
198:538 Complexity of Computation Homework 4 Solutions
Rutgers University, Spring 2007

Problem 1

Our instance checker I first runs the candidate algorithm M on the input matrices A and B to
receive some matrix C as an answer. To check that indeed AB = C, it generates a random
vector r ∈ {0, 1}n and then verifies that A(Br) = Cr; if this is the case it accepts otherwise it
outputs ”fail”. Since multiplication of a matrix by a vector requires O(n2) time, this verification
can be done in O(n2 log n) time (the log n term accounts for the time needed to read input bits via
random access). For completeness, notice that if AB = C the checker accepts with probability 1.
If AB 6= C, then the matrix AB −C has at least one nonzero entry, so for at least half the vectors
r ∈ {0, 1}n, (AB − C)r 6= 0 and thus Pr[IM (x) ∈ {L(x), “fail”}] ≥ 1/2. Repeating the procedure
twice gives the desired error rate of 3/4.

Problem 2

(a) As pointed out in the hint, the prover in the interactive protocol for PSPACE languages can
be realized by a polynomial space machine. (The verifier in this protocol asks for evaluations
of an implicit polynomial; such evaluations can be computed in polynomial space.) Let L be
a PSPACE-complete language. Here is a first attempt towards an instance checker for L. The
instance checker I simulates the verifier; whenever the verifier wants to query the prover, the
instance checker converts the query to an instance of L (this can be done efficiently since L
is PSPACE-complete) and queries the oracle on this instance. If at the end of the interaction
the verifier in the interactive protocol accepts, so does the instance checker; otherwise the
instance checker outputs ”fail”.

By the completeness of the interactive protocol for PSPACE, it follows that if x ∈ L and
A solves L correctly on all inputs, then IA(x) = L(x) with probability one. However, when
x 6∈ L, then IA(x) = ”fail” with probability 3/4 for every algorithm A. This is not good
because we want IA(x) = L(x) when A is a good algorithm for L.

To get around this problem, we use the fact that PSPACE is closed under complement, so I
can run both the interactive protocols for L and for L. More precisely, on input x, I does the
following:

• Simulate the verifier in the interactive protocol for L, using the oracle as the prover. If
the verifier accepts, accept.

• Simulate the verifier in the interactive protocol for L, using the oracle as the prover. If
the verifier accepts, reject.

• Otherwise, output ”fail”.

1

2

If the oracle A is a good algorithm for L, then IA(x) accepts when x ∈ L (by completeness of
the protocol for L) and rejects when x 6∈ L (by completeness of tha protocol for L). On the
other hand, for every algorithm A, if x ∈ L then the interactive protocol for L rejects with
probability ≥ 3/4, so IA(x) 6∈ {L(x), ”fail”} with probability at most 1/4. Similarly if x 6∈ L
then the interactive protocol for L rejects with probability ≥ 3/4, so IA(x) 6∈ {L(x), ”fail”}
with probability at most 1/4.

(b) Let M1,M2 . . . be an enumeration of polynomial time Turing machines, and let I be the
instance checker for L. By definition, we have that for every A and x, IA(x) 6∈ {L(x), ”fail”}
with probability at most 1/4. We can make this probability as small as 2−nc

by running I
2O(nc) times and taking the plurality of the answers. (c is a sufficiently large constant we will
specify later.)

Consider the following algorithm A: On input x, simulate in a dovetailing manner IM1 , IM2 , . . .
(in stage i of the simulation, A runs i steps of IM1(x), . . . , IMi(x)). If at any point some IMi

returns an answer other than “fail”, A outputs this answer and halts.

Since L ∈ PSPACE, there exists an algorithm that decides L and runs in exponential time.
Suppose this is the algorithm Mk. Then IMk also runs in exponential time, so after 2|x|

d

steps (where d is some constant that depends on k but not on x), A(x) will have completed
the simulation of IMk(x), and by the completeness of I, will have output an answer with
probability 1. Thus the running time of A on inputs of length n is at most 2nd

.

