not complete the entire painting with only one stroke when
using the conventional system. Instead, they have to care-
fully rotate and align the model to unveil various hidden re-
gions, and so, multiple strokes are required. Even for expe-
rienced users, drawing a line by multiple strokes from dif-
ferent viewpoints can easily lead to unpleasing drawing arti-
facts like discontinuity, undesired overlap, etc.

Armed with LayerPaint, the users can easily finish the re-
quired drawing without changing the viewpoint or re-aligning
the object. As a result, most participants can finish this task
with only a single stroke. The timing statistics show that the
longest time taken in this experiment is 93 seconds for con-
ventional system, but only 58 seconds for LayerPaint. On
average, LayerPaint saves 60% of painting time as compared
to the conventional system.

Experiment #2: The second experiment is to evaluate the
performance of coloring a specified region. The participants
were asked to paint on two regions: a front-most region and
an inner surface region on Figure 10 (middle). Painting on
the front-most layer can be straightforward for both conven-
tional and LayerPaint systems, but painting on the inner sur-
face is a real challenge for the conventional system due to
blocking visibility. With LayerPaint, the users, however, can
efficiently paint on the inner surface as quickly as on the
front-most layer. As shown in Figure 11, the average time
for painting the same region with the conventional system is
2.3 time longer than with LayerPaint.

Experiment #3: In contrast to the above two experiments
that examine the basic painting operations on synthetic mod-
els, this experiment aims at simulating a more non-trivial
painting task on a real-world 3D model. The users were re-

Fr
on

tv
ie

w
A

no
th

er
vi

ew

Figure 10. The three 3D models used in the user study: Experiment
#1 (left): draw a long stroke on the Trefoil Knot; Experiment #2 (mid-
dle): paint on the front-most and inner surface layers on Donuthexa;
Experiment #3 (right): draw saddles on the four-horse model.

quired to draw a saddle on each of the horse models. Each
saddle needs around four drawing strokes. Note that the
horses are aligned one by one, and hence, it is technically
very difficult to choose a viewpoint so that the user can view
all saddles under the conventional system. Thus, the users
can only draw one saddle at a time. But with LayerPaint,
we can see all saddles at the same viewpoint, see Figure 10
(right), by means of the hidden region popup. As a result,
the participants can select a desired layer and quickly paint
on it without needing to change the viewpoint or re-align the
3D models. As shown in Figure 11, the average time with
LayerPaint is only half of that with the conventional sys-
tem. This implies that LayerPaint can significantly shorten
the painting time for real painting tasks.

Figure 11. User study results. We measured the time each participant
took to complete the task in each experiment: G1 and G2 refer to the
first and second groups, respectively, while C and L stand for conven-
tional painting system and LayerPaint, respectively. We show the mean
time (green bars), maximum time, and minimum time taken for each
case. In summary, the timing statistics show that LayerPaint outper-
forms the conventional painting system in all experiments.

Rating. After finishing the above experiments, the partic-
ipants were required to rate the two test systems on a scale
of 1 to 5, where 1 means “not satisfied at all” and 5 means
“completely satisfied.” Without surprises, LayerPaint sys-
tem receives an average score of 4.9 as compared to 2.0 for
the conventional system. The participants also commented
that LayerPaint is significantly better than the conventional
system for painting on invisible layers. However, it also took
them more time to learn and understand the layer-aware op-
erations. Considering the advantages we can have with Lay-
erPaint, the time and cost for learning are certainly worthy.

Discussions. The experimental results demonstrate that Lay-
erPaint is superior over conventional painting interface be-
cause it takes advantage of the layer-aware operations to pro-
vide more flexibility in 3D painting. For example, painting
on inner surfaces (Experiment #2) can be highly efficient
with LayerPaint, but requires the users to carefully choose
the viewpoints in the case of conventional system. The tim-
ing statistics also evidence that the users of the conventional
system took two to three times longer on average to paint
the partially-hidden region (colored in black) than the front-
most region (visible region colored in red), though both re-
gions are of similar size. Using LayerPaint, the users can

easily bring the inner surface to the front and paint on it in
exactly the same way as on the frontal regions.

We also would like to point out that LayerPaint usually leads
to better painting results than the conventional system for in-
visible/occluded layers. The reason is that both LayerPaint
and the conventional system project the brush footprint from
the screen space onto the tangent space of the surface. A
badly chosen viewpoint could lead to a severe distortion dur-
ing the projection. As demonstrated in the experiments, it is
tedious and sometimes highly challenging (or even impos-
sible) to choose a good viewpoint for painting the hidden
region with the conventional system. With LayerPaint, the
users need not worry about the viewpoint and the projection.

Finally, to demonstrate the capability of LayerPaint in per-
forming complex tasks, we invited an artist to test our sys-
tem on Trefoil Knot, see row 1 of Figure 12. It took her 40
minutes to get familiar with the user interface controls and
the layer-aware features, and to design and paint on the 3D
model. Based on her expertise, we developed additional fea-
tures such as the flood filling, color picking, etc. And she
later also helped us to paint on more 3D models as shown in
rows 2 to 5 of Figure 12. The time taken to produce these
paintings varies from 20 to 60 minutes.

Limitations.
• Geometry: First, LayerPaint does not work well for some

specific models (which in fact are also hard for conven-
tional systems): 1) models with self-intersections, e.g.,
Klein bottle; note that LayerPaint only considers geomet-
ric continuity but not topological connection; 2) noisy mod-
els with bumpiness; many tiny layers could result.
• Graphics Hardware: Second, LayerPaint needs special-

ized graphics hardware that supports GPU-based fragment
processing so as to support its interactive operations.

CONCLUSIONS
In this paper, we proposed LayerPaint, a practical, robust,
and novel WYSIWYG interface for interactive painting on
3D models. In sharp contrast to the existing WYSIWYG
approaches, the paintable area of our approach is not lim-
ited to the front-most visible surface on the screen. Thus,
the users can efficiently and interactively draw long strokes
across different depth layers, and unveil the occluded regions
that one would like to see or paint on. Since the painting is
depth-sensitive, we can avoid various potential painting ar-
tifacts and limitations in conventional WYSIWYG painting
interfaces. In addition, LayerPaint does not require surface
parametrization of the input 3D models and no special haptic
device is needed in this approach. Our experimental results,
including both the user study and timing statistics, demon-
strate the efficacy of the proposed approach, which suggests
LayerPaint to be a highly efficient and compelling interac-
tion tool for painting real-world 3D models.

ACKNOWLEDGEMENTS
We would like to thank anonymous reviewers for the con-
structive comments given and Sun Qian for her contribution
in the 3D painting. This research is supported in part by
the following grant projects: MOE AcRF Tier1 Grant (RG
13/08) and NRF2008IDM-IDM-004-006.

REFERENCES
1. M. Agrawala, A. C. Beers, and M. Levoy. 3D painting

on scanned surfaces. In Symp. on Interactive 3D
Graphics ’95, pages 145–150, 1995.

2. S.-H. Bae, R. Balakrishnan, and K. Singh.
ILoveSketch: as-natural-as-possible sketching system
for creating 3D curve models. In ACM symp. on User
interface software and tech., pages 151–160, 2008.

3. R. Balakrishnan and G. Kurtenbach. Exploring
bimanual camera control and object manipulation in 3D
graphics interfaces. In CHI ’99, pages 56–62, 1999.

4. L. Bavoil and K. Myers. Order independent
transparency with dual depth peeling, 2008. White
paper, NVidia.

5. D. A. Bowman, E. Kruijff, J. J. LaViola, and
I. Poupyrev. 3D User Interfaces: Theory and Practice.
Addison-Wesley Professional, 2004.

6. M. Burns and A. Finkelstein. Adaptive cutaways for
comprehensible rendering of polygonal scenes. ACM
Tran. on Graphics (SIGGRAPH Asia), 27(5), 2008.
Article No. 154.

7. D. DeBry, J. Gibbs, D. D. Petty, and N. Robins.
Painting and rendering textures on unparameterized
models. In SIGGRAPH ’02, pages 763–768, 2002.

8. E. Eisemann, S. Paris, and F. Durand. A visibility
algorithm for converting 3D meshes into editable 2D
vector graphics. ACM Trans. on Graphics (SIGGRAPH
2009), 28(3), 2009. Article No. 83.

9. C. Everitt. Interactive order-independent transparency,
2001. White paper, NVidia.

10. A. Gregory, S. Ehmann, and M. Lin. inTouch:
interactive multiresolution modeling and 3D painting
with a haptic interface. In IEEE Virtual Reality, 2000.

11. C. Grimm and M. A. Kowalski. Painting lighting and
viewing effects. In Intl. Conf. on Comp. Graphics
Theory and App., pages 204–211, 2007.

12. P. Hanrahan and P. Haeberli. Direct WYSIWYG
painting and texturing on 3D shapes. In SIGGRAPH
90’, pages 215–223, 1990.

13. A. Khan, B. Komalo, J. Stam, G. Fitzmaurice, and
G. Kurtenbach. HoverCam: interactive 3D navigation
for proximal object inspection. In Symp. on Interactive
3D graphics and games, pages 73–80, 2005.