We choose c = d + 1. Since in time 2nd
the algorithm A can make at most 2nd

calls to I,
and for each call to I we have that Pr[IMi(x) 6∈ {L(x), ”fail”}] ≤ 2−nc

, by a union bound we
have that with probability ≥ 3/4, IMi(x) never outputs L(x) in any of the calls made by A,
so with probability ≥ 3/4 A itself never outputs L(x).

Assuming this is the case, let Mi be an algorithm that decides L. Let x be a sufficiently
long input for Mi. If Mi(x) halts within t steps, then A will have finished simulating IMi(x)
within pi(|x|) · t3 steps, where pi is some polynomial that depends on i but not on x or t. By
completeness of the instance checker, IMi(x) = L(x), so A(x) will also output L(x).

Problem 3

(a) It is not hard to verify that the family of permanent polynomials {p1, p2, . . . } satisfies the
given system of equations. The first equation indicates the permanent expansion by minors:
We can write

pern(xij)1≤i,j≤n =
∑

σ

n∏
i=1

xi,σi

=
n∑

k=1

∑
σ:σ(1)=k

x1k ·
n∏

i=2

xi,σi

=
n∑

k=1

pern−1(xij)1≤i,j≤n,i6=1,j 6=k.

3

The second equation indicates that if we replace the last column and row of an n× n matrix
by zeros, except ynn = 1, then we obtain the permanent of an (n− 1)× (n− 1) matrix.

pern(yij)1≤i,j≤n =
∑

σ

n∏
i=1

yi,σi

=
∑

σ:σ(n)=n

n−1∏
i=1

yi,σi

= pern−1(xij)1≤i,j≤n−1.

If {p1, p2, . . . } and {p′1, p′2, . . . } are two families of polynomials that satisfy the equations, it
is immediate by induction on n that we must have pi = p′i for all i.

(b) The instance checker I we are going to construct works in three stages. Suppose I is given
as input an n× n matrix x and access to an oracle P .

• In the first stage I runs the local test AP for degree n polynomials, viewing the candidate
algorithm P as an oracle providing the value of a polynomial on the queried points. If
P passes the local test then with high probability P computes correctly some degree n
polynomial on 7/8 fraction of the points. Let pn be such a polynomial. In particular, if
P is the permanent polynomial pern, then so is pn.

• From pn, we define the polynomials pn−1, pn−2, . . . , p1 via the equation

pm−1(xij)1≤i,j≤m−1 = pm(yij)1≤i,j≤m. (1)

We want to check that the polynomials p1, . . . , pn satisfy the other equation that defines
the permanent. To do this we invoke the randomized algorithm for polynomial identity
testing on the input

pm(xij)1≤i,j≤m −
m∑

k=1

x1k · pm−1(xij)1≤i,j≤m,i6=1,j 6=k

for every m between 1 and n. If any of the tests fail, I outputs ”fail”. If all of these
identities hold, then by part (a) pn must be the permanent polynomial pern.
Recall that the algorithm for polynomial identity testing works by evaluating the poly-
nomial at a random input. To do this, we need to be able to evaluate pm and pm−1

at inputs chosen by the identity testing algorithm. Evaluating pm and pm−1 at some
input in turn reduces to evaluating pn at some other input (by equation (1)). Since pn is
7/8-close to the oracle algorithm P , we can evaluate pn at random inputs by using the
reconstruction algorithm for P . (Recall that to evaluate pn(x), this algorithm chooses
a random line through x and finds the value pn(x) by looking at values of P at other
points on this line.)
If P = pn = pern, then all the identity tests will pass with probability 1. If pn 6=
pern, then at least one of the polynomials tested by the identity testing algorithm is
nonzero, and (assuming the reconstruction algorithm works correctly, which happens say
with probability 1−O(1/n)) the identity testing algorithm detects this with probability
1− n/|F| = 1−O(1/n). Thus at the end of this stage, unless I outputs ”fail”, we know
with high confidence that P is 7/8-close to the permanent polynomial.

4

• Finally, using the reconstruction algorithm for the permanent, I computes pn(x) using
oracle access to P .