14. W. Li, M. Agrawala, B. Curless, and D. Salesin.
Automated generation of interactive 3D exploded view
diagrams. ACM Tran. on Graphics (SIGGRAPH 2008),
27(3), 2008. Article No. 101.

15. W. Li, L. Ritter, M. Agrawala, B. Curless, and
D. Salesin. Interactive cutaway illustrations of complex
3D models. ACM Tran. on Graphics (SIGGRAPH
2007), 26(3), 2007. Article No. 31.

16. F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu. Single
pass depth peeling via CUDA rasterizer. In SIGGRAPH
Asia 2009 Sketch, 2009.

17. J. McCrae, I. Mordatch, M. Glueck, and A. Khan.
Multiscale 3D navigation. In Symp. on Interactive 3D
graphics and games, pages 7–14, 2009.

18. K. Ryokai, S. Marti, and H. Ishii. I/O brush: drawing
with everyday objects as ink. In CHI ’04, pages
303–310, 2004.

19. K. Ryokai, S. Marti, and H. Ishii. Designing the world
as your palette. In CHI Extended Abs., pages
1037–1049, 2005.

20. S. Schkolne, M. Pruett, and P. Schröder. Surface
drawing: creating organic 3D shapes with the hand and
tangible tools. In CHI ’01, pages 261–268, 2001.

21. Y. Shon and S. McMains. Evaluation of drawing on 3D
surfaces with haptics. IEEE Comput. Graph. Appl.,
24(6):40–50, 2004.

22. P. Vandoren, T. Van Laerhoven, L. Claesen, J. Taelman,
F. Di Fiore, F. Van Reeth, and E. Flerackers. Dip - it:
digital infrared painting on an interactive table. In CHI
Extended Abs., pages 2901–2906, 2008.

23. C. Ware and J. Rose. Rotating virtual objects with real
handles. ACM Trans. Comp.-Human Interaction,
6(2):162–180, 1999.

Appendix: Multi-Layer Segmentation
1) Pixel-level: First of all, we build pixel-level connectivity for each pixel
in each depth layer. Basically, this piece of information tells us the depth
layer that a pixel connects to for all four 4-connected directions (up, down,
left, and right) in the image space. Here we have to determine if a pixel is a
boundary pixel on its own layer:

A pixel is on boundary if it is not depth-connected to any of the
four direct pixel neighbors on the same layer.

For interactive computation on the GPU, we compute depth-connection be-
tween two neighboring pixels by checking whether their depth difference
is less than a user-specified threshold, which is set to be 0.001, but could
be interactively controlled by the user. In addition, the input model is uni-
formly pre-scaled to just fit inside a unit cube for consistency. If a given
pixel is not a boundary pixel, it can depth-connect to all its four direct neigh-
bors on the same layer; Else, we need to search over all other depth layers
for a depth-connection from the pixel for the corresponding 4-connected
direction. Since this is a per-pixel operation, we can efficiently perform it
by using GPU fragment program, which is performed immediately after the
depth peeling. This substep results in an RGBA texture, namely the con-
nectivity texture, per depth layer, with each color channel storing the layer
ID of the connectable depth layer (if any) for each of the four directions
from the pixel, see Figure 3 (left) for an illustration.
2) Segmentation map: After that, we perform a multi-label image segmen-
tation on each connectivity texture to obtain a segmentation map texture,
which stores a unique region ID for each segmented region. In detail, a
seed-based image segmentation method is used, see Figure 2 for resultant
color-mapped segmentation maps.
3) Region-level: Next, we have to build connectivity information among
regions across multiple layers, see also Figure 3 (right) for an illustration.
In detail, we load all connectivity and segmentation map textures to the
main memory, check all boundary pixels (those connected to a layer other
than its own), and summarize all these connectivities as the connectivity for
each region. As a result, we can obtain a graph data structure with regions as
nodes and connections as edges. Note that this substep is now implemented
on the CPU, but can also be further put to the GPU by using CUDA.

Figure 12. Paintings of 3D models created with LayerPaint: Trefoil Knot, Pegaso, Children, Mother-child, and Bottle (from top to bottom). These
paintings were created by an artist at first contact with the tool; painting time varies from 20 to 60 minutes.

	Introduction
	Previous Work
	Multi-layer Segmentation
	Multi-layer Operations
	(1) Layer-aware painting
	(2) Interactive Region Select and Popup
	(3) Interactive Paint-to-Hide
	(4) Layer-aware Object Rotation

	Implementation and Results
	User Study
	Conclusions
	Acknowledgements
	REFERENCES

